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REMOTE FILTERS AND DISCRETELY GENERATED SPACES

Rodrigo Hernández-Gutiérrez

Abstract. Alas, Junqueira and Wilson asked whether there is a discretely generated locally
compact space whose one point compactification is not discretely generated and gave a consistent
example using CH. Their construction uses a remote filter in ω × ω2 with a base of order type
ω1 when ordered modulo compact subsets. In this paper we study the existence and preservation
(under forcing extension) of similar types of filters, mainly using small uncountable cardinals.
With these results we show that the CH example can be constructed in more general situations.

1. Introduction

A topological space X is said to be discretely generated at a point p ∈ X if
for every A ⊂ X with p ∈ clX(A) there is a discrete subset D ⊂ A such that
p ∈ clX(D). Then X is discretely generated if it is discretely generated at each of
its points. This notion was first studied in [12].

Notice that first countable spaces are discretely generated. Other examples of
discretely generated spaces include box products of monotonically normal spaces
[19, Theorem 26] and countable products of monotonically normal spaces [1, Corol-
lary 2.6]. Also, a compact dyadic space is discretely generated if and only if it is
metrizable [19, Theorem 2.1]. Recently, Alas, Junqueira and Wilson have proved
the following result.

Example 1.1. [2, Example 2.13] CH implies that there is a first-countable,
locally compact, Hausdorff and discretely generated space with its one-point com-
pactification not discretely generated.

The construction of Example 1.1 uses a remote point (see the definition below)
of ω × ω2. The existence of remote points (of separable metrizable spaces) in ZFC
was a hard problem that was finally solved by van Douwen [9] and independently
by Chae and Smith [8]. However, Example 1.1 requires that the remote filter
considered has a base of order type ω1 with respect to inclusion modulo compact
sets and the known ZFC constructions do not have this property (in fact, it is
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consistent that such a filter does not exist by Corollary 3.6 below). Thus, the
previously named authors posed the following general problem.

Question 1.2. (Alas, Junqueira and Wilson [2]) Is there a locally compact
Hausdorff discretely generated space with its one point compactification not dis-
cretely generated?

The purpose of this note is to show that an example similar to Example 1.1
can be constructed in some models of the negation of CH. From the topological
point of view, we obtain the following result.

Theorem 1.3. If p = cof(M), then there is a locally compact, discrete-
ly generated Hausdorff space X with its one-point compactification not discretely
generated. Moreover, every point of X has character strictly less than p.

The proof of this result will proceed by methods analogous to those of Example
1.1. Thus, we will be considering the existence of special kinds of remote filters in
separable metrizable spaces. In particular we will ask what the minimal character of
a remote filter is and construct remote filters with bases that are well-ordered. This
naturally gives rise to questions of independence, some of which are not directly
related to Question 1.2 and are more set-theoretical in nature.

The paper will be organized as follows. Sections 2 is introductory; we give the
notation, conventions and known results we will be using. The main body of the
paper is section 3, which contains proofs of various cardinal inequalities related to
remote points and the proof of Theorem 1.3. Section 4 discusses the question of
when a remote filter in ω×ω2 is still remote in a forcing extension. Finally, section
5 contains some final remarks and the questions we were unable to solve.

We remark that Question 1.2 remains unsettled in ZFC.

2. Preliminaries

The Cantor set is the topological product ω2 and ωω is the set of functions
from ω into itself. Recall that <ωA =

⋃{nA : n < ω} is the set of finite sequences of
elements of a set A. A space will be called crowded if it contains no isolated points.
The space of rational numbers is Q. In a topological space X, given A ⊂ X, the
closure of A will be denoted by clX(A) and its boundary by bdX(A). A standard
reference for topological concepts is of course [13].

For every Tychonoff space X, βX denotes the Čech-Stone compactification of
X and X∗ = βX \X. If U ⊂ X is open, let ExX(U) = βX \ clβX(X \ U).

Recall that a point p ∈ X∗ is said to be remote if p /∈ clβX(A) for every
nowhere dense subset A of X. Extending the definition of remote point, we will
say that F ⊂ βX is a remote set of X if F ∩ clβX(N) = ∅ for every nowhere dense
subset N of X. Let us remark that in this paper all remote sets of X considered
will be closed sets in βX. By Stone’s duality, if X is strongly 0-dimensional then
closed subsets of βX correspond to filters in the Boolean algebra of clopen subsets
of X. Thus, we may dually speak of remote filters of (clopen sets of) X.
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It is well-known (and easy to prove) that if X is crowded and metrizable, a
subset F ⊂ βX is remote if and only if it is far from X; that is, if F ∩ clβX(D) = ∅
for every discrete D ⊂ X.

Recall that in any compact Hausdorff space, the character and the pseudochar-
acter of closed subsets are equal. This motivates the following notation we will use
in this note. When X is any Tychonoff space and F ⊂ βX is closed, the character
of F (in βX!), χ(F ) will be defined to be the minimal κ such that there is a col-
lection U of open subsets of βX such that F =

⋂{U ∈ U : F ⊂ U} and |U| = κ.
A base of a filter F of clopen sets of a 0-dimensional space X is a collection U of
clopen subsets of X that generates F and the character of F , χ(F) is the minimal
cardinality of a base of F ; this is clearly consistent.

If U and V are clopen sets of a space X, we define U ⊂∗ V to mean that U \V
is compact. Notice that this implies that clβX(U) ∩X∗ ⊂ clβX(V ) ∩X∗.

Example 1.1 was constructed by the use of remote filters in ω× ω2. In partic-
ular, the authors of that paper implicitly proved the following statement:

Proposition 2.1. If there is a remote filter of ω × ω2 with a base of order
type ω1 with the relation ⊂∗, then there exists a first countable, locally compact
and 0-dimensional space X such that the one-point compactification of X is not
discretely generated.

In fact, this same construction was first carried out by Bella and Simon in
order to construct under CH a compact pseudoradial space that is not discretely
generated, see [6, Theorem 7].

Let us recall the definition of some small uncountable cardinals that we will use.
Denote by M the family of all meager subsets of ωω (with the product topology)
and let [ω]ω = {A ⊂ ω : A is infinite}. A family G ⊂ [ω]ω is centered if for every
finite subcollection G0, . . . , Gn ∈ G there is G ∈ G with G ⊂ G0 ∩ . . . ∩ Gn. A
pseudointersection of G ⊂ [ω]ω is a set A ∈ [ω]ω such that A \ G is finite for all
G ∈ G. If 〈P, C〉 is a poset, G ⊂ P is said to be cofinal in P if for every p ∈ P there
exists q ∈ G with p C q. If f, g ∈ ωω, then f ≤∗ g means that {n ∈ ω : g(n) < f(n)}
is finite.

cov(M) = min
{|G| : G ⊂M, ωω =

⋃
G}

,

cof(M) = min
{|G| : G ⊂M is cofinal in 〈M,⊂〉}},

non(M) = min
{|M | : M ⊂ ωω, M /∈M}

,

p = min
{|G| : G ⊂ [ω]ω is centered and has no pseudointersection

}
,

d = min
{|G| : G ⊂ ωω cofinal in 〈ωω,≤∗〉}.

See [10] for a topological introduction, [7] for a recent survey in a set-theoretic
perspective and [4] for information on consistency results. In particular, the fol-
lowing relations are known,
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where each arrow κ → τ means that κ ≤ τ . Further, any of the inequalities is
consistently strict.

We will assume the terminology of posets such as dense subsets and filters and
so on, see [4, Section 1.4]. If K if a class of partially ordered sets and κ is a cardinal
number, MAκ(K) is the following assertion:

If P ∈ K and {Dα : α < κ} are dense subsets of P, there is a filter
G ⊂ P that intersects Dα for every α < κ.
Let ctble be the class of countable posets and σ-cent the class of σ-centered

posets.

Theorem 2.2.

(a) κ < p if and only if MAκ(σ-cent). [14, 14C, p. 25]
(b) κ < cov(M) if and only if MAκ(ctble). [4, Theorem 2.4.5]

We will use another cardinal invariant defined in [3]. For every space X we
define cof(nwd(X)) to be the smallest κ such that there is a family G of nowhere
dense subsets of X such that |G| = κ and cofinal in the poset of nowhere dense
subsets of X with respect to inclusion.

Theorem 2.3. [3, 1.5 and 1.6] If X is a crowded separable metrizable space,
then cof(M) = cof(nwd(X)).

3. Character of remote filters

In order to construct examples for Question 1.2, we will first ask what is the
character of the smallest remote filter in ω × ω2. For a Tychonoff non-compact
space X, we define re(X) to be the minimal κ such that there exists a remote set
F in X closed in βX and with χ(F ) = κ; if no remote filters exist, re(X) = ∞. re
will denote re(Q).

Proposition 3.1. If Y is a dense subset of a Tychonoff space X, then re(Y ) ≤
re(X).

Proof. Let f : βY → βX be the unique continuous function such that f ¹Y :
Y → X is the inclusion. Let F ⊂ βX be a remote closed subset and let U be
a collection of open subsets of βX whose intersection is F . Then G = f←[F ] is
a closed subset of βY and {f←[U ] : U ∈ U} witnesses that χ(G) ≤ χ(F ). So it
remains to show that G is remote.
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Assume that N ⊂ Y is a closed nowhere dense subset of Y and there is p ∈
clβY (N) ∩ G. Then M = clX(N) is nowhere dense in X. From the fact that f
is continuous, it follows that f [clβY (N)] ⊂ clβX(f [N ]) = clβX(M). Thus, f(p) ∈
clβX(M) ∩ F , which is a contradiction. Then G is remote and the result follows.

Since every crowded, separable and metrizable space has a dense subset home-
omorphic to Q, we obtain the following.

Corollary 3.2. If X is non-compact, crowded, separable and metrizable,
then re ≤ re(X).

If X and Y are both non-compact, crowded, separable and metrizable metriz-
able spaces, then by Theorem 2.3, their ideals of nowhere dense sets behave in a
similar fashion. Thus, it is conceivable that in order to define a remote filter, one
needs to avoids the same quantity of nowhere dense sets in both cases and then
re(X) = re(Y ). However, the author was unable to prove this so we will leave it as
an open problem, see Question 5.3 below.

Let us now show how to modify van Douwen’s proof of existence of remote
points [9] to prove the existence of remote points with consistently small character.
The proof is practically the same modulo some small changes. However, for the
reader’s convenience and in order to make the changes explicit, we include a full
proof.

Proposition 3.3. If X is a non-compact, crowded, separable metrizable space,
there is a non-empty remote closed subset F of X with χ(F ) ≤ cof(M).

Proof. According to Theorem 2.3, there exists a collection N of cof(M) closed
nowhere dense subsets of X such that every nowhere dense subset of X is contained
in some nowhere dense subset of N.

Let {In : n < ω} be a discrete family of non-empty open subsets of X and let
{Bn : n < ω} be a base of non-empty open subsets of X. For each N ∈ N, let

K(N, n) = {i < ω : clX(Bi) ⊂ In \N}.
Now, recursively define

k(N, n, 0) = min K(N, n)

k(N, n,m + 1) = min{i < ω : i ≥ k(N, n,m), and for each s ≤ k(N, n,m) with

clX(Bs) ⊂ In, there is t ∈ K(N,n) with t ≤ i, Bt ⊂ Bs}.
And finally, let

U(N,n) =
⋃
{Bi : i ∈ K(N,n), i ≤ k(N,n, n)}.

Notice that U(N, n) is a non-empty open set. Since U(N, n) is a finite union of
subsets indexed in K(N, n), we obtain that clX(U(N, n)) ⊂ In \N .

Let U(N) =
⋃{U(N, n) : n < ω} for each N ∈ N, notice that clX(U(N))∩N =

∅. Define F =
⋂{clβX(U(N)) : N ∈ N}.
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To prove that F 6= ∅, by compactness it is enough to show that if N0, . . . , Nn−1

are in N then U(N0, n)∩U(N1, n)∩ . . .∩U(Nn−1, n) 6= ∅. By rearranging if neces-
sary, we may assume that whenever r ≤ s < n we have k(Nr, n, r) ≤ k(Ns, n, r). By
recursion, define t(0) = k(N0, n, 0) and t(j+1) = min{s ∈ K(Nj+1, n) : Bs ⊂ Bt(j)}
for j < n, this is clearly well-defined. By recursion it is easy to check that
t(j) ≤ k(Dj , n, j) for each j < n. Then it follows that U(N0, n) ∩ U(N1, n) ∩
. . . ∩ U(Nn−1, n) ⊃ Bt(n−1) which is non-empty.

By the choice of N it follows that F is a non-empty remote closed set of X.
We still have to prove that χ(F ) ≤ cov(M). It is enough to argue that

(∗) F =
⋂
{ExX(U(N)) : N ∈ N}.

Fix N ∈ N, we know that F ⊂ clβX(U(N)). According to [9, Lemma 3.1],
clβX(U(N)) = clβX(ExX(U(N))) = ExX(U(N)) ∪ bdβX(ExX(U)). Moreover,
by [9, Lemma 3.2], bdβX(ExX(U)) = clβX(bdX(U)). Since F is remote, F ∩
clβX(bdX(U)) = ∅. Thus, F ⊂ ExX(U(N)). The other inclusion in (∗) is clear by
the definition.

We also give lower bounds for the character of remote filters.

Theorem 3.4. Let F be a non-empty closed remote subset in a non-compact,
crowded, separable metrizable space X. Then χ(F ) ≥ cov(M).

Proof. Assume that there is a collection {Uα : α < κ} of open subsets of βX
with intersection equal to F such that κ < cov(M). We will derive a contradiction.

Since X is Lindelöf, there is a countable collection {Vn : n < ω} of non-empty
open subsets of X such that F ⊂ ExX(Vn) and clX(Vn+1) ⊂ Vn for each n < ω.
For each n < ω, let Wn = Vn \ clX(Vn+1), then {Wn : n < ω} is a collection of
non-empty crowded open subsets of X.

For each n < ω, let {x(n,m) : m < ω} be a countable dense subset of Wn. For
each α < κ, there is an infinite set Eα ⊂ ω and a function fα : Eα → ω such that
x(n, fα(n)) ∈ Uα for each n ∈ Eα.

The poset P = (<ωω,⊃) with the inclusion order is countable. For each α < κ
and n < ω, let

D(α, n) = {p ∈ P : ∃m > n (m ∈ dom(p) ∩ Eα, p(m) = fα(m))}.
It is not hard to see that D(α, n) is a dense subset of P. Since κ < cov(M), by
Theorem 2.2 there exists a filter G that intersects D(α, n) for each α < κ and
n < ω. Let f =

⋃
G. Then it is not hard to show that f : ω → ω is a function such

that for each α < κ, {n ∈ Eα : f(n) = fα(n)} is non-empty.
Then D = {x(n, f(n)) : n < ω} is a closed discrete subset of X. So clβX(D)

is closed, non-empty and disjoint from F because F is remote. Then there exists
α < κ such that Uα ∩ clβX(D) = ∅. But then by the definition of f , {n < ω :
x(n, f(n)) ∈ Uα} is non-empty so Uα ∩ clβX(D) 6= ∅. This is a contradiction so in
fact χ(F ) ≥ cov(M).
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Theorem 3.5. Let F be a non-empty closed remote subset in a non-compact,
crowded, separable metrizable space X. Then χ(F ) ≥ min{non(M), d}.

Proof. Let k < min{non(M), d} and assume that there is a collection {Uα :
α < κ} of open subsets of βX with the finite intersection property and whose
intersection is equal to F . We shall show that there is a nowhere dense subset N
of X such that F ∩ clβX(N) 6= ∅. Let us use the following sets defined in the proof
of Theorem 3.4: {Vn : n < ω} and {Wn : n < ω}.

For each α < κ and n < ω, choose any point x(α, n) ∈ Wn ∩Uα whenever this
intersection is non-empty. Then for each n < ω the set Mn = {x(α, n) : α < κ, Wn∩
Uα 6= ∅} is meager so there are closed nowhere dense subsets {K(n,m) : m < ω} of
Wn such that their union contains Mn. Without loss of generality, we may assume
that K(n, m) ⊂ K(n,m + 1) for each n,m < ω.

For each α < κ, we define a function fα with dom(fα) = {n < ω : Wn∩Uα 6= ∅}
by fα(n) = min{k < ω : x(α, n) ∈ K(n, k)}. Notice that dom(fα) is an infinite set
for each α < κ. By Theorem 3.6 in [10], there is f : ω → ω such that for all α < κ
and m < ω there is n ∈ dom(fα) \m such that fα(n) < f(n).

Define N =
⋃{K(n, f(n)) : n < ω}, this is a closed and nowhere dense subset

of X. By the properties of f , for every α < ω there is some n < ω such that
x(α, n) ∈ N . So N is a nowhere dense subset of X that intersects every element
from {Uα : α < κ}. This shows that F ∩ clβX(N) 6= ∅.

Corollary 3.6. If X is a non-compact, crowded, separable metrizable space,
then cov(M) ≤ re(X) ≤ cof(M) and min{non(M), d} ≤ re(X).

In order to prove Theorem 1.3, we will first need to construct a special remote
filter.

Theorem 3.7. If p = cof(M), then there is a remote filter in ω × ω2 with a
base of order type p with respect to the relation ⊂∗.

Proof. By Theorem 2.3, there is a collection {Nα : α < p} of closed nowhere
dense subsets of ω × ω2 cofinal in the family of all closed nowhere dense subsets of
ω × ω2. Let {B(n) : n < ω} be a base of clopen subsets of ω2. By recursion, we
will construct a collection of clopen subsets {Uα : α < p} of ω × ω2 such that
(a) Uβ ⊂∗ Uα if α < β < p,
(b) Uα ∩ ({n} × ω2) 6= ∅ for every α < p and n < ω, and
(c) Uα ∩Nα = ∅ for every α < p.

Then the filter of clopen subsets of ω × ω2 generated by {Uα : α < p} will be
as required.

Assume that we have constructed the clopen sets {Uα : α < κ} for some κ < p,
we would like to choose Uκ. For each α < κ, let fα : ω → ω be a function such that
Uα ∩ ({n} × ω2) = {n} × B(fα(n)). Notice that if α < β there exists N < ω such
that if N ≤ n < ω then fβ(n) ⊂ fα(n).
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Consider the poset

P = {〈f, α〉 : f ∈ <ωω, α < κ, ∀n ∈ dom(f) ([{n} ×B(f(n))] ∩Nκ = ∅)}
where 〈f, β〉 ≤ 〈g, α〉 if
(1) g ⊂ f ,
(2) α < β and
(3) if k ∈ dom(f) \ dom(g), then B(f(k)) ⊂ B(fα(k)).

First, notice that P is σ-centered: if f ∈ <ωω, {〈g, α〉 ∈ P : g = f} is clearly
centered (in fact, totally ordered).

For γ < κ, let D(γ) = {〈f, α〉 ∈ P : α ≥ γ} and for t < ω, let E(t) = {〈f, α〉 :
dom(f) ≥ t}. Using that Nκ is nowhere dense, it is not hard to see that these sets
are dense. Since κ < p, by Theorem 2.2, there exists a filter G that intersects each of
these dense sets. Let fκ =

⋃
G. By genericity it easily follows that fκ ∈ ωω. Define

Uκ =
⋃{{n} ×B(fκ(n)) : n < ω}, this is a clopen subset and clearly condition (b)

holds.
Now let us show that condition (a) holds for this step of the construction.

Given α < κ, we would like to prove that Uκ ⊂∗ Uα. Let 〈g0, γ0〉 ∈ G ∩D(α), so
that γ0 ≥ α. Then there is N < ω such that fγ0(n) ⊂ fα(n) when N ≤ n < ω.
Let M = max{N, dom(g)}. So it is enough to prove that if M ≤ n < ω, then
B(fκ(n)) ⊂ B(fα(n)). Let 〈g1, γ1〉 ∈ G∩E(n), since G is a filter, there is 〈h, η〉 ∈ G
with 〈h, η〉 ≤ 〈g0, γ0〉 and 〈h, η〉 ≤ 〈g1, γ1〉. Then n ∈ dom(h) \ dom(g0) and by
condition (3) in the definition of 〈h, η〉 ≤ 〈g0, γ0〉, B(h(n)) ⊂ B(fγ0(n)). Since
n ≥ N , B(h(n)) ⊂ B(fα(n)). Moreover, since h ⊂ fκ, we have that B(fκ(n)) ⊂
B(fα(n)), which is what we wanted.

Notice that the definition of P implies that Uκ ∩ Nκ = ∅. This completes
the construction of {Uα : α < p} as required, which completes the proof of the
Theorem.

Proof of Theorem 1.3. By Theorem 3.7, there is a collection {Uα : α < p} of
clopen subsets of ω×ω2 which generates a remote filter of clopen sets and such that
Uα (∗ Uβ whenever β < α < κ. For each α < κ, let Vα = clβ(ω×ω2)(Uα)∩(ω×ω2)∗,
which is a clopen subset of ω×ω2. Then F =

⋂{Vα : α < κ} is a remote set of ω×ω2,
closed in β(ω × ω2). We may assume without loss of generality that U0 = ω × ω2
so V0 = (ω × ω2)∗.

For each α < p, let us define

Fα =
{

(
⋂{Vβ : β < α}) \ Vα+1, if α is a limit,

Vα \ Vα+1, otherwise.

Now let X = (ω×ω2)∪{F}∪{Fα : α < κ} with the quotient space topology. Then X
is a (Tychonoff) compactification of ω×ω2 with remainder R = {F}∪{Fα : α < κ}.
Moreover, the function f : R → κ + 1 defined by f(Fα) = α when α < κ and
f(F ) = κ is a homeomorphism, where κ + 1 is given the ordinal topology.

We now argue that X is discretely generated at all points except at F . Clearly,
X is discretely generated at each point of ω × ω2 because it is first-countable at
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each of these points. Also, F ∈ clX(ω × ω2) but there is no discrete subset of ω×ω2
whose closure contains the point F because F is a remote closed subset of ω × ω2.

Now let α < κ and let A ⊂ X such that Fα ∈ clX(A). If Fα ∈ clX(A ∩R),
then since R is linearly ordered and linearly ordered spaces are discretely generated
(see [12, Corollary 3.12]), there is a discrete subset D ⊂ R such that Fα ∈ clX(D).

Suppose now that Fα ∈ clX(A ∩ (ω × ω2)). Let B = A \ Uα+1 and Y =
[(ω × ω2) \ Uα+1] ∪ {Fβ : β ≤ α}. Then Y is a clopen subset of X that contains
B ∪ {Fα} and Fα ∈ cl[(Y )]B. Moreover, let g : βB → Y be the unique continuous
extension of the inclusion B ⊂ Y . Since Fα has character striclty smaller p in
Y , g←[Fα] has character strictly smaller than p in βB. By the inequalities of
Corollary 3.6, g←[Fα] is not remote in βB so there is a discrete subset D ⊂ B
such that cl[(β)B]D ∩ g←[Fα] 6= ∅. Thus, Fα ∈ clX(D). This shows that Fα is not
remote in X so we have finished the proof.

4. Some models

The objective of this section is to ask when a remote filter (in ω × ω2) is still
remote under a forcing extension of the universe. In order to do this, we will quote
some known results which show that the corresponding forcing notions preserve
remote filters. See [18] for an introduction on forcing and [4] for more advanced
results. We will denote the ground model by V.

For a forcing notion P, we will say that P is nwd-bounding if whenever p ∈ P
and Ȧ is a P-name such that p ° “Ȧ is closed and nowhere dense in ω2”, then there
is a closed and nowhere dense subset B of ω2 and q ≤ p such that q ° “Ȧ ⊂ B”.

In great part of the literature, authors have been more concerned about when
a forcing notion preserves meager sets. However, for proper forcing notions, pre-
serving meager sets is equivalent to being nwd-bounding. The author of this note
could not find an explicit proof but one can easily modify the proof of [4, Lemma
6.3.21] to obtain this. Moreover, [4, Theorem 6.3.22] can then be translated to the
following.

Theorem 4.1. The countable support iteration of proper forcing notions that
are nwd-bounding is also nwd-bounding.

A forcing notion P has the Sacks property if whenever p ∈ P and ḟ is a P-
name such that p ° “ḟ ∈ ωV”, there is F ∈ ωV such that |F (n)| ≤ 2n for all
n < ω and q ≤ p such that q ° “∀n < ω (f(n) ∈ F (n))”. According to Miller
[17], Shelah proved that any forcing with the Sacks property is nwd-bounding. The
author of this note could not find the proof of this result in the literature. For the
sake of completeness we include the sketch of a proof provided by Osvaldo Guzmán
González.

Lemma 4.2. Any forcing notion with the Sacks property is nwd-bounding.

Proof. First, we need a combinatorial characterization of nowhere dense subsets
of ω2 in the spirit of [4, Theorem 2.2.4]. For each p ∈ ω2 and j ∈ ωω that is strictly
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increasing and j(0) = 0, let

U(p, j) = {q ∈ ω2 : ∃n ∈ ω (p¹[j(n),j(n+1))= q¹[j(n),j(n+1)))},
this is an open dense subset of ω2. Moreover, it is not hard to prove that if N is
a nowhere dense subset of ω2 there exists p ∈ ω2 and a strictly increasing j ∈ ωω
such that N ∩ U(p, j) = ∅.

So let P be a forcing notion with the Sacks property, let ẋ and ḟ be names and
p ∈ P be such that p ° “ẋ ∈ ω2, ḟ ∈ ωω is strictly increasing and ḟ(0) = 0”. We
must find q ∈ P with q ≤ p, y ∈ ω2 ∩V and a strictly increasing g ∈ ωω ∩V with
g(0) = 0 such that q ° “U(y, g) ⊂ U(ẋ, ḟ)”.

Recall that a forcing notion with the Sacks property is ωω-bounding, that is,
every function in ωω ∩ VP is (pointwise) bounded by a function in ωω ∩ V [4,
Lemma 6.3.38]. Using this, it is not hard to find a strictly increasing function
f ∈ ωω ∩V with f(0) = 0 and p′ ∈ P such that p′ ≤ p and p′ ° “∀n < ω ∃m <

ω ([ḟ(m), ḟ(m + 1)) ⊂ [f(n), f(n + 1)))”. Then p′ ° “U(ẋ, f) ⊂ U(ẋ, ḟ)”.
Now let I[n] = [f(n), f(n+1)) and let us also write s(n) = (20+21+. . .+2n)−1

for each n < ω. In the generic extension, let ḣ be a function with domain ω
such that ḣ(n) = x¹I[s(n)]∪...∪I[s(n+1)−1] for each n < ω. By the Sacks property,
there is a function H ∈ V with domain ω and q ≤ p′ such that q ° “∀n <
ω (ḣ(n) ∈ H(n))” and |H(n)| ≤ 2n for each n < ω. We may assume that H(n) =
{H(n, 0), . . . ,H(n, 2n−1)} are all functions with domain I[s(n)]∪. . .∪I[s(n+1)−1]
to {0, 1}. Define y ∈ ω2 in such a way that when n < ω and 0 ≤ k < 2n+1 then
y ¹I[s(n)+k]= H(n, k) ¹I[s(n)+k]. Also let g ∈ ωω be defined by g(n) = f(s(n)),
clearly g ∈ V, g is strictly increasing and g(0) = 0. From this it is not hard to see
that q ° “U(y, g) ⊂ U(ẋ, f)” so q ° “U(y, g) ⊂ U(ẋ, ḟ)” and we have finished the
proof.

Examples of forcing notions with the Sacks property are Silver forcing (see [16,
3.10, p. 17] for the definition) and Sacks forcing itself (see [16, 3.4, p. 15]). The
poset that adds κ (for any κ) Sacks reals side-by-side (a good introduction is [5])
also has the Sacks property. Miller also proved that “infinitely equal forcing” [4,
Definition 7.4.11] is nwd-bounding, for a proof again modify the one given in [4,
Lemma 7.4.14].

Theorem 4.3. Assume that F is a remote filter of clopen sets of ω× ω2. If P
is any nwd-bounding forcing, then F is still a remote filter of clopen sets of ω× ω2
in the model obtained by forcing with P.

Proof. Let p ∈ P and Ṅ a name such that p ° “Ṅ is a nowhere dense set of
VP”. There is a closed nowhere dense set M ∈ V and q ∈ P with q ≤ p such that
q ° “Ṅ ⊂ M”. Since F is remote in V, there is V ∈ F such that V ∩M = ∅. Then
q ° “∃U ∈ F (Ṅ ∩ U = ∅)”.

Corollary 4.4. Assume that V |= CH and let X be the first countable space
constructed in Theorem 1.3. If P is a forcing notion that is nwd-bounding, then

VP |= “the one-point compactification of X is not discretely generated”.
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Notice that by Corollary 4.4 and Example 1.1 we have examples of models
where there are spaces as required in Question 1.2. Namely we have the Sacks model
(both by iteration and side-by-side), the Silver model and forcing with infinitely
equal forcing. Notice that however in all of these models the equality ω1 = p =
cof(M) holds so it is possible to use Theorem 1.3 to infer the existence of spaces
as required in Question 1.2.

Question 4.5. Let P be a forcing notion that preserves remote filters. Is it
true that P is nwd-bounding?

We also include the following result about the character of remote filters here.

Corollary 4.6. It is consistent that there is a remote filter of character ω1

in ω × ω2 but every point of (ω × ω2)∗ has character c = ω2.

Proof. Choose any model of ZFC where cof(M) = ω1 and every ultrafilter in
ω has character c = ω2. For example, take a model of CH and take the countable
support iteration of Silver forcing with length ω2 (see [15, Chapter 22]). Silver
forcing has the Sacks property so there are remote filters of character ω1 (Theorems
3.7 and 4.3). Further, Silver forcing adds splitting reals [15, Lemma 22.3] and from
this it easily follows that all ultrafilters in ω in the generic extension must have
character ω2.

Let f : ω×ω2 → ω be the function such that f(x) = n if x ∈ {n}×ω2. Let βf :
β(ω×ω2) → βω be the unique continuous extension. Notice that βf [(ω×ω2)∗] = ω∗

because f is continuous and perfect. By [11, Theorem 2.2], βf is open.

Let p ∈ (ω×ω2)∗ and assume that U is a local base of open subsets of β(ω×ω2)
at p. Then it is not hard to see that {βf [U ] : U ∈ U} is a local base of open subsets
of βω at βf(p). Since the character of βf(p) in βω is c, then |U| ≥ c. So the
character of p in β(ω × ω2) is c = ω2.

5. Some other remarks and problems

Before going to the questions, let us explore another cardinal invariant directly
related to discretely generated spaces. Let dg be the smallest cardinal κ such that
there is a non-discretely generated countable regular space with weight κ. The
proof of Theorem 3.4 can be easily modified to show the following.

Theorem 5.1. cov(M) ≤ dg ≤ re.

Proof. To prove that dg ≤ re, let F be a remote closed set of Q with χ(F ) = re
and consider Q ∪ {F} as the subspace of the quotient of βQ defined by shrinking
F to a point.

Now assume that Q is a countable regular space with weight κ < cov(M), we
shall prove that Q is discretely generated. Let A ⊂ Q and p ∈ cl[(Q)]A, we may
assume that p /∈ A. We may write A =

⋃{An : n < ω} where An is clopen in A
and p /∈ cl[(A)]An for each n < ω. Let {Uα : α < κ} be a local base at p.
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For each n < ω, let An = {x(n, m) : m < ω} be an enumeration and let Bn

be the collection of all open subsets of An. Also, for each n,m < ω, let Bn(m) =
{U ∈ Bn : x(n,m) ∈ U}.

Considering the poset P = (<ωω,⊃), we may follow the methods of Theorem
3.4 to find a function g : ω → ω such that for every α < κ there is n < ω such that
x(n, g(n)) ∈ Uα. This proves that {x(n, g(n)) : n < ω} is a closed discrete subset
of A that has p in its closure. So Q is discretely generated.

Aside from the original Question 1.2 that motivated the topic of this paper,
we have moved towards studying the cardinal invariant re. Also, more generally,
we would also like to know more about the structure of remote filters.

Question 5.2. Is there a remote filter (in ω × ω2) that has a base that is
well-ordered in ZFC?

Question 5.3. If X is a non-compact, crowded, separable and metrizable
space, is re(X) = re?

Question 5.4. Is re = cof(M)?
Question 5.5. Is dg = re?
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