POWER MEAN INEQUALITY OF GENERALIZED TRIGONOMETRIC FUNCTIONS

Barkat Ali Bhayo

Abstract. The author here studies the convexity and concavity properties of the generalized *p*-trigonometric functions in the sense of P. Lindqvist with respect to the Power Mean.

1. Introduction

The generalized trigonometric and hyperbolic functions depending on a parameter p > 1 were studied by P. Lindqvist in 1995 [16]. For the case when p = 2, these functions coincide with elementary functions. Later on numerous authors have extended this work in various directions, see [8–10, 13, 17]. The generalized trigonometric function \sin_p , know as eigenfunction has been a tool in the analysis of more complicated equations, see [6, 7, 11] and the bibliography of these papers. Here we study the Power Mean inequality of \sin_p and other generalized trigonometric functions.

We introduce some notation and terminology for the statement of the main results.

Given complex numbers a, b and c with $c \neq 0, -1, -2, \ldots$, the Gaussian hypergeometric function is the analytic continuation to the slit place $\mathbb{C} \setminus [1, \infty)$ of the series

$$F(a,b;c;z) = {}_{2}F_{1}(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a,n)(b,n)}{(c,n)} \frac{z^{n}}{n!}, \qquad |z| < 1$$

Here (a, 0) = 1 for $a \neq 0$, and (a, n) is the *shifted factorial function* or the Appell symbol

$$(a,n) = a(a+1)(a+2)\cdots(a+n-1)$$

for $n \in \mathbb{Z}_+$, see [1]. The integral representation of the hypergeometric function is given as follows [21, p. 20]

$$F(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(c)(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt$$
(1.1)

 $\operatorname{Re}(c) > \operatorname{Re}(a) > 0, |\arg(1-z)| < \pi.$

2010 Mathematics Subject Classification: 33C99, 33B99

Keywords and phrases: Eigenfunctions \sin_p ; Power Mean; generalized trigonometric functions. 17 Let us start the discussion of eigenfunctions of one-dimensional *p*-Laplacian Δ_p on $(0,1), p \in (1,\infty)$. The eigenvalue problem [13]

$$-\Delta_p u = -\left(|u'|^{p-2}u'\right)' = \lambda |u|^{p-2}u, \quad u(0) = u(1) = 0,$$

has eigenvalues $\lambda_n = (p-1)(n\pi_p)^p$, and eigenfunctions $\sin_p(n\pi_p t)$, $n \in \mathbb{N}$, where \sin_p is the inverse function of \arcsin_p , which is defined below, and

$$\pi_p = \frac{2}{p} \int_0^1 (1-s)^{-1/p} s^{1/p-1} ds = \frac{2}{p} B\left(1-\frac{1}{p}, \frac{1}{p}\right) = \frac{2\pi}{p \sin(\pi/p)},$$

with $\pi_2 = \pi$.

Let us consider the following homeomorphisms

$$\begin{aligned} \sin_p : (0, a_p) \to I, \quad \cos_p : (0, a_p) \to I, \quad \tan_p : (0, b_p) \to I, \\ \sinh_p : (0, \infty) \to I, \quad \tanh_p : (0, \infty) \to I, \end{aligned}$$

where I = (0, 1) and

$$a_p = \frac{\pi_p}{2}, \, b_p = 2^{-1/p} F\left(\frac{1}{p}, \frac{1}{p}; 1 + \frac{1}{p}; \frac{1}{2}\right).$$

From integral formula (1.1) and by using the change of variables we define the inverse functions of the above homeomorphisms for $x \in I$,

$$\operatorname{arcsin}_{p} x = \int_{0}^{x} (1 - t^{p})^{-1/p} dt = x F\left(\frac{1}{p}, \frac{1}{p}; 1 + \frac{1}{p}; x^{p}\right)$$
$$= x(1 - x^{p})^{(p-1)/p} F\left(1, 1; 1 + \frac{1}{p}; x^{p}\right),$$
$$\operatorname{arctan}_{p} x = \int_{0}^{x} (1 + t^{p})^{-1} dt = x F\left(1, \frac{1}{p}; 1 + \frac{1}{p}; -x^{p}\right)$$
$$= \left(\frac{x^{p}}{1 + x^{p}}\right)^{1/p} F\left(\frac{1}{p}, \frac{1}{p}; 1 + \frac{1}{p}; \frac{x^{p}}{1 + x^{p}}\right),$$
$$\operatorname{arsinh}_{p} x = \int_{0}^{x} (1 + t^{p})^{-1/p} dt = x F\left(\frac{1}{p}, \frac{1}{p}; 1 + \frac{1}{p}; -x^{p}\right)$$
$$= \left(\frac{x^{p}}{1 + x^{p}}\right)^{1/p} F\left(1, \frac{1}{p}; 1 + \frac{1}{p}; \frac{x^{p}}{1 + x^{p}}\right),$$
$$\operatorname{artanh}_{p} x = \int_{0}^{x} (1 - t^{p})^{-1} dt = x F\left(1, \frac{1}{p}; 1 + \frac{1}{p}; x^{p}\right),$$

and by [10, Prop. 2.2] $\arccos_p x = \arcsin_p((1-x^p)^{1/p})$. The special case of above functions for p = 2 is defined in terms of hypergeometric functions in [2, p. 8]. In particular, these functions reduce to the familiar functions for the case p = 2.

For $t \in \mathbb{R}$ and x, y > 0, the Power Mean M_t of order t is defined by

$$M_t = \begin{cases} \left(\frac{x^t + y^t}{2}\right)^{1/t}, & t \neq 0, \\ \sqrt{xy}, & t = 0. \end{cases}$$

The main results of the paper are the following theorems:

THEOREM 1.1. For p > 1, $t \ge 0$ and $r, s \in (0, 1)$, we have

- (1) $\operatorname{arcsin}_p(M_t(r,s)) \le M_t(\operatorname{arcsin}_p(r), \operatorname{arcsin}_p(s)),$
- (2) $\operatorname{artanh}_p(M_t(r,s)) \le M_t(\operatorname{artanh}_p(r), \operatorname{artanh}_p(s)),$
- (3) $\arctan_p(M_t(r,s)) \ge M_t(\arctan_p(r), \arctan_p(s)),$
- (4) $\operatorname{arsinh}_p(M_t(r,s)) \ge M_t(\operatorname{arsinh}_p(r), \operatorname{arsinh}_p(s)).$

THEOREM 1.2. For p > 1, $t \ge 1$ and $r, s \in (0, 1)$, the following relations hold

- (1) $\sin_p(M_t(r,s)) \ge M_t(\sin_p(r), \sin_p(s)),$
- (2) $\cos_p(M_t(r,s)) \le M_t(\cos_p(r), \cos_p(s)),$
- (3) $\tan_p(M_t(r,s)) \le M_t(\tan_p(r), \tan_p(s)),$
- (4) $\tanh_p(M_t(r,s)) \ge M_t(\tanh_p(r), \tanh_p(s)),$
- (5) $\sinh_p(M_t(r,s)) \le M_t(\sinh_p(r), \operatorname{arsinh}_p(s)).$

The above results also generalize some results of [4] (Theorem 2.5, Lemma 2.9), which are the special cases of the above theorems when t = 0 and t = 2.

Generalized convexity/concavity with respect to general mean values has been studied recently in [3].

Let $f: I \to (0, \infty)$ be continuous, where I is a subinterval of $(0, \infty)$. Let M_t be a Power Mean. We say that f is $M_t M_t$ -convex (concave) if

$$f(M_t(x,y)) \le (\ge) M_t(f(x), f(y))$$
 for all $x, y \in I$.

In conclusion, we see that the above results are (M_t, M_t) -convexity or (M_t, M_t) concavity properties of the functions involved. In view of [3], it is natural to expect that similar results might also hold for some other pairs (M, N) of mean values.

2. Preliminaries and proofs

For easy reference we record the following lemma from [2], which is sometimes called the *monotone l'Hospital rule*.

LEMMA 2.1. [2, Theorem 1.25] For $-\infty < a < b < \infty$, let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b], and be differentiable on (a, b). Let $g'(x) \neq 0$ on (a, b). If f'(x)/g'(x) is increasing (decreasing) on (a, b), then so are

$$[f(x) - f(a)]/[g(x) - g(a)]$$
 and $[f(x) - f(b)]/[g(x) - g(b)].$

If f'(x)/g'(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

For the next two lemmas see [4, Theorems 1.1, 1.2, 2.5 & Lemma 3.6].

LEMMA 2.2. For p > 1 and $x \in (0, 1)$, we have

Power mean inequality

$$(1) \left(1 + \frac{x^{p}}{p(1+p)}\right) x < \arcsin_{p} x < \frac{\pi_{p}}{2} x,$$

$$(2) \left(1 + \frac{1-x^{p}}{p(1+p)}\right) (1-x^{p})^{1/p} < \arccos_{p} x < \frac{\pi_{p}}{2} (1-x^{p})^{1/p},$$

$$(3) \frac{(p(1+p)(1+x^{p})+x^{p})x}{p(1+p)(1+x^{p})^{1+1/p}} < \arctan_{p} x < 2^{1/p} b_{p} \left(\frac{x^{p}}{1+x^{p}}\right)^{1/p},$$

$$(4) z \left(1 + \frac{\log(1+x^{p})}{1+p}\right) < \operatorname{arsinh}_{p} x < z \left(1 + \frac{1}{p}\log(1+x^{p})\right), \ z = \left(\frac{x^{p}}{1+x^{p}}\right)^{1/p},$$

$$(5) x \left(1 - \frac{1}{1+p}\log(1-x^{p})\right) < \operatorname{artanh}_{p} x < x \left(1 - \frac{1}{p}\log(1-x^{p})\right).$$

LEMMA 2.3. For p, q > 1 and $r, s \in (0, 1)$, the following inequalities hold:

(1)
$$\operatorname{arcsin}_p(\sqrt{rs}) \le \sqrt{\operatorname{arcsin}_p(r) \operatorname{arcsin}_p(s)},$$

- (2) $\operatorname{artanh}_p(\sqrt{rs}) \le \sqrt{\operatorname{artanh}_p(r)\operatorname{artanh}_p(s)},$
- (3) $\sqrt{\operatorname{arsinh}_p(r)\operatorname{arsinh}_p(s)} \le \operatorname{arsinh}_p(\sqrt{rs}),$
- (4) $\sqrt{\arctan_p(r) \arctan_p(s)} \le \arctan_p(\sqrt{rs}),$

(5)
$$\pi_{\sqrt{pq}} \leq \sqrt{\pi_p \pi_q}$$

LEMMA 2.4. For $m \ge -1$, p > 1, the following functions

(1)
$$f_1(x) = \left(\frac{\arcsin_p x}{x}\right)^m \frac{d}{dx}(\arcsin_p x),$$

(2) $f_2(x) = \left(\frac{\operatorname{artanh}_p x}{x}\right)^m \frac{d}{dx}(\operatorname{artanh}_p x)$

are increasing in $x \in (0, 1)$, and

(3)
$$f_3(x) = \left(\frac{\arctan_p x}{x}\right)^m \frac{d}{dx}(\arctan_p x),$$

(4)
$$f_4(x) = \left(\frac{\operatorname{arsinh}_p x}{x}\right)^m \frac{d}{dx}(\operatorname{arsinh}_p x)$$

are decreasing in $x \in (0, 1)$.

Proof. By definition,

$$f_1(x) = \left(\frac{\arcsin_p x}{x}\right)^m \frac{1}{(1-x^p)^{1/p}}.$$

For $m \ge 0$, $\left(\frac{\arcsin_p x}{x}\right)^m$ is increasing by Lemma 2.1, and clearly $(1 - x^p)^{1/p}$ is increasing. For the case $m \in [-1, 0)$, we define

$$h_1(x) = \left(\frac{x}{\arcsin_p x}\right)^s \frac{1}{(1-x^p)^{1/p}}, \quad s \in (0,1].$$

20

We get

$$h_1'(x) = \frac{\xi}{1 - x^p} ((1 - x^p)^{1/p} (x^p + s(1 - x^p)) F_1(x) - s(1 - x^p))$$

> $\frac{\xi}{1 - x^p} \left((1 - x^p)^{1/p} (x^p + s(1 - x^p)) (1 + \frac{x^p}{p(1 + p)}) - s(1 - x^p) \right) > 0,$

by Lemma 2.2(1), where

$$\xi = \frac{(1-x^p)^{-(1+2/p)}}{x} \left(\frac{1}{F_1(x)}\right)^{1+s} \quad \text{and} \quad F_1(x) = F\left(\frac{1}{p}, \frac{1}{p}; 1+\frac{1}{p}; x^p\right).$$

For (2), clearly f_2 is increasing for $m \ge 0$. For the case when $m \in [-1, 0)$, we define

$$h_2(x) = \left(\frac{x}{\operatorname{artanh}_p x}\right)^s \frac{1}{1 - x^p}, \quad s \in (0, 1].$$

Differentiating with respect to x, we get

$$h_{2}'(x) = \frac{(F_{2}(x))^{-(1+s)} ((px^{p} - sx^{p} + s) F_{2}(x) - s)}{x (x^{p} - 1)^{2}} > 0,$$

where $F_2(x) = F\left(1, \frac{1}{p}; 1 + \frac{1}{p}; x^p\right)$.

For (3), the proof for the case when $m \ge 0$ follows similarly from Lemma 2.1. For the case $m \in [-1,0)$, let

$$h_3(x) = \left(\frac{\arctan_p x}{x}\right)^{-s} \frac{d}{dx}(\arctan_p x), \quad s \in (0, 1].$$

We have

$$\begin{aligned} h_3'(x) &= \frac{F_3(x)^{-(1+s)}}{r(1+r^p)^2} ((s+s\,r^p-p\,r^p)F_3(x)-s) \\ &< \frac{F_3(x)^{-(1+s)}}{r(1+r^p)^2} ((s+s\,r^p-s\,r^p)F_3(x)-s) \\ &= -\frac{s\,F_3(x)^{-(1+s)}}{r(1+r^p)^2} (1-F_3(x)) < 0, \end{aligned}$$

where $F_3(x) = F\left(1, \frac{1}{p}; 1 + \frac{1}{p}; -x^p\right)$

For (4), when $m \ge 0$, the proof follows from Lemma 2.1. For $m \in [-1, 0)$, let

$$h_4(x) = \left(\frac{x}{\operatorname{arsinh}_p x}\right)^s \frac{1}{(1+x^p)^{1/p}}, \quad s \in (0,1].$$

We have

$$\begin{aligned} h_4'(x) &= \gamma((1-x^p)^{1/p}(s(1-x^p)-x^p)F_4(x)-s(1-x^p)) \\ &< \gamma\Big(s(1+x^p)\Big(1+\frac{1}{p}\log(1+x^p)\Big)-s(1+x^p)-x^p\Big(1+\frac{1}{1+p}\log(1+x^p)\Big)\Big) \\ &= \frac{\gamma}{p(1+p)}(s(1+x^p)(1+p)\log(1+x^p)-p(1+p)x^p-p\,x^p\log(1+x^p)) < 0, \end{aligned}$$

Power mean inequality

by Lemma 2.2(4), where

$$\gamma = \frac{(1 - x^p)^{-(1 + 2/p)}}{x} \left(\frac{1}{F_4(x)}\right)^{1 + s} \quad \text{and} \quad F_4(x) = F\left(\frac{1}{p}, \frac{1}{p}; 1 + \frac{1}{p}; -x^p\right). \quad \blacksquare$$

Proof of Theorem 1.1. Let 0 < x < y < 1, and $u = ((x^t + y^t)/2)^{1/t} > x$. We denote $\arcsin(x)$, $\operatorname{artanh}(x)$, $\operatorname{arctan}(x)$, $\operatorname{arsinh}(x)$ by $g_i(x)$, $i = 1, \ldots, 4$ respectively, and define

$$g(x) = g_i(u)^t - \frac{g_i(x)^t + g_i(y)^t}{2}.$$

Differentiating with respect to x, we get $du/dx = (1/2)(x/u)^{t-1}$ and

$$g'(x) = \frac{1}{2} t g_i(x)^{t-1} \frac{d}{du}(g_i(u)) \left(\frac{x}{u}\right)^{t-1} - \frac{1}{2} t g_i(x)^{t-1} \frac{d}{dx}(g_i(x))$$
$$= \frac{t}{2} x^{t-1} (f_i(u) - f_i(x)),$$

where

$$f_i(x) = \left(\frac{g_i(x)}{x}\right)^{t-1} \frac{d}{dx}(g_i(x)), \ i = 1, \dots, 4.$$

By Lemma 2.4, g' is positive and negative for $f_{i=1,2}$ and $f_{i=3,4}$, respectively. This implies that

$$g(x) < (>)g(y) = 0,$$

for $g_{i=1,2}$ and $g_{i=3,4}$, respectively. The case when t = 0 follows from Lemma 2.3. This completes the proof.

LEMMA 2.5. For p > 1 and $s \in (0, 1)$, the function

$$f(p) = \left(\frac{\pi_p}{p}\right)^{-s} \frac{\left(p - \pi \cot\left(\pi/p\right)\right) \csc(\pi/p)}{p^3}$$

is decreasing in $p \in (1, \infty)$.

Proof. We have

$$f'(p) = \xi \left[2p^2(1-s) + \pi^2(1-s)\cot^2\left(\frac{\pi}{p}\right) - \pi p(4-3s)\cot\left(\frac{\pi}{p}\right) + \pi^2\csc^2\left(\frac{\pi}{p}\right) \right],$$

where

$$\xi = -\frac{(2\pi)^{-s}}{p^3} \left(\frac{\csc(\pi/2)}{p^2}\right)^{1-s},$$

which is negative. \blacksquare

LEMMA 2.6. [14, Thm 2, p.151] Let $J \subset \mathbb{R}$ be an open interval, and let $f: J \to \mathbb{R}$ be strictly monotonic function. Let $f^{-1}: f(J) \to J$ be the inverse to f then

22

- (1) if f is convex and increasing, then f^{-1} is concave,
- (2) if f is convex and decreasing, then f^{-1} is convex,
- (3) if f is concave and increasing, then f^{-1} is convex,
- (4) if f is concave and decreasing, then f^{-1} is concave.

LEMMA 2.7. For $m \ge 1$, p > 1 and $x \in (0, 1)$, the following functions

(1)
$$h_1(x) = \left(\frac{\sin_p x}{x}\right)^{m-1} \frac{d}{dx}(\sin_p x),$$

(2) $h_2(x) = \left(\frac{\tanh_p x}{x}\right)^{m-1} \frac{d}{dx}(\tanh_p x)$

are decreasing in x, and

(3)
$$h_3(x) = \left(\frac{\cos_p x}{x}\right)^{m-1} \frac{d}{dx} (\cos_p x),$$

(4)
$$h_4(x) = \left(\frac{\tan_p x}{x}\right)^{m-1} \frac{d}{dx} (\tan_p x),$$

(5)
$$h_5(x) = \left(\frac{\sinh_p x}{x}\right)^{m-1} \frac{d}{dx} (\sinh_p x).$$

are increasing in x.

Proof. Let $f(x) = \arcsin_p x, x \in (0, 1)$. We get

$$f'(x) = \frac{1}{(1 - x^p)^{1/p}},$$

which is positive and increasing, hence f is convex. Clearly $\sin_p x$ is increasing, and by Lemma 2.6 is concave, this implies that $\frac{d}{dx} \sin_p x$ is decreasing, and $(\sin_p x)/x$ is decreasing also by Lemma 2.1. Similarly we get that $\frac{d}{dx} \tanh_p x$ is decreasing and $\frac{d}{dx} \cos_p x$, $\frac{d}{dx} \tan_p x$, $\frac{d}{dx} \sinh_p x$ are increasing, and the rest of proof follows from Lemma 2.1. \blacksquare

Proof of Theorem 1.2. The proof is similar to the proof of Theorem 1.1 and follows from Lemma 2.7. \blacksquare

PROPOSITION 2.8. For p, q > 1 and t < 1, we have

$$\pi_{M_t(p,q)} \le M_t(\pi_p, \pi_q).$$

Proof. Let $1 , and <math>w = ((p^t + q^t)/2)^{1/t} > p$. We define

$$g(p) = (\pi_p)^t - \frac{(\pi_p)^t + (\pi_q)^t}{2}.$$

Differentiating with respect to p, we get $dw/dp = (1/2)(p/w)^{t-1}$ and

$$g'(p) = \frac{1}{2} t(\pi_p)^{t-1} \frac{d}{dx}(\pi_w) \left(\frac{p}{w}\right)^{t-1} - \frac{1}{2} t(\pi_p)^{t-1} \frac{d}{dx}(\pi_p)$$
$$= \frac{t}{2} p^{t-1} (f(w) - f(p)),$$

Power mean inequality

where

$$f(p) = \left(\frac{\pi_p}{p}\right)^{t-1} \frac{d}{dp} \pi_p$$

Clearly π_p is decreasing, hence $(\pi_p/p)^{t-1}$ is increasing for t < 1 and $d/dp(\pi_p)$ is increasing by the proof of Lemma [4, Lemma 3.6]. This implies that f(p) is increasing, and it follows that g is increasing. Hence g(p) < g(q) = 0. The case when t = 0 follows from Lemma 2.3(5). This completes the proof.

The following corollary follows immediately from Lemma 2.7.

COROLLARY 2.9. For p > 1 and $r, s \in (0, 1)$ with $r \leq s$, we have

(1)
$$\frac{\sin_p r}{r} \ge \frac{\sin_p s}{s},$$

(2)
$$\frac{\cos_p r}{r} \ge \frac{\cos_p s}{s},$$

(3)
$$\frac{\tan_p r}{r} \le \frac{\tan_p s}{s},$$

(4)
$$\frac{\sinh_p r}{r} \le \frac{\sinh_p s}{s},$$

 $\tanh_p r$ $\tanh_p s$

(5)
$$\frac{\operatorname{tam}_p r}{r} \ge \frac{\operatorname{tam}_p s}{s}.$$

REFERENCES

- M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, 1964 (Russian translation, Nauka 1979).
- [2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal japs, J. Wiley, 1997.
- [3] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294–1308.
- [4] B. A. Bhayo and M. Vuorinen, Inequalities for eigenfunctions of the p-Laplacian, Issues of Analysis Vol. 2(20), No 1, 2013.
- [5] B. A. Bhayo and M. Vuorinen, On generalized trigonometric functions with two parameters. J. Approx. Theory 164 (2012) 1415–1426.
- [6] C. Bennewitz, Y. Saito, An embedding norm and the Lindqvist trigonometric functions, Electronic Journal of Differential Equations 86 (2002), 1–6.
- [7] C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (4) (2004) 433-439.
- [8] R. J. Biezuner, G. Ercole, and E. M. Martins, Computing the first eigenvalue of the p-Laplacian via the inverse power method, J. Funct. Anal. 257 1 (2009), 243–270.
- [9] R. J. Biezuner, G. Ercole, and E. M. Martins, Computing the sin_p function via the inverse power method, arXiv:1011.3486[math.CA].
- [10] P. J. Bushell and D. E. Edmunds, Remarks on generalised trigonometric functions, Rocky Mountain J. Math. 42, 1 (2012), 25–57.
- [11] M. Del Pino, P. Drábek and R. F. Manásevich, The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian, J. Differential Equations, 151 (1999), 386–419.
- [12] D. E. Edmunds, P. Gurka, and J. Lang, Properties of generalized trigonometric functions, J. Approx. Theory 164 (2012) 47–56.

24

- [13] P. Drábek and R. Manásevich, On the closed solution to some p-Laplacian nonhomogeneous eigenvalue problems. Diff. and Int. Eqns. 12 (1999), 723–740.
- [14] M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. With a Polish summary. Prace Naukowe Uniwersytetu Ślaskiego w Katowicach [Scientific Publications of the University of Silesia], 489. Uniwersytet Ślaski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985.
- [15] J. Lang and D.E. Edmunds, Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lecture Notes in Mathematics 2016, Springer-Verlag, 2011.
- [16] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche di Matematica, XLIV (1995), 269–290.
- [17] P. Lindqvist and J. Peetre, *p*-arclength of the *q*-circle, The Mathematics Student, 72, 1–4 (2003), 139–145.
- [18] E. Neuman, Inequalities involving inverse circular and inverse hyperbolic functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 18 (2006), 32–37.
- [19] E. Neuman, Inequalities involving inverse circular and inverse hyperbolic functions II. J. Math. Ineq. 4 1 (2010), 11–14.
- [20] H. Ruskeepää, Mathematica Navigator, 3rd ed. Academic Press, 2009.
- [21] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
- [22] S. Takeuchi, Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. 2011, doi:10.1016/j.jmaa.2011.06.063.

(received 21.04.2013; in revised form 13.10.2013; available online 15.11.2013)

Department of Mathematical Information Technology, University of Jyväskylä, FI-40014 Jyväskylä, Finland

E-mail: bhayo.barkat@gmail.com