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TO A SEMIDUALIZING MODULE
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Abstract. In this paper, for a fixed semidualizing module C, we introduce the notion of DC -
projective modules which are the special setting of GC -projective modules introduced by White
[D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut.
Algebra 2(1) (2010) 111–137]. Then we investigate the properties of DC -projective modules and
dimensions, in particular, we give descriptions of the finite DC -projective dimensions.

1. Introduction

Auslander and Bridger in [1], introduced the notion of so-called G-dimension
for finitely generated modules over commutative Noetherian rings. Enochs and
Jenda defined in [4] a homological dimension, namely the Gorenstein projective
dimension, GpdR(−), for any R-module as an extension of G-dimension. Let R be
any associative ring. Recall that an R-module M is said to be Gorenstein projective
(for short G-projective; see [4]) if there is an exact sequence

P = · · · → P1 → P0 → P 0 → P 1 → · · ·
of projective modules with M = Ker(P 0 → P 1) such that Hom(P, Q) is exact for
each projective R-module Q. Such exact sequence is called a complete projective
resolution. We use GP(R) to denote the class of all G-projective R-modules. We
say that M has Gorenstein projective dimension at most n, denoted GpdR(M) ≤
n, if there is a Gorenstein projective resolution, i.e., there is an exact sequence
0 → Gn → · · · → G0 → M → 0, where all Gi are G-projective R-modules, and say
GpdR(M) = n if there is not a shorter Gorenstein projective resolution.

In [3], an R-module M is called strongly Gorenstein flat if there is an exact
sequence

P = · · · → P1 → P0 → P 0 → P 1 → · · ·
of projective modules with M = Ker(P 0 → P 1) such that Hom(P, Q) is exact
for each flat R-module Q. It is clear that strongly Gorenstein flat R-modules are
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Gorenstein projective. But no one knows whether there is a Gorenstein projective
R-module which is not strongly Gorenstein flat. Following [8, 19], the strongly
Gorenstein flat R-modules are called Ding projective, since strongly Gorenstein
flat R-modules are not necessarily Gorenstein flat [3, Example 2.19] and strongly
Gorenstein flat R-modules were first introduced by Ding and his coauthors. In [3],
the authors gave a lot of wonderful results about Ding projective R-modules over
coherent rings. Mahdou and Tamekkante in [14], generalized some of these results
over arbitrary associative rings. In this paper, we use DP(R) to denoted the class
of all Ding projective R-modules.

In [7], the author initiated the study of semidualizing modules; see Definition
2.1. Over a noetherian ring R, Vasconcelos [17] studied them too. Golod [9] used
these to define GC-dimension for finitely generated modules, which is a refinement
of projective dimension. Holm and Jørgensen [11] have extended this notion to
arbitrary modules over a noetherian ring. Moreover, for semi-dualizing R-module
C and the trivial extension of R by C R n C; that is, the ring R ⊕ C equipped
with the product: (r, c)(r′, c′) = (rr′, rc′+ r′c), they considered the ring changed
Gorenstein dimensions, GpdRnCM and proved that M is GC-projective R-module
if and only if M is G-projective R n C-module [11, Theorem 2.16]. In [18], White
unified and generalized treatment of this concept over any commutative rings and
showed many excellent GC-projective properties shared by G-projectives. Recall
that an R-module M is called GC-projective if there exists a complete PC-resolution
of M , which means that

P = · · · → P1 → P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·
is an exact complex such that M ∼= Coker(P1 → P0) and each Pi and P i is
projective and such that the complex HomR(P, C⊗RQ) is exact for every projective
R-module Q. We use GCP(R) to denote the class of all GC-projective R-modules.
Motivated by the above, in this paper, we define the concept of Ding projective R-
modules with respect to a fixed semidualizing module C, for short, DC-projective
and show properties of DC-projective modules and dimensions. It is organized as
follows:

Section 2 is devoted to the study of the DC-projective modules and dimen-
sions. White proved that every module that is either projective or C-projective
is GC-projective [18, Proposition 2.6]. Moreover, we show that they are also DC-
projective, see Proposition 2.7. Further, we give homological descriptions of the
DC-projective dimension, see Proposition 2.11. And then characterize modules
with the finite DC-projective dimension as follows,

Theorem 1.1. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,

(1) DC-pdR(M) ≤ n;
(2) For some integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →

· · · → P1 → P0 → M → 0 such that Pi is DC-projective if 0 ≤ i < k and Pj is
PC-projective if j ≥ k.
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(3) For any integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →
· · · → P1 → P0 → M → 0 such that Pi is DC-projective if 0 ≤ i < k and Pj is
PC-projective if j ≥ k.

Theorem 1.2. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,

(1) DC-pdR(M) ≤ n;
(2) For some integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →

· · · → A1 → A0 → M → 0 such that Ak is DC-projective and other Ai projective
or PC-projective.

(3) For any integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →
· · · → A1 → A0 → M → 0 such that Ak is DC-projective and other Ai projective
or PC-projective.

Although we do not know whether there is a GC-projective R-module which
is not DC-projective, we think that this article gives new things. Proposition 2.7,
Proposition 2.11, Proposition 2.20 and the above two theorems add a new mes-
sage to GC-projective R-modules if GC-projective R-modules and DC-projective
R-modules happen to coincide.

Setup and notation. Throughout this paper, R denotes a commutative ring.
C is a fixed semidualizing R-module. RM denotes the category of R-modules, and
P(R) and I(R) denote the class of projective and injective modules, respectively.

2. Properties of DC-projective modules

Now we begin with recall of the definition on semedualizing R-modules.

Definition 2.1. An R-module C is semidualizing if
(a) C admits a degreewise finite projective resolution, that is, there is an exact

complex · · · → P1 → P0 → C → 0 with all Pi finitely generated projective R-
modules,

(b) the natural homothety map χR
C : R → HomR(C, C) is an isomorphism,

where χR
C satisfies that χR

C(r)(c) = rc for each r ∈ R and c ∈ C, and

(c) Extn≥1
R (C, C) = 0.

For any noetherian ring R, a finitely generated R-module C is semidualizing
if and only if RHomR(C, C) ∼= R in D(R), the derived category of the category of
R-modules. Clearly, R is a semidualizing R-module.

Definition 2.2. The class of C-projective is defined as

PC = {C ⊗R P | P is projective}
The PC-projective dimension of an R-module M is PC-pd(M) = inf{n | 0 →
Xn → · · · → X0 → M → 0 is exact with all Xi C-projective}. The class of C-flat
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modules, denoted by FC and FC-flat dimension of M , denoted by FC-fd(M) are
defined similarly.

Definition 2.3. An R-module M is called DC-projective if there exists a
complete PC-resolution of M , which means that

P = · · · → P1 → P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·
is an exact complex such that M ∼= Coker(P1 → P0) and each Pi and P i is
projective and such that the complex HomR(P, C ⊗R Q) is exact for every flat
R-module Q. We use DCP(R) to denote the class of all DC-projective R-modules.
For any R-module M , we say that M has DC-projective dimension at most n,
denoted DC-pdR(M) ≤ n, if M has a DC-projective resolution of length n, that is,
there is an exact complex of the form 0 → Dn → · · · → D0 → M → 0, where all
Di are DC-projective R-modules, and say DC-pdR(M) = n if there is not a shorter
DC-projective resolution.

Remark 2.4. It is clear that DCP(R) ⊆ GCP(R). When C = R, DCP(R) =
DP(R).

From Definition 2.3 one can obtain the following characterization of DC-
projective R-modules.

Proposition 2.5. M is DC-projective if and only if Extn≥1
R (M, C⊗R Q) = 0

and there exists an exact sequence of the form:

X = 0 → M → C ⊗R P 0 → C ⊗R P 1 → · · ·
such that HomR(X, C ⊗R Q) is exact for any flat R-module Q.

Recall that White in [18] proved that for any projective P , P and C ⊗R P
are GC-projective. Moreover, we can show that P and C ⊗R P are DC-projective.
First we give the following lemma,

Lemma 2.6. Let P be a projective R-module and X be a complex. For an
R-module A, if the complex HomR(X, A) is exact, then the complex HomR(P ⊗R

X, A) is exact. Thus, if X is a complete PC-resolution of an R-module M , then
P ⊗R X is a complete PC-resolution of an R-module P ⊗R M . The converses hold
in case P is faithfully projective.

Proof. Since HomR(P, −) is an exact functor, by the isomorphism of com-
plexes given by Hom-tensor adjointness

HomR(P ⊗R X, A) ∼= HomR(P, HomR(X, A)),

exactness of the complex HomR(X, A) implies that the complex HomR(P⊗RX, A)
is exact. The remains are trivial.

Proposition 2.7. (1) C and R are DC-projective;
(2) For any projective P , P and C ⊗R P are DC-projective.
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Proof. (1) Since C is semidualizing, there is an exact sequence of the form:
X = · · · → Rn1 → Rn0 → C → 0 with all ni being positive integer numbers. By
[18, Lemma 1.11 (b)], HomR(X, C ⊗R Q) is exact for any flat R-module Q. On
the other hand, there is an exact sequence of the form:

Y = 0 0−→ C
1−→ C

0−→ C
1−→ · · · .

By tensor evaluation homomorphism; see [2, p. 11],

HomR(Y, C ⊗R Q) ∼= HomR(Y, C)⊗R Q ∼= Q

is exact, where Q is the following exact sequence

· · · 0−→ Q
1−→ Q

0−→ Q
0−→ 0.

Therefore, C is DC-projective.
It is clear that the complex HomR(X, C) = 0 → R → Cn0 → Cn1 → · · · is

exact. Since R and all Cni are finitely generated, for any flat R-module F ,

HomR(HomR(X, C), C ⊗R F ) ∼= HomR(HomR(X, C), C)⊗R F ∼= X⊗R F

is exact. Thus R is DC-projective.
(2) By Lemma 2.6 and (1), for any projective P , P and C ⊗R P are DC-

projective.
Using a standard argument, we can get the following proposition.

Proposition 2.8. If X is a complete PC-resolution, and L is an R-module
with FC-fd(L) < ∞, then the complex HomR(X, L) is exact. Thus if M is DC-
projective, then Ext≥1

R (M, L) = 0.

In [3, Lemma 2.4], the authors proved that for a D-projective R-module M ,
either M is projective or fdR(M) = ∞. Now we generalize it as follows:

Proposition 2.9. If R-module M is DC-projective, then either M is C-flat
or FC-fdR(M) = ∞.

Proof. Suppose that FC-fdR(M) = n with 1 ≤ n < ∞. We show by induction
on n that M is C-flat. First assume that n = 1, then there is an exact sequence
0 → X1 → X0 → M → 0 with X0 and X1 C-flat. Thus by Proposition 2.8,
Ext1R(M, X1) = 0. So the above short exact sequence is split, and M is a direct
summand of X0. By [13, Proposition 5.5], M is C-flat. Then assume that n ≥ 2.
There is a short exact sequence 0 → K → X → M → 0 with X C-flat and
FC-fdR(K) ≤ n − 1. By induction, we conclude that K is C-flat. Thus FC-
fdR(M) ≤ 1. By the above discussion, M is C-flat.

It is easy to prove the following two results using standard arguments. We
leave the proofs to readers.

Proposition 2.10. The class of DC-projective R-modules is projectively re-
solving and closed under direct summands.
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Proposition 2.11. Let M be an R-module with DC-pdR(M) < ∞ and n be
a positive integer. The following are equivalent.

(1) DC-pdR(M) ≤ n.

(2) ExtiR(M, L) = 0 for all i > n and all R-modules L with FC-fd(L) < ∞.

(3) ExtiR(M, C ⊗R F ) = 0 for all i > n and all flat R-modules F .

(4) For any exact sequence 0 → Kn → Gn−1 → · · · → G1 → G0 → M → 0
with all Gi DC-projective, Kn is DC-projective.

We give the following lemma which plays a crucial role in this paper.

Lemma 2.12. Let 0 → A → G1 → G0 → M → 0 be an exact sequence with G0

and G1 DC-projective. Then there are two exact sequences 0 → A → C ⊗R P →
G → M → 0 with P projective and G DC-projective and 0 → A → H → Q →
M → 0 with Q projective and H DC-projective.

Proof. Set K = Im(G1 → G0). Since G1 is DC-projective, there is a short
exact sequence 0 → G1 → C ⊗R P → G′1 → 0 with P projective and G′1 DC-
projective. Consider the following pushout diagram:

Then consider the following pushout diagram:
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By Proposition 2.10, G is DC-projective, since G0 and G′1 are DC-projective.
Therefore, we can obtain exact sequence 0 → A → C ⊗R P → G → M → 0.
Similarly, we use pullbacks and can obtain the other exact sequence.

Theorem 2.13. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,

(1) DC-pdR(M) ≤ n;
(2) For some integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →

· · · → P1 → P0 → M → 0 such that Pi is DC-projective if 0 ≤ i < k and Pj is
C-projective if j ≥ k.

(3) For any integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →
· · · → P1 → P0 → M → 0 such that Pi is DC-projective if 0 ≤ i < k and Pj is
C-projective if j ≥ k.

Proof. (3) ⇒ (2) and (2) ⇒ (1): It is clear.
(1) ⇒ (3): Let 0 → Gn → · · · → G1 → G0 → M → 0 be an exact sequence

with all Gi DC-projective. We prove (3) by induction on n. Let n = 1. Since G1

is DC-projective, there is a short exact sequence 0 → G1 → P1 → N → 0 with P1

C-projective and N DC-projective. Consider the following pushout diagram:

By Proposition 2.10, D0 is DC-projective, since G0 and N are DC-projective.
Now assume that n > 1. Set A = Ker(G0 → M), then DC-pdR(A) ≤ n − 1.
By the induction hypothesis, for any integer k with 2 ≤ k ≤ n, there is an exact
sequence 0 → Pn → · · · → P1 → A → 0 such that Pi is DC-projective if 1 ≤ i < k
and Pj is C-projective if j ≥ k. Therefore, there is an exact sequence 0 → Pn →
· · · → P1 → G0 → M → 0. Set B = Ker(P1 → G0). For the exact sequence
0 → B → P1 → G0 → M → 0, by Lemma 2.16, there is an exact sequence 0 →
B → P ′1 → G′0 → M → 0 with P ′1 C-projective and G′0 DC-projective. Therefore,
we get the wanted exact sequence 0 → Pn → · · · → P2 → P ′1 → G′0 → M → 0.

Let F be a class of R-modules. A morphism ϕ : F → M of A is called an
F-precover of M if F ∈ F and Hom(F ′, F ) → Hom(F ′, M) → 0 is exact for
all F ′ ∈ F . ϕ is called an epic F-precover of M if it is an F-precover and is an
epimorphism. If every R-module admits an (epic) F-precover, then we say F is an



68 Chaoling Huang, Peihua Zhong

(epic) precovering class. M is said to have a special F-precover if there is an exact
sequence

0 −→ C −→ F −→ M −→ 0

with F ∈ F and Ext1(F , C) = 0. It is clear that M has an epic F-precover if it
has a special F-precover. For more details about precovers, readers can refer to [5,
6, 16].

The authors in [14, Theorem 2.2] proved the following result: If M is an
R-module with D-pdR(M) < ∞, then M admits a special D-projective precover
ϕ : G ³ M where pdR(Kerϕ) = n − 1 if n > 0 and Kerϕ = 0 if n = 0. We can
use the above theorem to generalize it to the below form,

Corollary 2.14. If M is an R-module with DC-pdR(M) = n < ∞, then M
admits a special DC-projective precover ϕ : G ³ M where PC-pdR(Kerϕ) ≤ n− 1
if n > 0 and Kerϕ = 0 if n = 0.

Proof. If n = 0, it is trivial. Now assume that n > 0. By Theorem 2.13,
there is an exact sequence 0 → Pn → · · · → P1 → G → M → 0 such that G is
DC-projective and any Pj is PC-projective. Then the remainder is trivial.

Remark 2.15. In [18, Definition 3.1], the author called a bounded GC-
projective resolution of R-module M a strict GC-projective resolution if there is an
exact sequence

0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0

with all Gi C-projective for i ≥ 1 and G0 GC-projective. And it is proved that
every R-module M of finite GC-projective dimension always admits a strict GC-
projective resolution [18, Thereom 3.6]. Using the different method (Theorem 2.13),
we can prove that the R-module M of finite DC-projective dimension has the similar
property.

Corollary 2.16. (1) Let 0 → G1 → G → M → 0 be a short exact sequence
with G1 and G DC-projective and Ext1R(M, F ) = 0 for any C-flat R-module F .
Then M is DC-projective.

(2) If M is an R-module with DC-pdR(M) = n, then there exists an exact
sequence 0 → M → H → N → 0 with PC-pdR(H) ≤ n and N DC-projective.

Proof. (1) Since DC-pdR(M) ≤ 1, by Corollary 2.14, there is an exact sequence
0 → K → G → M → 0 where G is DC-projective and K is C-projective. By the
hypothesis Ext1R(M, K) = 0, the exact sequence 0 → K → G → M → 0 is split
and by Proposition 2.10, M is DC-projective.

(2) If n = 0, by the definition of DC-projective R-modules, there is an exact
sequence 0 → M → C ⊗R P → K → 0 where P is projective and K is DC-
projective. If n ≥ 1, by Corollary 2.14, there is an exact sequence 0 → K → G →
M → 0 with PC-pdR(K) ≤ n − 1. Since G is DC-projective, there is 0 → G →
C ⊗R Q → N → 0 where Q is projective and N is DC-projective. Consider the
following pushout diagram:
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Then PC-pdR(H) ≤ n.

Theorem 2.17. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,

(1) DC-pdR(M) ≤ n;
(2) For some integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →

· · · → A1 → A0 → M → 0 such that Ak is DC-projective and other Ai projective
or C-projective.

(3) For any integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →
· · · → A1 → A0 → M → 0 such that Ak is DC-projective and other Ai projective
or C-projective.

Proof. (3) ⇒ (2) and (2) ⇒ (1): It is clear.
(1) ⇒ (3): Let 0 → Gn → · · · → G1 → G0 → M → 0 be an exact sequence

with all Gi DC-projective. We prove (3) by induction on n. If n = 1, by Lemma
2.12, the assertion is true. Now we assume that n ≥ 2. Set K = Ker(G1 → G0).
For the exact sequence 0 → K → G1 → G0 → M → 0, by Lemma 2.12, we get
two exact sequences 0 → K → G′1 → P0 → M → 0 with G′1 DC-projective and P0

projective and 0 → Gn → · · · → G2 → G′1 → P0 → M → 0. Set N = Ker(P0 →
M), then DC-pdR(N) ≤ n− 1. By the induction hypothesis, for any integer k with
1 ≤ k ≤ n, there is an exact sequence 0 → An → · · · → A1 → N → 0 such that Ak

is DC-projective and other Ai are projective or C-projective. Therefore, we get the
wanted exact sequence 0 → An → · · · → A1 → P0 → M → 0. Now we prove the
case k = 0. Set A = Ker(G0 → M), then DC-pdR(A) ≤ n − 1. By the induction
hypothesis, there is an exact sequence 0 → Bn → · · · → B1 → A → 0 such that
B1 is DC-projective and other Bi projective or C-projective. So we have an exact
sequence 0 → Bn → · · · → B1 → G0 → M → 0. Set B = Ker(B1 → G0). For the
exact sequence 0 → B → B1 → G0 → M → 0, by Lemma 2.12, we get an exact
sequence 0 → B → P ′′ → G → M → 0 with G DC-projective and P ′′ C-projective.
Hence the exact sequence 0 → Bn → · · · → B2 → P ′′ → G → M → 0 is wanted.

Let F be a class of R-modules. F⊥ will denote the right orthogonal class of
F , that is, F⊥ = {M | Ext1R(F, M) = 0, ∀F ∈ F}. Analogously, ⊥F = {M |
Ext1R(M, F ) = 0,∀F ∈ F}. A cotorsion theory is a pair of classes (F , C) of
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R-modules such that F⊥ = C and ⊥C = F . A cotorsion theory (F , C) is called
complete if every R-module has a special F-precover and a special C-preenvelope.
It is called hereditary if for any exact sequence 0 → F ′ → F → F ′′ → 0 with
F, F ′′ ∈ F implies that F ′ ∈ F . For more details about cotorsion theory, readers
can refer to [5, 6, 16]. Let glGCpd(R) = sup{GC-pdR(M) | ∀M ∈R M}. We
in [12, Theorem 5.1] proved that (GCP(R), GCP(R)⊥) is a complete hereditary
cotorsion theory if glGCpd(R) < ∞ and [12, Corollary 5.2] (GP(R), GP(R)⊥) is
a complete hereditary cotorsion theory if glGpd(R) < ∞. Similarly, we prove that
(DCP(R), DCP(R)⊥) is a complete hereditary cotorsion theory if glDCpd(R) < ∞,
where glDCpd(R) = sup{DC-pdR(M) | ∀M ∈R M}.

Theorem 2.18. Assume that glDCpd(R) < ∞. Then (DCP(R), DCP(R)⊥)
is a complete hereditary cotorsion theory.

Proof. We begin with proving that ⊥(DCP(R)⊥) = DCP(R). It is clear that
⊥(DCP(R)⊥) ⊇ DCP(R) because Ext1R(A, B) = 0 for any A ∈ DCP(R) and
B ∈ DCP⊥ by definition. By Corollary 2.14, there is an exact sequence 0 → K →
G → M → 0 such that G is DC-projective and PC-pd(K) < ∞. By Proposition
2.8, K ∈ DCP(R)⊥. So Ext1R(M, K) = 0, and then 0 → K → G → M → 0 is
split, i.e., M is a direct summand of G. By Proposition 2.10, M is DC-projective.

By Proposition 2.10, DCP(R) is projectively resolving, DCP(R)⊥ is in-
jectively resolving, so (DCP(R), DCP(R)⊥) is hereditary. By Corollary 2.14,
(DCP(R), DCP(R)⊥) is complete.

Corollary 2.19. If glDpd(R) = sup{DpdR(M) | ∀M ∈R M} < ∞,
(DP(R), DP(R)⊥) is a complete hereditary cotorsion theory.

Proposition 2.20. (1) ExtnR(G, M) = 0 for all n ≥ 1, G ∈ DCP(R) and
M ∈ DCP(R)⊥.

(2) PC = DCP(R)
⋂DCP(R)⊥.

(3) If M be an R-module with PC-pdR(M) < ∞, then PC-pdR(M) = DC-
pdR(M).

(4) If M be an R-module with DC-pdR(M) < ∞, then GC-pdR(M) = DC-
pdR(M).

(5) If M be an R-module with pdR(M) < ∞, then pdR(M) = DC-pdR(M).

Proof. (1) For any DC-projective R-module G, there is an exact sequence

0 → G′ → Pn−1 → · · · → P1 → P0 → G → 0

where all Pi are projective and G′ is DC-projective. So for any M ∈ DCP(R)⊥,
ExtnR(G, M) = Ext1R(G′, M) = 0.

(2) By Propositions 2.7 and 2.8, PC ⊆ DCP(R)
⋂DCP(R)⊥. Let M ∈

DCP(R)
⋂DCP⊥. There is a short exact sequence 0 → M → C ⊗R P → M ′ → 0

where P is projective and M ′ is DC-projective. So Ext1R(M ′, M) = 0 and
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0 → M → C ⊗R P → M ′ → 0 is split. Therefore M ∈ PC and PC ⊇
DCP(R)

⋂DCP(R)⊥.
(3) It is clear that PC-pdR(M) ≥ DC-pdR(M), since every C-projective R-

module is DC-projective. Now we prove that PC-pdR(M) ≤ DC-pdR(M). For
doing this we assume that DC-pdR(M) = n < ∞. Since PC is precovering [13,
Proposition 5.10] and projectively resolving [13, Corollary 6.8], there is an exact
sequence

0 → K → C ⊗R Pn−1 → · · · → C ⊗R P1 → C ⊗R P0 → M → 0.

with K DC-projective. Since M be an R-module with PC-pdR(M) < ∞, PC-
pdR(K) < ∞. By (2), K is C-projective.

(4) It is clear that GC-pdR(M) ≤ DC-pdR(M), since every DC-projective
R-module is GC-projective. Now we assume that DC-pdR(M) = n < ∞. By
[18, Proposition 2.12], it is sufficient to find a projective R-module P such that
ExtnR(M, C ⊗R P ) 6= 0. By Proposition 2.11, there is a flat R-module F such
that ExtnR(M, C ⊗R F ) 6= 0. Since PC is precovering [13, Proposition 5.10] and
FC is projectively resolving [13, Corollary 6.8], there is a short exact sequence
0 → K → C ⊗R P → C ⊗R F → 0 where K is C-flat. By [15, Theorem 7.3],
there is a long exact sequence · · · → ExtnR(M, C ⊗R P ) → ExtnR(M, C ⊗R F ) →
Extn+1

R (M, K) → · · · , where Extn+1
R (M, K) = 0. So ExtnR(M, C ⊗R P ) 6= 0.

(5) It is clear that GC-pdR(M) ≤ DC-pdR(M) ≤ pdR(M). It is well-known
that pdR(M) = GC-pdR(M) if pdR(M) < ∞. So pdR(M) = DC-pdR(M).

We round off this paper with the following questions:
(1) Recall that the author in [14, Theorem 3.1] proved that for any ring R,

r.glGdim(R) = r.glDdim(R). So we conjecture that glGCpd(R) = glDCpd(R), is
it true?

(2) Whether is there a GC-projective R-module which is not DC-projective?

Acknowledgement. The authors wish to express their gratitude to the
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