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ASYMPTOTIC DISTRIBUTION OF ROBUST k-NEAREST
NEIGHBOUR ESTIMATOR FOR FUNCTIONAL

NONPARAMETRIC MODELS

Mohammed Kadi Attouch and Tawfik Benchikh

Abstract. We propose a family of robust nonparametric estimators for robust regression
function based on k-nearest neighbour (k-NN) method. We establish the asymptotic normality of
the estimator under the concentration properties on small balls of the probability measure of the
functional explanatory variables.

1. Introduction

The main goal of this paper is to study the robust nonparametric estimator
of regression function with k-nearest neighbour method when the covariates have
functional nature. The study of this model is motivated by the fact that the robust
estimator is insensible to the presence of outliers.

In many practical situations, one is faced with functional-type phenomena.
It is now possible to take into account their functional nature thanks to techno-
logical improvements permitted to collect data discretized on thinner grids. The
statistical problems involved in the modelization of functional random variables
have received an increasing interest in recent literature, we only refer to the good
overviews in parametric models given by Bosq [5], Ramsay & Silverman [23,24]
and the monograph of Ferraty & Vieu [16] for the prediction problem in functional
nonparametric statistics via the regression function, the conditional mode and the
conditional quantile estimation by the kernel method. The first asymptotic results
of robust estimator in the functional nonparametric context is given by Cadre [7]
who studied the estimator of the median, Azzedine et al. [3] obtained the rate
of almost complete convergence of this class of estimator and Crambes et al. [8]
present results dealing with Lp error for independent and dependent functional da-
ta. The asymptotic normality of robust non parametric regression function has been
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established by Attouch et al. [1,2] in the both cases independent and dependent
functional data.

In cases where data is sparse, the k-NN kernel estimate has a significant ad-
vantage over the classical kernel estimate. The k-NN kernel estimate is also auto-
matically able to take into account the local structure of the data. This advantage,
however, may turn into a disadvantage. If there is an outlier in the data set, the
local prediction may be bad. To avoid this, a robust non-parametric regression
combined to k-NN method can give better results.

The literature of the k-NN method for estimation of the regression function
date bakes to Royall [21] and Stone [22] and has received, since, continuous de-
velopments (Mack [19] derived the rates of convergence for the bias and variance
as well as asymptotic normality in multivariate case, Collomb [9] studied different
types of convergence (probability, a.s, a.co) of the estimator. Devroye [12] obtained
the strong consistency and the uniform convergence). For the functional data stud-
ies, the k-NN kernel estimate was first introduced in the monograph of Ferraty &
Vieu [16], Burba et al. [6] obtained the rate of almost complete convergence of the
regression function using the k-NN method for independent data.

The principal aim of this paper is to apply the k-NN method to establish the
asymptotic normality of the estimator for independent and identically distribut-
ed observations. Nonparametric k-NN method jointly with the robust method
can have the property of automatically removing irrelevant variables in a regres-
sion model, this method permits the construction of adapted neighborhood with
a consideration of the local structure of the data. To highlight the k-NN studies
comparatively to the classical regression we give a real data application.

The paper is organized as follows: the following section is dedicated to pre-
senting our model of study. Then, we give hypotheses and state our main result in
Section 3. In Section 4 we illustrate the effectiveness of the robust k-NN method
in presence of outlier data. All proofs are given in the appendix.

2. Models and estimators

Let (X1, Y1), . . . (Xn, Yn) be n independent pairs, identically distributed as
(X,Y ) which is a random pair valued in F×R, where F is a semi-metric space, d(·, ·)
denoting the semi-metric. For any x in F , we consider ψ a real-valued Borel function
satisfying some regularity conditions to be stated below. The nonparametric model
studied in this paper, denoted by θx, is implicitly defined as a zero with respect to
(w.r.t.) t of the following equation

Ψ(x, t) = E [ψ(Y, t) | X = x] = 0 (1)

We suppose that, for all x ∈ F , θx exists and is the unique zero w.r.t. t of (1) (see,
for instance Koul and Stute [18]) for the existence and uniqueness of θx).

The k nearest neighbour (k-NN) estimate of Ψ(x, t) is defined by

Ψ̂kNN (x, t) :=

∑n
i=1 K(H−1

n,kd(x,Xi))ψ(Yi, t)∑n
i=1 K(H−1

n,kd(x,Xi))
, ∀t ∈ R
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where K is a kernel function and Hn,k(·) is defined as follows:

Hn,k(x) = min
{

h ∈ R+
∣∣∣

n∑
i=1

1B(x,h)(Xi) = k
}

.

In the case of the non-random bandwidth h := hn (sequence of positive real numbers
which goes to zero as n goes to infinity), the robust kernel estimate of Ψ(x, t)
(introduced in Azzedine et al. [3]) is defined by

Ψ̂(x, t) :=
∑n

i=1 K(h−1d(x, Xi))ψ(Yi, t)∑n
i=1 K(h−1d(x,Xi))

, ∀t ∈ R.

A natural estimator of θx denoted by θ̂x, is a zero w.r.t. t of the

Ψ̂kNN (x, t) = 0. (2)

The robust method used here belongs to the class of M-estimates introduced by
Huber [17].

3. Hypotheses and results

From now on, x stands for a fixed point in F , Nx denotes a fixed neighborhood
of x and we set λγ(u, t) = E[(ψ(Y, t))γ | X = u] and Γγ(u, t) = E[(ψ′(Y, t))γ | X =
u], for γ ∈ {1, 2}. We need the following hypotheses gathered together for easy
references.

(H1) There exists a nonnegative differentiable φ-strictly increasing and a nonnega-
tive function g such that

P (X ∈ B(x, r)) = φ(r) · g(x) where B(x, r) = {x′ ∈ F | d(x, x′) < r}.

(H2) The function ψ is continuous differentiable, strictly monotone and bounded
w.r.t. the second component and its derivative ∂ψ(y, t)/∂t is bounded and
continuous at θx uniformly in y.

(H3) The function λγ(·, ·) satisfies the Lipschitz’s condition w.r.t. the first one, that
is: there exists a strictly positive constant bγ such that:

∃C1 > 0, ∀(u1, u2) ∈ Nx×Nx, ∀t ∈ R, |λγ(u1, t)−λγ(u2, t)| ≤ C1d
bγ (u1, u2).

(H4) The function Γγ(·, ·) satisfies the Lipschitz’s condition w.r.t. the first one, that
is: there exists a strictly positive constant dγ such that

∃C2 > 0, ∀(u1, u2) ∈ Nx×Nx, ∀t ∈ R, |Γγ(u1, t)−Γγ(u2, t)| ≤ C2d
dγ (u1, u2).

(H5) For each sequence un ↓ 0 as n −→ ∞ of positive real numbers, there exists a
function β(·) such that:

∀t ∈ [0, 1], lim
un→0

φ(tun)
φ(un)

= β(t) and
log(n)

nu2
nφ2(un)

−→ 0 as n −→∞
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(H6) The sequence of positive real numbers kn = k satisfies:

k

n
−→ 0 and log(n)/k → 0 as n →∞.

(H7) The kernel K is a positive function supported on [0, 1]. Its derivative K ′ exists
and is such that there exist two constants C3 and C4 with −∞ < C3 < K ′(t) <
C4 < 0 for 0 ≤ t ≤ 1.

(H8) The derivative of the real function ϕx(s) = E[ψ(Y, θx) | d(X,x) = s, at 0
exists.

Comments on the hypotheses

1. The assumption (H1) is classical for the explanatory variable X. This assump-
tion replaces the condition of a strict positivity of the density of explanatory
variable usually assumed in finite-dimensional case. The decomposition of
the concentration measure as product of two independent functions has been
adopted in Masry [20] and used after by many authors (see Attouch et al. [1]
for comment and some explicit examples).

2. Condition (H2) controls the robustness properties of our model. This assump-
tion keeps the same conditions on the function ψ given by Boente and Ro-
driguez [4] in the multivariate case.

3. Hypotheses (H3)–(H4) are regularity conditions which characterize the func-
tional space of our model and are needed to evaluate the bias term in our
asymptotic properties.

4. The function β(·) defined in (H5) plays a crucial role in our asymptotic ap-
proach. It permits to give the variance term explicitly. We quote the following
examples (which can be found in Ferraty et al. [14]:
1) β(u) = uγ , when φ(h) = hτ for some τ > 0,

2) β(u) = δ1(u) where δ1(u) is Dirac’s function, when φ(h) = hτ exp
{− C

hp

}
for some τ > 0 and p > 0,

3) β(u) = 1]0,1](u), when φ(h) = 1
| ln h| + o

(
1

| ln h|
)
.

5. The assumptions (H6)–(H8) are technical conditions imposed for the brevity
of proofs.
Now we are in position to give our main result.

Theorem 1. Assume that (H1)–(H8) hold, then θ̂x exists and is unique with
probability tending to 1, and for any x ∈ A, we have

(
k

σ2(x, θx)

)1/2 (
θ̂x − θx −Bn(x)

) D→ N (0, 1) as n →∞ (3)

where

Bn(x) =
nφ−1(k/n)g(x)√

kα2λ2(x, θx)

∫ 1

0

K(t)ϕx(tφ−1(k/n))φ′(tφ−1(k/n))dt + o(φ−1(k/n))

(4)
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and

σ2(x, θx) =
α2λ2(x, θx)

α2
1g(x)(Γ1(x, θx))2

(with αj = −
∫ 1

0

(Kj)′(s)β(s)ds, for, j = 1, 2),
(5)

A = {x ∈ F , g(x)λ2(x, θx)Γ1(x, θx) 6= 0};
D→ means the convergence in distribution.

It is easy to see that, if one imposes some regularity assumptions on the real
function ϕx(·), we can give explicitly the asymptotic behavior of the term Bn(x), by
using Taylor’s expansion of the function ϕx (see Delsol [10]). However, to remove
the bias term Bn(x) from Theorem 1, we need an additional condition on the k-NN
parameter k.

Corollary 1. Under the hypotheses of Theorem 1 and if the k-NN parameter
k satisfies k(φ−1(k/n))2b1 → 0 as n →∞, we have

(
k

σ2(x, θx)

)1/2 (
θ̂x − θx

) D→ N (0, 1) as n →∞. (6)

The detailed proof of Theorem 1 is postponed to appendix.

4. Applications

4.1 Conditional confidence interval

Our main application of the above Theorem is to build confidence interval for
the true value of θ given curve X = x. A plug-in estimate for the asymptotic stan-
dard deviation σ(x, θx) can be obtained using the estimators λ̂2(x, θ̂x) and Γ̂1(x, θ̂x)

of λ2(x, θx), Γ1(x, θx) respectively. We get σ̂(x, θ̂x) :=

(
α̂2λ̂2(x, θ̂x)

(α̂1)2g(x)Γ̂1(x, θ̂x)

)1/2

.

Then σ̂(x, θ̂x) can be used to get the following approximate (1− β) confidence
interval for θx

θ̂x ± t1−ζ/2 ×
(

σ̂2
n(x, θ̂x)

k

)1/2

where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution.

Here we point out that the estimators λ̂2(x, θ̂x) and Γ̂1(x, θ̂x) will be calculated,
for x ∈ A, in the same way as in (2). We estimate empirically α1 and α2 by

α̂1 =
1

kg(x)

n∑

i=1

Ki and α̂2 =
1

kg(x)

n∑

i=1

K2
i ,
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where Ki = K

(
d(x,Xi)
φ−1(k/n)

)
. This last estimation is justified by the fact that,

under (H1), (H5) and (H6), we have, (see Ferraty & Vieu [16, p. 44])

1
kg(x)

E[Kj
1 ] → αj , j = 1, 2.

Finally, the approximate (1− ζ/2) confidence band, for any x ∈ A, is

[a−(x), a+(x)] where a±(x) = θ̂x ± t1−ζ/2 ×
( ∑n

i=1 K2
i λ̂2(x, θ̂x)(∑n

i=1 Ki

)2Γ̂1(x, θ̂x)

)1/2

.

4.2. A real data application
Now we apply the described method to some chemiometrical real data. This

data come from a quality control problem in the food industry and it con-
cerns a sample of finely chopped meat. The data are available on the web site
http://lib.stat.cmu.edu/datasets/tecator.

The 215 spectrometric curves, {Xi(t), t ∈ [850, 1050], i = 1, · · · , 215.}

This figure plots absorbance versus wavelength (850–1050) for 215 selected pieces
of meat. Note that, the main goal of spectrometric analysis is to allow for the
discovery of the proportion of some specific chemical content (see Ferraty & Vieu
[16] for further details related to spectrometric data). At this stage one would like
to use the spectrometric curve X to predict Y the proportion of protein content in
the piece of meat.

Thus, in order to show the superiority of our prediction method we compare
the three different methods, k-NN regression given in Burba et al. [6], Robust
regression in Attouch et al. [1] and k-NN robust regression presented in this paper.

In order to introduce the outliers in this sample, we multiply by 100 the re-
sponse variable of a number of observations. In practice, we consider 215 observa-
tions split into two samples: learning sample (170 observations) and test sample
(45 observations).
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For both methods, the kernel K is the quadratic function, and we use a stan-
dard L2 semi-metric; this choice is motivated by the fact that the shape of these
spectrometric curves is very smooth (see Ferraty & Vieu [16] for more motivations
of this choice). We proceed by the following algorithm:

The optimal bandwidths h and k optimal nearest neighbor obtaining from the
training sample by the cross-validation method (see Burba et al. [6]). We put

Ŷ j
i = θ̂(Xi∗) and Ỹ j

i = r̂(Xi∗) i = 171, . . . , 215.

where Xi∗ is the nearest curve to Xi in the training sample and r̂ is the kernel
estimate of the classical regression function defined by

r̂(x) =
∑215

i=171 K(h−1
n d(x,Xi))Yi∑215

i=171 K(h−1
n d(x,Xi))

.

Whereas the optimal number of neighbors kopt is defined by kopt = argmink CV (k),
where

CV (k) =
215∑

i=171

(Yi − r̂i
kNN (Xi))2

with

r̂i
kNN (x) =

∑215
j=171,j 6=i ψ(Yj)K(d(Xj , x)/hk(x))
∑215

j=171,j 6=i K(d(Xj , x)/hk(x))
.

The error used to evaluate this comparison is the mean of absolute error (MAE)
expressed by

1
45

215∑

i=171

|Yi − T̂ (Xi)|

where T̂ designate the estimator used: robust regression, and k-NN in classical or
robust regression.

In our simulations, we worked with several functions (L1−L2, Androws, Tuck-
ey, Cauchy . . . ), but we found that the best results are obtained when the L1−L2

function
(
ψ(t) =

t√
1 + t2/2

)
is used.

The results are given in Table 1. We observe that in the presence of outliers, the
k-NN robust regression gives better results than the k-NN regression and robust
regression, in sense that, even if the MAE value of the both methods increases
substantially relatively to the number of the perturbed points, it remains very low
for the k-NN robust one.
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Number of perturbation 0 value 5 values 15 values

MAE Robust reg. 0.0450763 0.0789672 0.1598794

MAE K-NN reg. 0.0385238 0.039065 0.03928697

MAE K-NN Robust reg. 0.03742967 0.03756078 0.03776294

Table 1. Comparison between both methods in the presence of outliers

5. Conclusion and perspectives

As already mentioned in the introduction, the k-NN estimate is prone to out-
liers. This disadvantage is treated clearly in this paper by robust k-NN kernel
regression estimation.

This work can be generalized to the dependent data (see Attouch et al. [2]. In
nonparametric statistics, uniform convergence is considered as a preliminary step
to obtain sharper results, in this context, it would be very interesting to extend the
results of Ferraty et al. [15] to robust k-NN estimate.

Obtaining explicit expressions of the dominant terms of centered moments can
be envisaged when we obtain the asymptotic normal result (see, Delsol [10]). This
approach can be investigate in future work.

6. Appendix

For i = 1, . . . , n, we consider quantities Ki(x, u) = K
(
u−1d(x,Xi)

)
, ψi(t) =

ψ(Yi, t), and let

Ψ̂N (x, t, u) =
1

nE [K1(x, u)]

n∑
i=1

Ki(x, u)ψi(t),

Ψ̂D(x, u) =
1

nE[K1(x, u)]

n∑
i=1

Ki(x, u), (7)

so that Ψ̂kNN (x, t) = Ψ̂N (x,t,Hn,k)

Ψ̂D(x,Hn,k)
.

Denote by cn(t, u) = Ψ̂N (x, t, u), c = Ψ(x, t) and let ζ ∈]0, 1[. We choose D−
n

and D+
n as

φ(D−
n ) =

√
ζ
k

n
, φ(D+

n ) =
1√
ζ

k

n
.

Using the Taylor’s expansion of order one around θx, we get

cn(θ̂x, u) = cn(θx, u) + (θ̂x − θx)c′n(ξn, u).

with ξn ∈ (θ̂x, θx). Because of the definition of θ̂x, we have

θ̂x − θx =
−cn(θx,Hn,k)
c′n(ξn,Hn,k)

. (8)

Finally, we have the following decomposition:
(

k

σ2(x, θx)

)1/2

θ̂x − θx =
(

k

σ2(x, θx)

)1/2 −cn(θx, Hn,k)
c′n(ξn, Hn,k)
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=
(

k

σ2(x, θx)

)1/2 −cn(θx,Hn,k) + cn(θx, D+
n )

c′n(ξn,Hn,k)
−

(
k

σ2(x, θx)

)1/2
cn(θx, D+

n )
c′n(ξn,Hn,k)

= −
(

k

σ2(x, θx)

)1/2
cn(θx, D+

n )− E [cn(θx, D+
n )]

c′n(ξn,Hn,k)

+
(

k

σ2(x, θx)

)1/2 −cn(θx,Hn,k) + cn(θx, D+
n )

c′n(ξn,Hn,k)
−

(
k

σ2(x, θx)

)1/2 E [cn(θx, D+
n )]

c′n(ξn,Hn,k)
(9)

Then, to state asymptotic normality, we show that the numerator of the first term
of the right hand side of (9) suitably normalized is asymptotically normally dis-
tributed, the numerator of the second term is equal to Bn(x) and the denominator
converges in probability to Γ1(x, θx).

On the one hand, the asymptotic normality of
(

k

σ2(x, θx)

)1/2 (
cn(θx, D+

n )− E [
cn(θx, D+

n )
])

was proved in Lemma 2.1 in Attouch et al. [1] by choosing the bandwidth parameter
as h := hn = D+

n .
Note that, Attouch et al. [1] in Lemma 2.2 prove that

E [cn(θx, hn)] =
h

φ(h)α1

∫ 1

0

K(t)ϕ(th)φ′(th) dt.

Then, we deduced in the case h := hn = D+
n , that

(
k

σ2(x, θx)

)1/2

E
[
cn(θx, D+

n )
]

=
nφ−1(k/n)g(x)√

kα2λ2(x, θx)

∫ 1

0

K(t)ϕ(tφ−1(k/n))φ′(tφ−1(k/n)) dt (10)

On the other hand, by hypothesis (H7), and the fact that 1{D−
n≤Hn,k≤D+

n }
a.co.−→

1 when k
n −→ 0 (see Burba et al. [6]), we have

cn(θx, D+
n ) ≤ cn(θx, Hn,k) ≤ cn(θx, D−

n ).

Using the fact that
∣∣cn(θx,Hk,n)− cn(θx, D+

n )
∣∣ ≤ ∣∣cn(θx, D−

n )− cn(θx, D+
n )

∣∣
≤ ∣∣cn(θx, D+

n )− E [
cn(θx, D+

n )
]∣∣ +

∣∣E [
θx, cn(D+

n )
]− E [

cn(θx, D−
n )

]∣∣
+

∣∣E [
cn(θx, D−

n )− cn(θx, D−
n )

]∣∣ ,

hypothesis (H5) and Lemma 3.4 of Azzedine et al. [3] give that
(

k

σ2(x, θx)

)1/2 ∣∣cn(θx, D+
n )− E [

cn(θx, D+)
]∣∣ = Oa.co.

(√
log(n)

n(D+
n )2(φ(D+

n ))2

)
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and
(

k

σ2(x, θx)

)1/2 ∣∣cn(θx, D−
n )− E [

cn(θx, D−)
]∣∣ = Oa.co.

(√
log(n)

n(D−
n )2(φ(D−

n ))2

)
.

The equiprobability of the couples (Xi, Yi), hypotheses (H1) and (H6) allow
to write

∣∣E [
cn(θx, D+)

]− E [
cn(θx, D−)

]∣∣
≤ ∣∣E [

cn(θx, D+)
]− λ1(x, t)

∣∣ +
∣∣E [

cn(θx, D−)
]− λ1(x, t)

∣∣

≤
∣∣∣E

[
1

E [K1]
K11B(x,D+

n )(X1)
(
λ1(X1, t)− λ1(x, t)

)] ∣∣∣

+
∣∣∣E

[
1

E [K1]
K11B(x,D−

n )(X1)
(
λ1(X1, t)− λ1(x, t)

)] ∣∣∣

≤ C
(
(D+

n )b1 + (D−
n )b1

)

As b1 > 1, the definition of D+
n and D−

n , hypothesis (H5) and (10) permit to
obtain (4).

On the other hand, to establish the convergence in probability of denominator
in (8), note that
∣∣c′n(ξn, D+

n )− Γ1(x, θx)
∣∣ ≤ ∣∣c′n(ξn, D+

n )− c′n(θx, D+
n )

∣∣ +
∣∣c′n(θx, D+

n )− Γ1(θx, x)
∣∣ .

(11)
Concerning the first term, observe that

∣∣c′n(ξn, D+
n )− c′n(x, θx, D+

n )
∣∣ ≤ sup

y∈R

∣∣∣∣
∂ψ(y, ξn − θx)

∂t

∣∣∣∣ ,

using the fact that ∂ψ(y,t)
∂t is continuous at θx uniformly in y, and the convergence

in probability of θ̂x to θx (see Corollary 2.4 in Attouch et al. [1], we deduce that
the first term of (11) converges in probability to 0.

However, the limit of second term is a consequence of the following inequality
and the Lemma 2.4 of Attouch et al. [1]

∣∣c′n(θx, D+
n )− Γ1(θx, x)

∣∣ ≤ ∣∣c′n(θx, D+
n )− Γ1(θx, x)

∣∣ .
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