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FIXED POINTS OF A PAIR OF LOCALLY CONTRACTIVE
MAPPINGS IN ORDERED PARTIAL METRIC SPACES

Abdullah Shoaib, Muhammad Arshad and Akbar Azam

Abstract. Common fixed point results for mappings satisfying locally contractive conditions
on a closed ball in a 0-complete ordered partial metric space have been established. The notion
of dominated mappings of Economics, Finance, Trade and Industry has also been applied to
approximate the unique solution to non-linear functional equations. Our results improve some
well-known, primary and conventional results.

1. Introduction

Let T : X → X be a mapping. A point x ∈ X is called a fixed point of T if
x = Tx. In 1922, Banach obtained unique fixed point of a mapping T : X → X
satisfying:

d(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X, where 0 ≤ k < 1 and X is a complete metric space. It is important
to note that this theorem has laid down the foundation of modern fixed points
theory for contractive type mappings.

Fixed points results for mappings satisfying certain contractive conditions on
the entire domain has been at the centre of vigorous research activity, for example
see [5–7, 11, 12, 17, 22, 24, 26–28], and it has a wide range of applications in different
areas such as nonlinear and adaptive control systems, parameterized estimation
problems, fractal image decoding, computing magnetostatic fields in a nonlinear
medium, and convergence of recurrent networks, see [19, 21, 31, 32].

From the application point of view the situation is not yet completely satisfac-
tory because it frequently happens that a mapping T is a contraction not on the
entire space X but merely on a subset Y of X. However, if Y is closed, then it is
complete, so that T has a fixed point x in Y , and xn → x as in the case of the
whole space X, provided we impose a subtle restriction on the choice of x0, so that
x′ms remains in Y . Recently, Azam et al. [10] proved a significant result concerning
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the existence of fixed points of a fuzzy mapping satisfying a contractive condition
on a closed ball of a complete metric space. Other results on closed balls can be
seen in [6, 9, 29].

On the other hand, the notion of a partial metric space was introduced by G.
S. Matthews in [20]. In partial metric spaces, the distance of a point from itself
may not be zero. After the definition of partial metric space, Matthews proved
the partial metric version of Banach fixed point theorem. Then, Oltra et al. [25]
and Altun et al. [2] gave some generalizations of the result of Matthews. Altun et
al. [3] gave fixed point results for mappings satisfying generalized contractions on
partial metric spaces (see also [4]). Further results in this direction under different
conditions were proved, e.g., in [14]. Romaguera [30] gave the idea of 0-complete
partial metric space. Nashine et al. [23] used this concept and proved some classical
results. In this paper, we will exploit this concept for two, three and four mappings
on a 0-complete ordered partial metric space X to generalize/improve some classical
fixed point results.

Recently, Haghi et al. [15] deduced some partial metric fixed point results
from the corresponding results in metric spaces. However, we show that the results
proved in this paper cannot be deduced from the corresponding results in metric
spaces (see Example 2.3 and Remak 2.4). Our results not only extend some primary
theorems to ordered partial metric spaces but also restrict the contractive conditions
on a closed ball only. The concept of dominated mapping which comes from real
world has been applied to approximate the unique solution of non-linear functional
equations. The dominated mapping which satisfies the condition fx ¹ x occurs
very naturally in several practical problems. For example, if x denotes the total
quantity of food produced over a certain period of time and f(x) gives the quantity
of food consumed over the same period in a certain town, then we must have fx ¹ x.

Consistent with [1, 4, 8, 15, 20], the following definitions and results will be
needed in the sequel.

Definition 1.1. [20] Let X be a nonempty set. If for any x, y, z ∈ X, a
mapping p : X ×X → R+ satisfies

(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y),
then it is said to be a partial metric on X and the pair (X, p) is called a partial
metric space.

Each partial metric p on X induces a T0 topology τp on X which has as a
base the family of open balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε}. Also, Bp(x, r) = {y ∈ X : p(x, y) ≤ p(x, x) + r} is a closed
ball in (X, p).

It is clear that if p(x, y) = 0, then from P1 and P2, x = y. But if x = y, then
p(x, y) may not be 0.
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Example 1.2. [20] If X = [0,∞) then, p(x, y) = max{x, y} for all x, y ∈ X,
defines a partial metric p on X.

Definition 1.3. [20] Let (X, p) be a partial metric space. Then,
(a) A sequence {xn} in (X, p) converges to a point x ∈ X if and only if

limn→∞ p(x, xn) = p(x, x).
(b) A sequence {xn} in (X, p) is called a Cauchy sequence if the limit limn,m→∞

p(xn, xm) exists (and is finite).
(c) [30] A sequence {xn} in (X, p) is called 0-Cauchy if limn,m→∞ p(xn, xm) = 0.

The space (X, p) is called 0-complete if every 0-Cauchy sequence in X converges
to a point x ∈ X such that p(x, x) = 0.

If (X, p) is a partial metric space, then ps(x, y) = 2p(x, y) − p(x, x) − p(y, y),
x, y ∈ X, is a metric on X.

Lemma 1.4. [20] Let (X, p) be a partial metric space. Then,
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in

the metric space (X, ps).
(b) (X, p) is complete if and only if the metric space (X, ps) is complete.
(c) [30] Every 0-Cauchy sequence in (X, p) is Cauchy in (X, ps).
(d) If (X, p) is complete, then it is 0-complete.

Romaguera [30] gave an example which proves that converse assertions of (c)
and (d) do not hold. It is easy to see that every closed subset of a 0-complete
partial metric space is 0-complete.

Definition 1.5. [4] Let X be a nonempty set. Then (X,¹, p) is called an
ordered partial metric space if: (i) p is a partial metric on X and (ii) ¹ is a partial
order on X.

Definition 1.6. Let (X,¹) be a partially ordered set. Then x, y ∈ X are
called comparable if x ¹ y or y ¹ x holds.

Definition 1.7. [1] Let (X,¹) be a partially ordered set. A self mapping f
on X is called dominated if fx ¹ x for each x in X.

Example 1.8. [1] Let X = [0, 1] be endowed with the usual ordering and
f : X → X be defined by fx = xn for some n ∈ N . Since fx = xn ≤ x for all
x ∈ X, therefore f is a dominated map.

Definition 1.9. Let X be a nonempty set and T, f : X → X. A point x ∈ X
is called a coincidence point and y ∈ X is called a point of coincidence of T and
f if y = Tx = fx. The mappings T, f are said to be weakly compatible if they
commute at their coincidence points (i.e., Tfx = fTx whenever Tx = fx).

We require the following lemmas for subsequent use:
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Lemma 1.10. [15] Let X be a nonempty set and f : X → X be a function.
Then there exists a subset E ⊂ X such that fE = fX and f : E → X is one-to-one.

Lemma 1.11. [8] Let X be a nonempty set and the mappings S, T, f : X →
X have a unique point of coincidence v in X. If (S, f) and (T, f) are weakly
compatible, then S, T, f have a unique common fixed point.

2. Fixed points of Banach mappings

The following result regarding the existence of a fixed point of a mapping
satisfying a contractive condition on the closed ball is given in [18, Theorem 5.1.4].
The result is very useful in the sense that it requires the contraction of the mapping
only on the closed ball instead on the whole space.

Theorem 2.1. [18] Let (X, d) be a complete metric space, S : X → X be a
mapping, r > 0 and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1)
with

d(Sx, Sy) ≤ kd(x, y), for all x, y ∈ Y = B(x0, r)

and d(x0, Sx0) < (1 − k)r. Then there exists a unique point x∗ in B(x0, r) such
that x∗ = Sx∗.

In the proof [18], the author considers an iterative sequence xn = Sxn−1, n ≥ 0
and exploits the contraction condition on the points xm’s to see that

d(xm, xn) ≤ km

1− k
d(x0, x1),

by using techniques of [18, Theorem 5.1.2] before proving that xm’s lie in the closed
ball. The following theorem not only extends the above theorem to ordered partial
metric spaces but also rectifies this mistake specially for those researchers who are
utilizing the style of the proof of [18, Theorem 5.1.4] to study more general result.

Theorem 2.2. Let (X,¹, p) be a 0-complete ordered partial metric space,
S, T : X → X be dominated maps and x0 be an arbitrary point in X. Suppose there
exists k ∈ [0, 1) with

p(Sx, Ty) ≤ kp(x, y), for all comparable elements x, y in B(x0, r) (2.1)

and p(x0, Sx0) ≤ (1− k)[r + p(x0, x0)]. (2.2)

Then:
(i) There exists x∗ ∈ B(x0, r) such that p(x∗, x∗) = 0.

(ii) If, for a non-increasing sequence {xn} in B(x0, r), {xn} → u implies that
u ¹ xn, then there exists a point x∗ in B(x0, r) such that x∗ = Sx∗ = Tx∗.

(iii) If for any two points x, y in B(x0, r) there exists a point z ∈ B(x0, r) such
that z ¹ x and z ¹ y, that is every pair of elements has a lower bound, then the
point x∗ is unique.
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Proof. Choose a point x1 in X such that x1 = Sx0. As Sx0 ¹ x0 so x1 ¹ x0

and let x2 = Tx1. Now Tx1 ¹ x1 gives x2 ¹ x1; continuing this process, we
construct a sequence xn of points in X such that

x2i+1 = Sx2i, x2i+2 = Tx2i+1 and x2i+1 = Sx2i ¹ x2i where i = 0, 1, 2, . . . .

First we show that xn ∈ B(x0, r) for all n ∈ N . Using inequality (2.2), we have,

p(x0, x1) ≤ (1− k) [r + p(x0, x0)] ≤ r + p(x0, x0).

It follows that x1 ∈ B(x0, r). Let x2, . . . , xj ∈ B(x0, r) for some j ∈ N . If j = 2i+1,
then x2i+1 ¹ x2i, where i = 0, 1, 2, . . . , j−1

2 so using inequality (2.1), we obtain

p(x2i+1, x2i+2) = p(Sx2i, Tx2i+1) ≤ k[p(x2i, x2i+1)]

≤ k2[p(x2i−1, x2i)] ≤ · · · ≤ k2i+1p(x0, x1). (2.3)

If j = 2i + 2, then as x1, x2, . . . , xj ∈ B(x0, r) and x2i+2 ¹ x2i+1, (i =
0, 1, 2, . . . , j−2

2 ), we obtain

p(x2i+2, x2i+3) ≤ k2(i+1)p(x0, x1). (2.4)

Thus from inequalities (2.3) and (2.4), we have

p(xj , xj+1) ≤ kjp(x0, x1). (2.5)

Now,

p(x0, xj+1) ≤ p(x0, x1) + · · ·+ p(xj , xj+1)− [p(x1, x1) + · · ·+ p(xj , xj)]

≤ p(x0, x1) + · · ·+ kjp(x0, x1) (by 2.5)

≤ p(x0, x1)[1 + · · ·+ kj−1 + kj ]

≤ (1− kj+1)
1− k

p(x0, x1)

≤ (1− kj+1)
1− k

(1− k) [r + p(x0, x0)] (by 2.2)

≤ (1− kj+1)[r + p(x0, x0)]

≤ r + p(x0, x0).

Thus xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N . It implies that

p(xn, xn+1) ≤ knp(x0, x1), for all n ∈ N. (2.6)

So we have

p(xn+k, xn) ≤ p(xn+k, xn+k−1) + · · ·+ p(xn+1, xn)

≤ kn+k−1p(x0, x1) + · · ·+ knp(x0, x1), (by 2.6)

p(xn+k, xn) ≤ knp(x0, x1)[kk−1 + kk−2 + · · ·+ 1]

≤ knp(x0, x1)
(1− kk)
1− k

→ 0 as n →∞.
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Notice that the sequence {xn} is a 0-Cauchy sequence in (Bp(x0, r), p). There-
fore there exists a point x∗ ∈ Bp(x0, r) with limn→∞ xn = x∗. Also,

lim
n→∞

p(xn, x∗) = 0. (2.7)

Using the fact that x∗ ¹ xn for all n, we have

p(x∗, Sx∗) ≤ p(x∗, x2n+2) + p(x2n+2, Sx∗)− p(x2n+2, x2n+2)

≤ p(x∗, x2n+2) + kp(x2n+1, x
∗).

On taking limit as n → ∞, we obtain p(x∗, Sx∗) ≤ 0, and hence x∗ = Sx∗.
Similarly, by using

p (x∗, Tx∗) ≤ p(x∗, x2n+1) + p(x2n+1, Tx∗)− p(x2n+1, x2n+1),

we can show that x∗ = Tx∗. Hence S and T have a common fixed point in B(x0, r).
Now,

p(x∗, x∗) = p(Sx∗, Tx∗) ≤ kp(x∗, x∗)

(1− k)p(x∗, x∗) ≤ 0.

This implies that p(x∗, x∗) = 0.

For uniqueness, assume that y is another fixed point of T in B(x0, r). If x∗

and y are comparable then,

p(x∗, y) = p(Sx∗, Ty) ≤ kp(x∗, y).

This shows that x∗ = y. Now if x∗ and y are not comparable then there exists a
point z0 ∈ B(x0, r) such that z0 ¹ x∗ and z0 ¹ y. Choose a point z1 in X such
that z1 = Tz0. As Tz0 ¹ z0, so z1 ¹ z0 and let z2 = Sz1. Now Sz1 ¹ z1 gives
z2 ¹ z1. Continuing this process and choose zn in X such that

z2i+1 = Tz2i, z2i+2 = Sz2i+1 and z2i+1 = Tz2i ¹ z2i where i = 0, 1, 2, . . . .

It follows that zn+1 ¹ zn ¹ · · · ¹ z0 ¹ x∗ ¹ xn. We will prove that zn ∈ B(x0, r)
for all n ∈ N by using mathematical induction. For n = 1,

p(x0, z1) ≤ p(x0, x1) + p(x1, z1)− p(x1, x1)

≤ (1− k)[r + p(x0, x0)] + kp(x0, z)

≤ (1− k)r + (1− k)p(x0, x0) + k[r + p(x0, x0)]

≤ r + p(x0, x0).

It follows that z1 ∈ B(x0, r). Let z2, z3, . . . , zj ∈ B(x0, r) for some j ∈ N . Note
that if j is odd then

p(xj+1, zj+1) = p(Txj , Szj)) ≤ kp(xj , zj) ≤ · · · ≤ kj+1p(x0, z0),

and if j is even then

p(xj+1, zj+1) = p(Sxj , T zj) ≤ kp(xj , zj) ≤ · · · ≤ kj+1p(x0, z0).
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Now,

p(x0, zj+1) ≤ p(x0, x1) + p(x1, x2) + · · ·+ p(xj+1, zj+1)

− [p(x1, x1) + · · ·+ p(xj+1, xj+1)]

≤ p(x0, x1) + kp(x0, x1) + · · ·+ kj+1p(x0, z0)

≤ p(x0, x1)[1 + k + · · ·+ kj ] + kj+1[r + p(x0, x0)]

≤ (1− k)[r + p(x0, x0)]
(1− kj+1)

1− k
+ kj+1r + kj+1p(x0, x0),

p(x0, zj+1) ≤ r + p(x0, x0).

Thus zj+1 ∈ B(x0, r). Hence zn ∈ B(x0, r) for all n ∈ N . As z0 ¹ x∗ and z0 ¹ y,
it follows that zn+1 ¹ Tnx∗ and zn+1 ¹ Tny for all n ∈ N as Tnx∗ = x∗ and
Tny = y for all n ∈ N . If n is odd then,

p(x∗, y) = p(Tnx∗, Tny)

≤ p(Tnx∗, Szn) + p(Szn, Tny)− p(Szn, Szn)

≤ kp(Tn−1x∗, zn) + kp(zn, Tn−1y)

= kp(Sn−1x∗, T zn−1) + kp(Tzn−1, S
n−1y)

≤ k2p(Sn−2x∗, zn−1) + k2p(zn−1, S
n−2y)

...

≤ kn+1p(x∗, z0) + kn+1p(z0, y) → 0 as n →∞.

So x∗ = y. Similarly, we can show that x∗ = y if n is even. Hence x∗ is a unique
common fixed point of T and S in B(x0, r).

Example 2.3. Let X = Q+ ∪ {0} and B(x0, r) = [0, 1] ∩X be endowed with
usual order and let p : X ×X → X be the 0-complete partial metric on X defined
by p(x, y) = max{x, y}. Let S, T : X → X be defined by

Sx =

{ x

7
if x ∈ [0, 1] ∩X

x− 1
3 if x ∈ (1,∞) ∩X

and Tx =





2x

7
if x ∈ [0, 1] ∩X

x− 1
4 if x ∈ (1,∞) ∩X.

Clearly, S and T are dominated mappings. For all comparable elements with k =
3
10 ∈ [0, 1

2 ), x0 = 1
2 , r = 1

2 , p(x0, x0) = max{ 1
2 , 1

2} = 1
2 ,

(1− k)[r + p(x0, x0)] = (1− 3
10

)[
1
2

+
1
2
] =

7
10

,

p(x0, Sx0) = p(
1
2
, S

1
2
) = p(

1
2
,

1
14

) = max{1
2
,

1
14
} =

1
2

<
7
10

.

Putting x = y = 2 we obtain

p(S2, T2) = max{5
3
,
7
4
} =

7
4

>
3
5

=
3
10

max{2, 2}.
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So the contractive condition does not hold on X. Now if x, y ∈ B(x0, r), then

p(Sx, Ty) = max{x

7
,
2y

7
} =

1
7

max{x, 2y} ≤ 3
10

max{x, y} ≤ kp(x, y).

Therefore, all the conditions of Theorem 2.2 are satisfied and 0 is the common fixed
point of S and T . Moreover, note that for any metric d on X,

d(S1, T1) = d

(
1
7
,
2
7

)
> kd(1, 1) = 0 for any k ∈ [0, 1).

Therefore common fixed points of S and T cannot be obtained from a corresponding
metric fixed point theorem. Also X is not complete in any metric space.

Remark 2.4. If we impose Banach type contractive condition for a pair
S, T : X → X of mappings on a metric space (X, d), that is

d(Sx, Ty) ≤ kd(x, y) for all x, y ∈ X,

then it follows that Sx = Tx, for all x ∈ X (that is S and T are equal). Therefore
the above condition fails to find common fixed points of S and T . However the
same condition in a partial metric space does not assert that S = T , as is seen in
Example 2.3. Hence Theorem 2.2 cannot be obtained from a corresponding metric
fixed point theorem.

Corollary 2.5. Let (X,¹, p) be a 0-complete ordered partial metric space,
S, T : X → X be dominated maps and x0 be an arbitrary point in X. Suppose there
exists k ∈ [0, 1) with

p(Sx, Ty) ≤ kp(x, y), for all comparable elements x, y in B(x0, r)

and p(x0, Sx0) ≤ (1− k)[r + p(x0, x0)].

Then there exists x∗ ∈ B(x0, r) such that p(x∗, x∗) = 0. Also if, for a non-
increasing sequence {xn} in B(x0, r), {xn} → u implies that u ¹ xn, then there
exists a point x∗ in B(x0, r) such that x∗ = Sx∗ = Tx∗.

Corollary 2.6. Let (X,¹, p) be a 0-complete ordered partial metric space,
S, T : X → X be the dominated map and x0 be an arbitrary point in X. Suppose
there exists k ∈ [0, 1) with

p(Sx, Ty) ≤ kp(x, y), for all comparable elements x, y in X.

Then there exists x∗ ∈ X such that p(x∗, x∗) = 0. Also if, for a non-increasing
sequence {xn} in X, {xn} → u implies that u ¹ xn and for any two points x, y in
X there exists a point z ∈ X such that z ¹ x and z ¹ y, then there exists a unique
point x∗ in X such that x∗ = Sx∗ = Tx∗.

Corollary 2.7. Let (X, p) be a 0-complete partial metric space, S, T : X → X
be self-maps and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1) with

p(Sx, Ty) ≤ kp(x, y), for all elements x, y in B(x0, r)

and p(x0, Sx0) ≤ (1− k)[r + p(x0, x0)].
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Then there exists a unique x∗ ∈ B(x0, r) such that p(x∗, x∗) = 0 and x∗ = Sx∗ =
Tx∗. Further, S and T have no fixed points other than x∗.

Proof. By Theorem 2.2, x∗ = Sx∗ = Tx∗. Let y be another point such that
y = Ty. Then

p(x∗, y) = p(Sx∗, T y) ≤ kp(x∗, y)

This shows that x∗ = y . Thus T has no fixed points other than x∗. Similarly, S
has no fixed points other than x∗.

Now we apply our Theorem 2.2 to obtain unique common fixed point of three
mappings on a closed ball in a 0-complete partial ordered metric space.

Theorem 2.8. Let (X,¹, p) be an ordered partial metric space, S, T be self
mappings and f be a dominated mapping on X such that SX ∪ TX ⊂ fX and
Tx, Sx ¹ fx. Assume that for r > 0 and an arbitrary point x0 in X, the following
conditions hold:

p (Sx, Ty) ≤ kp(fx, fy) (2.10)

for all comparable elements fx, fy ∈ B(fx0, r) ⊆ fX, and some 0 ≤ k < 1 and

p(fx0, Tx0) ≤ (1− k)[r + p(fx0, fx0)] . (2.11)

Let for a non-increasing sequence {xn} → u implies that u ¹ xn; also for any two
points z and x in B(fx0, r) there exists a point y ∈ B(fx0, r) such that y ¹ z
and y ¹ x. If fX is a 0-complete subspace of X and (S, f) and (T, f) are weakly
compatible, then S, T and f have a unique common fixed point fz in B(fx0, r).
Also p(fz, fz) = 0.

Proof. By Lemma 1.10, there exists E ⊂ X such that fE = fX and f : E → X
is one-to-one. Now since SX ∪ TX ⊂ fX, we define two mappings g, h : fE → fE
by g(fx) = Sx and h(fx) = Tx, respectively. Since f is one-to-one on E, then g, h
are well-defined. As Sx ¹ fx implies that g(fx) ¹ fx and Tx ¹ fx implies that
h(fx) ¹ fx therefore g and h are dominated maps. Now fx0 ∈ B(fx0, r) ⊆ fX.
Then fx0 ∈ fX. Choose a point x1 in fX such that x1 = h(fx0). As h(fx0) ¹
fx0 ¹ x0, so x1 ¹ x0 and let x2 = g(fx1). Now g(fx1) ¹ fx1 ¹ x1 gives x2 ¹ x1.
Continuing this process and having chosen xn in fX such that

x2i+1 = h(fx2i) and x2i+2 = g(fx2i+1), where i = 0, 1, 2, . . . ,

then x2i+1 = h(fx2i) ¹ fx2i ¹ x2i. Following similar arguments as those of
Theorem 2.2, xn ∈ B(fx0, r). Also by inequality (2.11),

p(fx0, h(fx0)) ≤ (1− k)[r + p(fx0, fx0)].

Note that for fx, fy ∈ B(fx0, r), where fx, fy are comparable. Then by using
inequality (2.10), we have

p (g(fx), h(fy)) ≤ kp(fx, fy).
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As fE is a 0-complete space, all conditions of Theorem 2.2 are satisfied, we deduce
that there exists a unique common fixed point fz ∈ B(fx0, r) of g and h. Also
p(fz, fz) = 0. Now fz = g(fz) = h(fz) or fz = Sz = Tz = fz. Thus fz is the
point of coincidence of S, T and f . Let v ∈ B(fx0, r) be another point of coincidence
of f, S and T . Then there exists u ∈ B(fx0, r) such that is v = fu = Su = Tu,
which implies that fu = g(fu) = h(fu). A contradiction as fz ∈ B(fx0, r) is a
unique common fixed point of g and h. Hence v = fz. Thus S, T and f have a
unique point of coincidence fz ∈ B(fx0, r). Now since (S, f) and (T, f) are weakly
compatible, by Lemma 1.11 fz is a unique common fixed point of S, T and f .

In the following theorem we use Corollary 2.7 to establish the existence of a
unique common fixed point of four mappings on closed ball in 0-complete partial
metric space.

Theorem 2.9. Let (X, p) be a partial metric space and S, T, g and f be self
mappings on X such that SX, TX ⊂ fX = gX. Assume that for some r > 0 and
an arbitrary point x0 in X, the following conditions hold:

p (Sx, Ty) ≤ kp(fx, gy) (2.12)

for all elements fx, gy ∈ B(fx0, r) ⊆ fX and some 0 ≤ k < 1, and

p(fx0, Sx0) ≤ (1− k)[r + p(fx0, fx0)]. (2.13)

If fX is a 0-complete subspace of X then there exists fz ∈ X such that p(fz, fz) =
0. Also if (S, f) and (T, g) are weakly compatible, then S, T , f and g have a unique
common fixed point fz in B(fx0, r). Further, S and T have no fixed points other
than x∗.

Proof. By Lemma 1.10, there exists E1, E2 ⊂ X such that fE1 = fX =
gX = gE2, f : E1 → X, g : E2 → X are one-to-one. Now define the mappings
A,B : fE1 → fE1 by A(fx) = Sx and B(gx) = Tx respectively. Since f, g are
one to one on E1, and E2 respectively, then the mappings A,B are well-defined.
As fx0 ∈ B(fx0, r) ⊆ fX, then fx0 ∈ fX. Choose a point x1 in fX such that
x1 = A(fx0) and let x2 = B(gx1). Continuing this process choose xn in fX such
that

x2i+1 = A(fx2i) and x2i+2 = B(gx2i+1), where i = 0, 1, 2, . . .

following similar arguments of Theorem 2.2, and we have xn ∈ B(fx0, r). Also by
inequality (2.13)

p(fx0, A(fx0)) ≤ (1− k)[r + p(fx0, fx0)].

By using inequality (2.12), for fx, gy ∈ B(fx0, r), we have

p (A(fx), B(gy)) ≤ kp(fx, gy).

As fX is a 0-complete space, all conditions of Corollary 2.7 are satisfied, and we
deduce that there exists a unique common fixed point fz ∈ B(fx0, r) of A and B.
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Further A and B have no fixed points other than fz. Also p(fz, fz) = 0. Now
fz = A(fz) = B(fz) or fz = Sz = fz. Thus fz is a point of coincidence of f

and S. Let w ∈ B(fx0, r) be another point of coincidence of S and f . Then there
exists u ∈ B(fx0, r) such that is w = fu = Su, which implies that fu = A(fu).
A contradiction as fz ∈ B(fx0, r) is a unique fixed point of A. Hence w = fz.
Thus S and f have a unique point of coincidence fz ∈ B(fx0, r). Since (S, f) are
weakly compatible, by Lemma 1.11 fz is a unique common fixed point of S and
f . As fX = gX, there exist v ∈ X such that fz = gv. Now as A(fz) = B(fz) =
fz ⇒ A(gv) = B(gv) = gv ⇒ Tv = gv, thus gv is a point of coincidence of T and
g. Now if Tx = gx ⇒ B(gx) = gx. A contradiction. This implies that gv = gx.
As (T, g) are weakly compatible, we obtain gv, a unique common fixed point for
T and g. But gv = fz. Thus S, T , g and f have a unique common fixed point
fz ∈ B(fx0, r).

Corollary 2.10. Let (X,¹, p) be an ordered partial metric space and S, T be
self-mappings and f be a dominated mapping on X such that SX ∪ TX ⊂ fX and
Tx, Sx ¹ fx. Assume that for r > 0 and an arbitrary point x0 in X, the following
conditions hold:

p (Sx, Ty) ≤ kp(fx, fy)

for all comparable elements fx, fy ∈ B(fx0, r) ⊆ fX and some 0 ≤ k < 1, and

p(fx0, Sx0) ≤ (1− k)[r + p(fx0, fx0)].

If for a non-increasing sequence {xn} in B(fx0, r), {xn} → u implies that u ¹ xn,
and for any two points z and x in B(fx0, r) there exists a point y ∈ B(fx0, r)
such that y ¹ z and y ¹ x, and if fX is a 0-complete subspace of X, then S, T and
f have a unique point of coincidence fz ∈ B(fx0, r). Also p(fz, fz) = 0.

Corollary 2.11. Let (X, p) be a partial metric space and S, T, g and f be
self mappings on X such that SX, TX ⊂ fX = gX. Assume that for r > 0 and
an arbitrary point x0 in X, the following conditions hold:

p (Sx, Ty) ≤ kp(fx, gy)

for all elements fx, gy ∈ B(fx0, r) ⊆ fX and some 0 ≤ k < 1, and

p(fx0, Sx0) ≤ (1− k)[r + p(fx0, fx0)].

If fX is 0-complete subspace of X and (S, f) and (T, g) are weakly compatible,
then S, T , f and g have a unique point of coincidence fz in B(fx0, r). Also
p(fz, fz) = 0.
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