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Asma Ali, V. De Filippis and Faiza Shujat

Abstract. The purpose of this paper is to prove some results concerning symmetric bideriva-
tions and symmetric generalized biderivations on prime and semiprime rings which partially ex-
tend some results contained in Vukman, J., Symmetric biderivations on prime and semiprime
rings, Aequationes Math. 38 (1989), 245–254 and Vukman, J., Two results concerning symmetric
biderivations on prime rings, Aequationes Math. 40 (1990), 181–189.

1. Introduction

Throughout this paper all rings will be associative. We shall denote by Z(R)
the center of a ring R and by C the extended centroid of R, which is the center
of the two-sided Martindale quotients ring Q (we refer the reader to [2] for more
details). Recall that a ring R is prime if aRb = (0) implies that either a = 0 or
b = 0, and it is semiprime if aRa = (0) implies a = 0. We shall write [x, y] for
xy − yx.

An additive mapping d : R → R is said to be a derivation if d(xy) = d(x)y +
xd(y), for all x, y ∈ R. A derivation d is inner if there exists a ∈ R such that
da(x) = [a, x], for all x ∈ R. A mapping D : R × R → R is said to be symmetric
if D(x, y) = D(y, x), for all x, y ∈ R. A mapping f : R → R defined by f(x) =
D(x, x), where D : R × R → R is a symmetric mapping, is called the trace of D.
It is obvious that in the case D : R × R → R is a symmetric mapping which is
also biadditive (i.e., additive in both arguments), the trace f of D satisfies the
relation f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. A biadditive mapping
D : R × R → R is called a biderivation if D(xy, z) = D(x, z)y + xD(y, z) for all
x, y, z ∈ R. Obviously, in this case the relation D(x, yz) = D(x, y)z + yD(x, z) is
also satisfied for all x, y, z ∈ R.

Typical examples are mappings of the form (x, y) 7→ λ[x, y] where λ ∈ C. We
shall call such maps inner biderivations. It was shown in [4] that every biderivation
D of a noncommutative prime ring R is of the form D(x, y) = λ[x, y] for some
λ ∈ C. Moreover, in [3], Brešar extended this result to semiprime rings.
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Maksa introduced in [6] the concept of a symmetric biderivation (see also [7],
where an example can be found). It was shown in [6] that symmetric bideriva-
tions are related to general solution of some functional equations. Some results
on symmetric biderivations in prime and semiprime rings can be found in [8,
9, 10]. The notion of additive commuting mappings is closely connected with
the notion of biderivations. Every commuting additive mapping f : R → R gives
rise to a biderivation on R. Namely linearizing [x, f(x)] = 0, for all x, y ∈ R,
(x, y) 7→ [f(x), y] is a biderivation (moreover, it is an inner derivation in each
argument).

The notion of generalized biderivation was introduced by Argaç in [1].
Let D : R×R → R be a biderivation. A biadditive mapping ∆: R×R → R is

said to be a generalized biderivation if for every x ∈ R, the map y 7→ ∆(x, y) is a
generalized derivation of R associated with D as well as for every y ∈ R, the map
x 7→ ∆(x, y) is a generalized derivation of R associated with D, i.e., ∆(x, yz) =
∆(x, y)z + yD(x, z) and ∆(xy, z) = ∆(x, z)y + xD(y, z) for all x, y, z ∈ R.

Example 1.1. Let R be a ring. If D is any biderivation of R and α : R×R → R
is a biadditive map such that α(x, yz) = α(x, y)z and α(xy, z) = α(x, z)y for all
x, y, z ∈ R, then D + α is a generalized D-biderivation of R.

In this paper, we prove some theorems on symmetric generalized biderivations
of a ring which extend Vukman’s results contained in [9, Theorem 1] and [8, The-
orem 4].

2. Preliminaries

Throughout the paper, we make extensive use of the basic commutator iden-
tities (i) [x, yz] = [x, y]z + y[x, z] and (ii) [xy, z] = [x, z]y + x[y, z]. Here we state
the following results which will be useful in the sequel.

Lemma 2.1. [5, page 6, Corollary 2] If R is a semiprime ring and I is an ideal
of R, then I ∩Ann(I) = (0).

Theorem 2.2. [9, Theorem 1] Let R be a prime ring of characteristic not
two and three. If D1, D2 are the symmetric biderivations of R with trace f1, f2,
respectively, such that f1(x)f2(x) = 0 for all x ∈ R, then either D1 = 0 or D2 = 0.

Theorem 2.3. [8, Theorem 4] Let R be a 2-torsion free semiprime ring.
Suppose that there exists a symmetric biderivation D : R × R → R such that
D(f(x), x) = 0 for all x ∈ R, where f denotes the trace of D. In this case we
have D = 0.

Lemma 2.4. Let R be a prime ring of characteristic different from two and I
be a nonzero ideal of R. If D is a symmetric biderivation such that D(x, x) = 0 for
all x ∈ I, then either D = 0 or R is commutative.

Proof. Let D(x, x) = 0 for all x ∈ I. Linearization yields that 2D(x, y) = 0
for all x, y ∈ I. Since characteristic of R is different from two, we have D(x, y) = 0



412 A. Ali, V. De Filippis, F. Shujat

for all x, y ∈ I. Replacing y by ry, we get D(x, r)y = 0 for all x, y ∈ I and r ∈ R.
Substitute sx for x, we obtain D(s, r)xy = 0 for all x, y ∈ I and r, s ∈ R. This
implies that D(s, r)R[x, y] = 0 for all x, y ∈ I and r, s ∈ R. Primeness of R yields
that either [x, y] = 0 or D(r, s) = 0 for all x, y ∈ I and r, s ∈ R. Hence one has
that either [I, I] = (0) and R is commutative, or D = 0.

3. Some generalizations to symmetric generalized biderivations

In this section we partially generalize Theorem 2.3. More precisely, we con-
sider the case when the ring R is prime and replace symmetric biderivations with
symmetric generalized biderivations. In this sense we obtain the following:

Theorem 3.1. Let R be a prime ring of characteristic not two and I be a
nonzero ideal of R. If ∆ is a symmetric generalized biderivation with associated
biderivation D of R with trace f such that ∆(f(x), x) = 0 for all x ∈ I, then one
of the following holds:
(i) ∆ = 0,
(ii) R is commutative,
(iii) f is commuting on I.

Proof. Suppose that

∆(f(x), x) = 0 for all x ∈ I. (3.1)

Linearizing (3.1) and using (3.1), we get

∆(f(x), y)+∆(f(y), x)+2∆(D(x, y), x)+2∆(D(x, y), y) = 0 for all x, y ∈ I. (3.2)

Replacing y by −y in (3.2), we get

−∆(f(x), y) + ∆(f(y), x)− 2∆(D(x, y), x) + 2∆(D(x, y), y) = 0 for all x, y ∈ I.
(3.3)

Adding up (3.2) and (3.3) and using the fact that characteristic of R is not two,
we find

∆(f(y), x) + 2∆(D(x, y), y) = 0 for all x, y ∈ I. (3.4)

Substitute xz for x in (3.4) to get

∆(f(y), x)z+xD(f(y), z)+2∆(xD(z, y), y)+2∆(D(x, y)z, y) = 0 for all x, y, z ∈ I.

By computation, we get

∆(f(y), x)z + xD(f(y), z) + 2∆(x, y)D(z, y) + 2xD(D(z, y), y)

+ 2∆(D(x, y), y)z + 2D(x, y)D(z, y) = 0 for all x, y, z ∈ I. (3.5)

In view of (3.4), (3.5) yields that

xD(f(y), z) + 2∆(x, y)D(z, y) + 2xD(D(z, y), y)

+ 2D(x, y)D(z, y) = 0 for all x, y, z ∈ I. (3.6)
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Replacing x by ux in (3.6), we obtain

uxD(f(y), z) + 2∆(u, y)xD(z, y) + 2uD(x, y)D(z, y) + 2uxD(D(z, y), y)

+ 2D(u, y)xD(z, y) + 2uD(x, y)D(z, y) = 0 for all x, y, z, u ∈ I.
(3.7)

Comparing (3.6) with (3.7), we get

2∆(u, y)xD(z, y) + 2uD(x, y)D(z, y) + 2D(u, y)xD(z, y)

− 2u∆(x, y)D(z, y) = 0 for all x, y, z, u ∈ I.

Since R is of characteristic not two and replacing u by x, we have

∆(x, y)xD(z, y) + xD(x, y)D(z, y) + D(x, y)xD(z, y)

− x∆(x, y)D(z, y) = 0 for all x, y, z ∈ I.

This implies that

{[∆(x, y), x] + (xD(x, y) + D(x, y)x)}D(z, y) = 0 for all x, y, z ∈ I.

Therefore we have

{[∆(x, y), x] + D(x2, y)}D(z, y) = 0, ∀x, y, z ∈ I.

Replacing z by zu, we obtain {[∆(x, y), x]+D(x2, y)}zD(u, y) = 0 for all x, y, z, u ∈
I. Since R is prime, we get either [∆(x, y), x] + D(x2, y) = 0 or D(u, y) = 0. In
this last case and by Lemma 2.4, we have that either R is commutative or D = 0.
Moreover, if D = 0, then by (3.1) we get ∆ = 0.

On the other hand, if [∆(x, y), x]+D(x2, y) = 0 for all x, y ∈ I, then replacing
y by yz we find ∆(x, y)[z, x]+[∆(x, y), x]z+y[D(x, z), x]+[y, x]D(x, z)+yD(x2, z)+
D(x2, y)z = 0 for all x, y, z ∈ I. This implies that ∆(x, y)[z, x] + y[D(x, z), x] +
[y, x]D(x, z)+ yD(x2, z) = 0 for all x, y, z ∈ I. In particular, if we take x = z, then
we have y[f(x), x] + [y, x]f(x) + yD(x2, x) = 0 for all x, y ∈ I. Again replace y by
ry and use the last relation to get

[r, x]yf(x) = 0 for all x, y ∈ I, r ∈ R. (3.8)

Replacing y by yx, we have

[r, x]yxf(x) = 0 for all x, y ∈ I, r ∈ R. (3.9)

Right multiplying by x in (3.8), we get

[r, x]yf(x)x = 0 for all x, y ∈ I, r ∈ R. (3.10)

Subtracting (3.9) and (3.10), we find

[r, x]y[f(x), x] = 0 for all x, y ∈ I, r ∈ R. (3.11)

Substituting f(x) for r in (3.11), we get [f(x), x]y[f(x), x] = 0 for all x, y ∈ I.
This implies that y[f(x), x]Ry[f(x), x] = 0 for all x, y ∈ I. Since R is prime, we
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have y[f(x), x] = 0 for all x, y ∈ I, i.e., [f(x), x] ∈ Ann(I). This implies that
[f(x), x] ∈ Ann(I) ∩ I = (0), for all x ∈ I by Lemma Lemma 2.1. Hence f is
commuting on I.

Now we extend the result for the noncommutative case.

Theorem 3.2. Let R be a noncommutative prime ring of characteristic not
two and I be an ideal of R. If ∆ is a symmetric generalized biderivation with
associated biderivation D of R with trace f such that ∆(f(x), y) = 0 for all x, y ∈ I,
then D = 0 and ∆ = 0.

Proof. Suppose that

∆(f(x), y) = 0 for all x, y ∈ I. (3.12)

Replacing y by yz in (3.12), we have

∆(f(x), y)z + yD(f(x), z) = 0 for all x, y, z ∈ I.

Using (3.12), we get
D(f(x), z) = 0 for all x, z ∈ I. (3.13)

Substitute x + y for x in (3.13) to get

D(f(x), z) + D(f(y), z) + 2D(D(x, y), z) = 0 for all x, y, z ∈ I.

Using (3.13) and the fact that R is not of characteristic two, we obtain

D(D(x, y), z) = 0 for all x, y, z ∈ I. (3.14)

Replacing y by yu in (3.14), we find

yD(D(x, u), z) + D(y, z)D(x, u) + D(x, y)D(u, z)

+ D(D(x, y), z)u = 0 for all x, y, z, u ∈ I.

Apply (3.14) to obtain

D(y, z)D(x, u) + D(x, y)D(u, z) = 0 for all x, y, z, u ∈ I. (3.15)

Substituting yw for y in (3.15), we get

D(y, z)wD(x, u) + D(x, y)wD(u, z) = 0 for all x, y, z, u, w ∈ I. (3.16)

In particular, if we replace x by z in (3.16), then we obtain D(y, z)wD(z, u) +
D(z, y)wD(u, z) = 0 for all y, z, u, w ∈ I. Since D is symmetric and using the fact
that R is not of characteristic two, we have D(y, z)wD(z, u) = 0 for all y, z, u, w ∈ I.
Primeness of I yields that D(z, u) = 0 for all z, u ∈ I. Using Lemma 2.4, we have
D = 0 and hence ∆ = 0.

4. Main results

We dedicate the final section to the generalization of Theorems 2.2 and 2.3 to
symmetric biderivations acting on ideals of semiprime rings.



Results concerning symmetric generalized biderivations 415

We start with the following

Theorem 4.1. Let R be a prime ring of characteristic not two and three and
I be an ideal of R. If D1, D2 are the symmetric biderivations of R with trace f1, f2

respectively such that f1(x)f2(x) = 0 for all x ∈ I, then either D1 = 0 or D2 = 0
unless R is commutative.

Proof. Assume that R is not commutative. The linearization of the relation

f1(x)f2(x) = 0 for all x ∈ I

gives

f1(y)f2(x) + 2D1(x, y)f2(x) + f1(x)f2(y) + 2D1(x, y)f2(y) + 2f1(x)D2(x, y)

+ 2f1(y)D2(x, y) + 4D1(x, y)D2(x, y) = 0 for all x, y ∈ I. (4.1)

Substitute −y for y in (4.1) to get

f1(y)f2(x)− 2D1(x, y)f2(x) + f1(x)f2(y)− 2D1(x, y)f2(y)− 2f1(x)D2(x, y)

− 2f1(y)D2(x, y) + 4D1(x, y)D2(x, y) = 0 for all x, y ∈ I. (4.2)

Adding up (4.1) and (4.2) and using 2-torsion freeness of R, we obtain

f1(y)f2(x) + f1(x)f2(y) + 4D1(x, y)D2(x, y) = 0 for all x, y ∈ I. (4.3)

Replacing y by y + z in (4.3) , we find

f1(y)f2(x) + f1(z)f2(x) + 2D1(y, z)f2(x) + f1(x)f2(y)

+ f1(x)f2(z) + 2f1(x)D2(y, z) + 4D1(x, y)D2(x, y) + 4D1(x, z)D2(x, z)

+ 4D1(x, y)D2(x, z) + 4D1(x, z)D2(x, y) = 0 for all x , y, z ∈ I. (4.4)

Using (4.3), (4.4) gives that

2D1(y, z)f2(x) + 2f1(x)D2(y, z) + 4D1(x, y)D2(x, z)

+ 4D1(x, z)D2(x, y) = 0 for all x , y, z ∈ I. (4.5)

Substitute y for x in (4.5) to get

6D1(y, z)f2(y) + 6f1(y)D2(y, z) = 0 for all y, z ∈ I. (4.6)

Replace z by zu in (4.6) and use (4.6) to obtain

[f1(y), z]D2(y, u) + D1(y, z)[u, f2(y)] = 0 for all y, z, u ∈ I. (4.7)

Again replace z by f1(y)z in (4.7) to get

f1(y)[f1(y), z]D2(y, u) + f1(y)D1(y, z)[u, f2(y)]

+ D1(y, f1(y))z[u, f2(y)] = 0 for all y, z, u ∈ I. (4.8)
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Comparing (4.7) with (4.8), we arrive at

D1(y, f1(y))z[u, f2(y)] = 0 for all y, z, u ∈ I.

This implies that D1(y, f1(y))Rz[u, f2(y)] = 0 for all y, z, u ∈ I. Primeness of
R yields that either D1(y, f1(y)) = 0 or z[u, f2(y)] = 0 for all y, z, u ∈ I. If
D1(y, f1(y)) = 0 for all y ∈ I, then conclusion follows from Theorem 2.3. Now
consider the case when z[u, f2(y)] = 0 for all y, z, u ∈ I. Primeness of R yields
that [u, f2(y)] = 0 for all y, u ∈ I. By linearizing we get [u, D2(x, y)] = 0 for
all x, y, u ∈ I. Replacing x by xz, we have [u, x]D2(z, y) + D2(x, y)[u, z] = 0 for
all x, y, u, z ∈ I. In particular, we get [x, z]D2(z, y) = 0 for all x, y, z ∈ I. This
implies that [x, z]vD2(z, y) = 0 for all x, y, z, v ∈ I. On the other hand, since R is
not commutative, we also have that [I, I] 6= 0. Hence, primeness of I yields that
D2(z, y) = 0 for all z, y ∈ I. Application of Lemma 2.4 gives that D2 = 0.

We conclude our paper with the following result which extends Theorem 2.3.

Theorem 4.2. Let R be a 2-torsion free semiprime ring and I be a nonzero
ideal of R. Let D be a symmetric biderivation of R such that D(I, I) ⊆ I. If f is
the trace of D such that D(f(x), x) = 0 for all x ∈ I, then D = 0 on I.

Proof. Suppose that

D(f(x), x) = 0 for all x ∈ I. (4.9)

Linearization yields that

D(f(x), y) + D(f(x), x) + D(f(y), x) + D(f(y), y)

+ 2D(D(x, y), x) + 2D(D(x, y), y) = 0 for all x, y ∈ I. (4.10)

Comparing (4.9) with (4.10), we get

D(f(x), y) + D(f(y), x) + 2D(D(x, y), x) + 2D(D(x, y), y) = 0 for all x, y ∈ I.
(4.11)

Substituting −y for y in (4.11), we find

−D(f(x), y) + D(f(y), x)− 2D(D(x, y), x) + 2D(D(x, y), y) = 0 for all x, y ∈ I.
(4.12)

Adding up (4.11) and (4.12) and using 2-torsion freeness of R, we get

D(f(y), x) + 2D(D(x, y), y) = 0 for all x, y ∈ I. (4.13)

Replace x by xz in (4.13), we obtain

xD(f(y), z) + D(f(y), x)z + 2xD(D(z, y), y) + 4D(x, y)D(z, y)

+ 2D(D(x, y), y)z = 0 for all x, y, z ∈ I. (4.14)

In view of (4.13), (4.14) reduces to

4D(x, y)D(z, y) = 0 for all x, y, z ∈ I.
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Since R is 2-torsion free, we have D(x, y)D(z, y) = 0 for all x, y, z ∈ I. Substituting
zx for z we get D(x, y)zD(x, y) = 0 for all x, y, z ∈ I. Hence we get D(x, y)I = 0
and ID(x, y) = 0, i.e., D(x, y) ∈ Ann(I) for all x, y ∈ I. Since D(I, I) ⊆ I, we have
D(x, y) ∈ I ∩Ann(I) = (0) for all x, y ∈ I by Lemma 2.1. Hence we get D = 0 on
I.
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