TOPOLOGY GENERATED BY CLUSTER SYSTEMS

R. Thangamariappan and V. Renukadevi

Abstract. In this paper, we prove that (X, τ) and the new topology $(X, \tau_{\mathcal{E}})$ have the same semiregularization if \mathcal{E} is a π -network in X with the property \mathcal{H} . Also, we discuss the properties of \mathcal{E} , $\tau_{\mathcal{E}}$ and study generalized Volterra spaces and discuss their properties. We show that $\tau_{\mathcal{E}}$ coincides with the *-topology for a particular \mathcal{E} .

1. Introduction

An ideal \mathcal{J} on a nonempty set X is a collection of subsets of X which satisfies that (i) $A \in \mathcal{J}$ and $B \subset A$ implies $B \in \mathcal{J}$ and (ii) $A \in \mathcal{J}$ and $B \in \mathcal{J}$ implies $A \cup B \in \mathcal{J}$. Given a topological space (X, τ) with an ideal \mathcal{J} on X and if 2^X is the set of all subsets of X, a set operator $(.)^*: 2^X \to 2^X$, called a *local function* [7] of A with respect to \mathcal{J} and τ , is defined as follows: for $A \subset X$, $A^*(\mathcal{J}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{J}\}$ for every $U \in \tau(x)$, where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts concerning the local functions [6, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^{\star}(A)$ for a topology $\tau^{\star}(\tau, \mathcal{J})$, called the *-topology, finer than τ , is defined by $cl^*(A) = A \cup A^*(\mathcal{J}, \tau)$ [14]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{J},\tau)$ and τ^* or $\tau^*(\mathcal{J})$ for $\tau^*(\mathcal{J},\tau)$. An ideal \mathcal{I} is said to be *codense* [6] if $\tau \cap \mathcal{I} = \{\emptyset\}$. By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) . A subset A of a space is said to be regular open (resp. α -open [11], semiopen [8], preopen [9]) if A = int(cl(A)) (resp. $A \subset int(cl(int(A))), A \subset cl(int(A)), A \subset int(cl(A)))$. The family of all preopen (resp. semiopen) sets in (X,τ) is denoted by PO(X)(resp. SO(X)). The regular open sets in (X, τ) form a basis for a new topology on X, known as semiregularization of τ , denoted τ_s . The topology τ_s is coarser than τ , and τ is said to be *semiregular* if $\tau = \tau_s$. The family of all α -open sets in (X, τ) is denoted by τ^{α} . τ^{α} is a topology on X which is finer than τ . The complement of an α -open set is called an α -closed set. The closure and interior of A in (X, τ^{α}) are

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54A10, 54F65, 54E99

Keywords and phrases: π -network; ideal; \star -topology; semiregularization; submaximal and Volterra spaces.

denoted by $cl_{\alpha}(A)$ and $int_{\alpha}(A)$, respectively. If \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) , then $\tau^*(\mathcal{N}) = \tau^{\alpha}$ and $cl_{\alpha}(A) = A \cup A^*(\mathcal{N})$ [6]. A topological space (X, τ) is said to be *submaximal space* [2] if every dense set is open. A space X is said to be *resolvable* [2] if X is union of two disjoint dense subsets of X.

A nonempty collection \mathcal{A} of nonempty subsets of a set X is called a grill [3] if $A \in \mathcal{A}$ and $A \subset B \subset X$ implies $B \in \mathcal{A}$, and $A, B \subset X$ and $A \cup B \in \mathcal{A}$ implies either $A \in \mathcal{A}$ or $B \in \mathcal{A}$. Given a space (X, τ) with a grill \mathcal{A} on X, a set operator $\Phi_{\mathcal{A}} : 2^X \to 2^X$ [12] with respect to τ and \mathcal{A} is defined as follows: for $A \subset X, \Phi_{\mathcal{A}}(A) = \{x \in X \mid U \cap A \in \mathcal{A} \text{ for every } U \in \tau(x)\}$. The operator $\psi : 2^X \to 2^X$ defined by $\psi(A) = A \cup \Phi_{\mathcal{A}}(A)$ satisfies Kuratowski's closure axioms [12, Theorem 2.4] and $\tau_{\mathcal{A}} = \{U \subset X \mid \psi(X - U) = X - U\}$ is the unique topology on X induced by \mathcal{A} . In [13], Renukadevi proved that \mathcal{I} is a proper ideal on X if and only if $2^X - \mathcal{I}$ is a grill on X and \mathcal{A} is a grill on X if and only if $\mathcal{I} = 2^X - \mathcal{A}$ is an ideal on X. Also, she proved that $A^*(\mathcal{I}) = \Phi_{\mathcal{A}}(A)$ for every subset A of X.

Any nonempty system $\mathcal{E} \subset 2^X - \{\emptyset\}$ will be called a *cluster system* in X. If any nonempty open subset of a nonempty open set G contains a set from \mathcal{E} , then \mathcal{E} is called a π -network [10] in G. For a cluster system \mathcal{E} and a subset A of a space $X, \mathcal{E}(A)$ is the set of all points $x \in X$ such that for any neighborhood U of x, the intersection $U \cap A$ contains a set from \mathcal{E} .

In 1993, the class of Volterra spaces was introduced by Gauld and Piotrowski [5]. A topological space (X, τ) is said to be *Volterra* [5] (resp. weakly Volterra [5]) if the intersection of any two dense G_{δ} -sets in X is dense (resp. nonempty). A subset A of X is called weakly \mathcal{E} -Volterra space [10] if for any two sets A_1 and A_2 such that $\mathcal{E}(A) \subset \mathcal{E}(A_i)$, i=1,2, $A_1 \cap A_2$ is nonempty. Moreover, if $A \neq \emptyset$ and $cl(A_1 \cap A_2) \supset A$, that is, $A_1 \cap A_2$ is dense in A, then A is called \mathcal{E} -Volterra [10]. The following lemmas will be useful in the sequel.

LEMMA 1.1. [4] Let (X, τ) be a space. Then the following hold.

- (a) $PO(X, \tau) = PO(X, \tau^{\alpha}).$
- (b) If X is submaximal, $PO(X, \tau) = \tau$.

LEMMA 1.2. [4] For a resolvable space (X, τ) , the following are equivalent.

- (a) $PO(X, \tau)$ is a topology.
- (b) Every subset of X is preopen.
- (c) Every open set is closed.

LEMMA 1.3. [6, Lemma 6.3] Let τ and σ be topologies on X and $\tau \subseteq \sigma$. If $cl_{\tau}(V) = cl_{\sigma}(V)$ for every $V \in \sigma$, then $\tau_s = \sigma_s$.

LEMMA 1.4. [1] If (X, τ) is submaximal, then X remains submaximal when endowed with any finer topology.

LEMMA 1.5. [10, Remark 1 (2)] Let (X, τ) be a space and G be a nonempty open subset of X. Then \mathcal{E} is a π -network in G if and only if $\mathcal{E}(G) = \mathcal{E}(cl(G)) = cl(G)$. LEMMA 1.6. [10, Theorem 2] Let (X, τ) be a space with a cluster system \mathcal{E} . If \mathcal{E} is a π -network in an open set X_0 , then X_0 is \mathcal{E} -Volterra if and only if any nonempty open subset of X_0 is weakly \mathcal{E} -Volterra.

2. Properties of \mathcal{E} -operator

In this section, we discuss the properties of $\mathcal{E}(A)$. We have $\mathcal{E}(X) = X$ if and only if \mathcal{E} is a π -network in X. The following Theorem 2.1 gives the properties of \mathcal{E} and Example 2.2 below shows that it can be $\mathcal{E}(X) \neq X$ even if \mathcal{E} is a π -network in a proper open subset of X.

THEOREM 2.1. Let (X, τ) be a space with cluster systems \mathcal{E} and \mathcal{E}_1 on X, and let A and B be subsets of X. Then the following hold.

(a) $\mathcal{E}(\emptyset) = \emptyset$.

(b) $\mathcal{E}(\mathcal{E}(A)) \subseteq \mathcal{E}(A)$.

(c) If $\mathcal{E} \subseteq \mathcal{E}_1$, then $\mathcal{E}(A) \subseteq \mathcal{E}_1(A)$.

(d) $\mathcal{E}(A)$ is closed, $\mathcal{E}(A) \subset cl(A)$ and if $A \subset B$, then $\mathcal{E}(A) \subset \mathcal{E}(B)$ [10, Remark 1(1)].

(e) If
$$U \in \tau$$
, then $U \cap \mathcal{E}(A) = U \cap \mathcal{E}(U \cap A) \subseteq \mathcal{E}(U \cap A)$.

Proof. It is enough to prove (e). $U \cap A \subset A$ implies $\mathcal{E}(U \cap A) \subset \mathcal{E}(A)$ which implies that $U \cap \mathcal{E}(U \cap A) \subset U \cap \mathcal{E}(A)$. If $x \in U \cap \mathcal{E}(A)$, then $x \in U$ and for every $U_x \in \tau(x), U_x \cap A \supset E$ for some $E \in \mathcal{E}$. Take $W = U \cap U_x$. Then $W \in \tau(x)$ with $W \cap A \supset E$ so that $U_x \cap (U \cap A) \supset E$. Therefore, $x \in U \cap \mathcal{E}(U \cap A)$ and so $U \cap \mathcal{E}(A) = U \cap \mathcal{E}(U \cap A)$.

EXAMPLE 2.2. Consider \mathbb{R} with the usual topology τ and $\mathcal{E} = \{G \subset (0,1) \mid G \in \tau - \{\emptyset\}\}$. Clearly, \mathcal{E} is a π -network in (0,1). But $\mathcal{E}(\mathbb{R}) = [0,1] \neq \mathbb{R}$.

THEOREM 2.3. Let (X, τ) be a space and G be open in X. If \mathcal{E} is a π -network in G and $\mathcal{E}(G) \subset \mathcal{E}(A)$ for $A \subset X$, then $\mathcal{E}(G) = \mathcal{E}(A \cap G)$.

Proof. Since $A \cap G \subset G$, $\mathcal{E}(A \cap G) \subset \mathcal{E}(G)$ by Theorem 2.1(d). Let $x \in \mathcal{E}(G)$. Since \mathcal{E} is a π -network in G, $\mathcal{E}(G) = cl(G) \subset \mathcal{E}(A)$, by Lemma 1.5. Therefore, for any $U \in \tau(x)$, $U \cap G$ is a nonempty subset of $\mathcal{E}(A)$, hence there is $E \in \mathcal{E}$ such that $E \subset U \cap G \cap A$. So $x \in \mathcal{E}(A \cap G)$. Thus, $\mathcal{E}(A \cap G) \supset \mathcal{E}(G)$ and so $\mathcal{E}(A \cap G) = \mathcal{E}(G)$.

Two cluster systems \mathcal{E}_1 and \mathcal{E}_2 are said to be *equivalent* if $\mathcal{E}_1(A) = \mathcal{E}_2(A)$ for every subset A of X. For example, if for any $E_1 \in \mathcal{E}_1$, there is $E_2 \in \mathcal{E}_2$ such that $E_2 \subset E_1$ and vice versa, then the cluster systems \mathcal{E}_1 and \mathcal{E}_2 are equivalent. Let $\mathcal{E}_{\pi} = \{\mathcal{E} \mid \mathcal{E} \text{ is a } \pi\text{-network in } X \text{ and every element of } \mathcal{E} \text{ has nonempty interior} \}.$ If $\gamma = \{G \mid G \in \tau - \{\emptyset\}\}$, then $\gamma \in \mathcal{E}_{\pi}$ is clear. But there are equivalent cluster systems different from γ in \mathcal{E}_{π} as given in the following Example 2.4.

EXAMPLE 2.4. Consider \mathbb{R} with the usual topology. Let $\mathcal{E}_1, \mathcal{E}_2$ and \mathcal{E}_3 be the cluster systems in \mathbb{R} given by $\mathcal{E}_1 = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}, \mathcal{E}_2 = \{[a, b) \mid a, b \in \mathbb{R} \text{ and } a < b\}$ and $\mathcal{E}_3 = \{[a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$. Then for $i = 1, 2, 3, \mathcal{E}_i \in \mathcal{E}_\pi$ and $\mathcal{E}_i \neq \gamma$. But for $i \neq j$ and $i, j \in \{1, 2, 3\}$, each \mathcal{E}_i is equivalent with \mathcal{E}_j .

THEOREM 2.5. Let (X, τ) be a space and $A \subset X$. If \mathcal{E} is a π -network in X, then $cl(int(A)) \subset \mathcal{E}(A)$. Equality holds, if every element of \mathcal{E} has nonempty interior.

Proof. Sice \mathcal{E} is a π -network in X, $cl(int(A)) = \mathcal{E}(int(A)) \subset \mathcal{E}(A)$. Assume that $x \in \mathcal{E}(A)$. Then for every $U_x \in \tau(x)$, there exists $E \in \mathcal{E}$ such that $U_x \cap A \supset E$. Since $E \subset U_x \cap A$, $int(E) \subset U_x \cap int(A)$ and so $U_x \cap int(A) \neq \emptyset$, by hypothesis. Thus, $x \in cl(int(A))$ so that $\mathcal{E}(A) \subset cl(int(A))$. Hence $\mathcal{E}(A) = cl(int(A))$.

The following Example 2.6 shows that the condition "every element of \mathcal{E} has nonempty interior" is necessary for equality in Theorem 2.5.

EXAMPLE 2.6. Consider $X = [0, \infty)$, $\tau = \{(a, \infty) \mid a \in X\} \cup \{X, \emptyset\}$ and $\mathcal{E} = \{(a, b) \mid a, b \in X\}$. Since every nonempty open subset of X has many element of \mathcal{E} , \mathcal{E} is a π -network in X. Also, $int(E) = \emptyset$ for every $E \in \mathcal{E}$. If A = [1, 3), then $\mathcal{E}(A) = [0, 3)$ and $cl(int(A)) = \emptyset$. Hence $\mathcal{E}(A) \notin cl(intA)$.

COROLLARY 2.7. Let (X, τ) be a space and $A \subset X$. If \mathcal{E} is a π -network in X with $int(E) \neq \emptyset$ for every $E \in \mathcal{E}$, then $\mathcal{E}(\mathcal{E}(A)) = \mathcal{E}(A)$.

Proof. By Theorem 2.5, $\mathcal{E}(\mathcal{E}(A)) = \mathcal{E}(cl(int(A))) = cl(int(cl(int(A)))) = cl(int(A)) = \mathcal{E}(A)$.

COROLLARY 2.8. Let (X, τ) be a space and $A \subset X$. If \mathcal{E} is a π -network in X, then the following hold.

- (a) If $\mathcal{E} \subset SO(X)$, then $\mathcal{E}(A) = cl(int(A))$.
- (b) $A \subset \mathcal{E}(A)$ for every $A \in SO(X)$.

We say that a cluster system \mathcal{E} on X satisfies the property \mathcal{I} , whenever $E_1, E_2 \in \mathcal{E}$ implies that $E_1 \cap E_2 \in \mathcal{E}$. A cluster system \mathcal{E} is said to satisfy the property \mathcal{H} if for every $U_x \in \tau(x)$ and $A, B \subset X$ such that $U_x \cap (A \cup B) \supset E$ implies $U_x \cap A \supset E_1$ or $U_x \cap B \supset E_2$ for some E_1 or E_2 in \mathcal{E} . If we consider a cluster system \mathcal{E} with the property \mathcal{H} , then a system \mathcal{E}' of all supersets of all sets from \mathcal{E} is equivalent with \mathcal{E} and $2^X - \mathcal{E}'$ is an ideal. The following Example 2.9 shows that a cluster system with \mathcal{H} -property need not be a grill.

EXAMPLE 2.9. (a) Consider \mathbb{R} with the usual topology. If $\mathcal{E} = \{\{r\} : r \in \mathbb{Q}\}$, then \mathcal{E} is a cluster system in \mathbb{R} . Also, \mathcal{E} is a π -network in \mathbb{R} satisfying the property \mathcal{H} . But \mathcal{E} is not a grill.

(b) In any topological space (X, τ) with a proper ideal \mathfrak{I} on X, $\mathfrak{I} - \{\emptyset\}$ is a cluster system satisfying the property \mathcal{H} . But $\mathfrak{I} - \{\emptyset\}$ is not a grill.

THEOREM 2.10. Let (X, τ) be a space and $A_1, A_2 \subset X$. If \mathcal{E} is a cluster system with the property \mathcal{I} , then $\mathcal{E}(A_1 \cap A_2) = \mathcal{E}(A_1) \cap \mathcal{E}(A_2)$.

Proof. Since $A_1 \cap A_2$ is contained in both A_1 and A_2 , $\mathcal{E}(A_1 \cap A_2) \subset \mathcal{E}(A_1) \cap \mathcal{E}(A_2)$. Let $x \in \mathcal{E}(A_1) \cap \mathcal{E}(A_2)$. Then for every $U_x \in \tau(x)$, there exist $E_1, E_2 \in \mathcal{E}$ such that $U_x \cap A_1 \supset E_1$ and $U_x \cap A_2 \supset E_2$. Now $U_x \cap A_1 \supset E_1$ and $U_x \cap A_2 \supset E_2$

implies that $(U_x \cap A_1) \cap (U_x \cap A_2) \supset E_1 \cap E_2$ which implies that $U_x \cap (A_1 \cap A_2) \supset E_3$ where $E_3 = E_1 \cap E_2 \in \mathcal{E}$. Hence $x \in \mathcal{E}(A_1 \cap A_2)$. Therefore, $\mathcal{E}(A_1 \cap A_2) = \mathcal{E}(A_1) \cap \mathcal{E}(A_2)$.

THEOREM 2.11. Let (X, τ) be a space and $A, B \subset X$. If \mathcal{E} is a cluster system with the property \mathcal{H} , then the following hold.

- (a) $\mathcal{E}(A \cup B) = \mathcal{E}(A) \cup \mathcal{E}(B)$.
- (b) $\mathcal{E}(A) \mathcal{E}(B) = \mathcal{E}(A B) \mathcal{E}(B) \subset \mathcal{E}(A B).$

Proof. (a) By Theorem 2.1(d), $\mathcal{E}(A \cup B) \supset \mathcal{E}(A) \cup \mathcal{E}(B)$. For the reverse inclusion, if $x \in \mathcal{E}(A \cup B)$, then for every $U_x \in \tau(x)$, $U_x \cap (A \cup B) \supset E$ for some $E \in \mathcal{E}$. By hypothesis, there exist $E_1, E_2 \in \mathcal{E}$ such that $U_x \cap A \supset E_1$ or $U_x \cap B \supset E_2$ and so $x \in \mathcal{E}(A)$ or $x \in \mathcal{E}(B)$ so that $x \in \mathcal{E}(A) \cup \mathcal{E}(B)$. Hence $\mathcal{E}(A \cup B) = \mathcal{E}(A) \cup \mathcal{E}(B)$.

(b) Clearly, $\mathcal{E}(A - B) - \mathcal{E}(B) \subset \mathcal{E}(A) - \mathcal{E}(B)$. Let $x \in \mathcal{E}(A) - \mathcal{E}(B)$. Then $x \in \mathcal{E}(A)$ implies that for any neighborhood U_x of x, $U_x \cap A$ contains a set from \mathcal{E} and $x \notin \mathcal{E}(B)$ implies that there exists a neighborhood V_x of x such that $V_x \cap B$ does not contain any element of \mathcal{E} . If $W_x = U_x \cap V_x$, then $W_x \cap A \supset E$ for some $E \in \mathcal{E}$ and $W_x \cap B \not\supseteq E$ for every $E \in \mathcal{E}$. By the \mathcal{H} property of \mathcal{E} and $E \subset W_x \cap ((A - B) \cup B)$, there exists $E_1 \in \mathcal{E}$ such that $E_1 \subset W_x \cap (A - B)$. Therefore, $E_1 \subset U_x \cap (A - B)$. Hence $x \in \mathcal{E}(A - B)$ and so $x \in \mathcal{E}(A - B) - \mathcal{E}(B)$. Thus, $\mathcal{E}(A - B) - \mathcal{E}(B) \supset \mathcal{E}(A) - \mathcal{E}(B)$.

The following Example 2.12 shows that the property \mathcal{H} on \mathcal{E} cannot be dropped in the above Theorem 2.11.

EXAMPLE 2.12. Consider $X = [0, \infty), \tau = \{(a, \infty) \mid a \in X\} \cup \{X, \emptyset\}$ and $\mathcal{E} = \{(n, n + 1) \mid n \in \mathbb{W}\}$ where $\mathbb{W} = \mathbb{N} \cup \{0\}$. Clearly, \mathcal{E} does not satisfy the property \mathcal{H} .

(a) If $A = (2,3) \cup [3.5,4.5]$ and $B = (2,3) \cup [4.5,5)$, then $A \cup B = (2,3) \cup [3.5,5]$. Also, $\mathcal{E}(A) = [0,2] = \mathcal{E}(B)$ and $\mathcal{E}(A \cup B) = [0,4]$. Therefore, $\mathcal{E}(A) \cup \mathcal{E}(B) \neq \mathcal{E}(A \cup B)$.

(b) If A = [2, 3.5] and B = [1, 2.5], then A - B = (2.5, 3.5]. Also, $\mathcal{E}(A) = [0, 2]$, $\mathcal{E}(B) = [0, 1]$, $\mathcal{E}(A) - \mathcal{E}(B) = (1, 2]$ and $\mathcal{E}(A - B) = \emptyset$. Therefore, $\mathcal{E}(A - B) - \mathcal{E}(B) \not\supseteq \mathcal{E}(A) - \mathcal{E}(B)$.

THEOREM 2.13. Let (X, τ) be a space and $A \subset X$. If \mathcal{E} is a cluster system with the property that every nonempty subset of element of \mathcal{E} is in \mathcal{E} , then $\mathcal{E}(A) = cl(A)$ for $A \in \mathcal{E}$.

Proof. By Theorem 2.1(d), $\mathcal{E}(A) \subset cl(A)$. Let $x \in cl(A)$. Then for every $U_x \in \tau(x), U_x \cap A \neq \emptyset$. Since $A \in \mathcal{E}$ every nonempty subset of A is also in \mathcal{E} implies that $U_x \cap A \in \mathcal{E}$ and so $x \in \mathcal{E}(A)$. Hence $cl(A) \subset \mathcal{E}(A)$ which completes the proof.

The following Example 2.14 shows that the property that every nonempty subset of element of \mathcal{E} is also in \mathcal{E} , cannot be dropped in Theorem 2.13.

EXAMPLE 2.14. Consider R with the usual topology with a cluster system $\mathcal{E} = \{(a, b) \mid a, b \in \mathbb{Z}\}$ where \mathbb{Z} is the set of all integers and a < b. If A = (1, 2), then $\mathcal{E}(A) = \emptyset$ and cl(A) = [1, 2].

3. E-topology and its properties

Throughout this section, we consider the cluster system with the property \mathcal{H} . By Theorem 2.1 and Theorem 2.11, we have $cl_{\mathcal{E}}: 2^X \to 2^X$ defined by $cl_{\mathcal{E}}(A) = A \cup \mathcal{E}(A)$ is a Kuratowski closure operator on 2^X . We will denote by $\tau_{\mathcal{E}}$ the topology generated by $cl_{\mathcal{E}}$, called \mathcal{E} -topology, where τ is the original topology on X, that is, $\tau_{\mathcal{E}} = \{A \subset X \mid cl_{\mathcal{E}}(X - A) = X - A\}$. If $\mathcal{E} = 2^X - \{\emptyset\}$ or $\mathcal{E} = \{\{x\} \mid \text{for every } x \in X\}$, then $\mathcal{E}(A) = cl(A)$. Hence in this case, $cl_{\mathcal{E}}(A) = cl(A)$ and $\tau_{\mathcal{E}} = \tau$.

We observe that if \mathcal{E}_1 and \mathcal{E}_2 are cluster systems on X with the property \mathcal{H} , then $\mathcal{E}_1 \vee \mathcal{E}_2 = \{E_1 \cup E_2 \mid E_1 \in \mathcal{E}_1 \text{ and } E_2 \in \mathcal{E}_2\}, \mathcal{E}_1 \cup \mathcal{E}_2 = \{E \mid E \in \mathcal{E}_1 \text{ or } E \in \mathcal{E}_2\}$ are also cluster systems on X and $\mathcal{E}_1 \cup \mathcal{E}_2$ satisfies the property \mathcal{H} . But $\mathcal{E}_1 \vee \mathcal{E}_2$ need not satisfy the property \mathcal{H} as shown by the following Example 3.1. Corollary 3.3 below follows from Theorem 2.1(c) and Theorem 3.2.

EXAMPLE 3.1. Consider the topological space (X, τ) where $X = \{a, b\}$ and $\tau = \{\emptyset, X\}$. Let $\mathcal{E}_1 = \{\{a\}\}$ and $\mathcal{E}_2 = \{\{b\}\}$. Then $\mathcal{E}_1 \lor \mathcal{E}_2 = \{\{a, b\}\}$. If $A = \{a\}, B = \{b\}$ and $E = \{a, b\}$, then $E \subset X \cap (A \cup B) = X$, but $X \cap A$ and $X \cap B$ do not contain a set from $\mathcal{E}_1 \lor \mathcal{E}_2$, respectively. Thus, $\mathcal{E}_1 \lor \mathcal{E}_2$ does not satisfy the property \mathcal{H} .

THEOREM 3.2. Let (X, τ) be a space with two cluster systems \mathcal{E}_1 and \mathcal{E}_2 in X. Then the following hold.

- (a) $(\mathcal{E}_1 \cup \mathcal{E}_2)(A) = \mathcal{E}_1(A) \cup \mathcal{E}_2(A).$
- (b) $(\mathcal{E}_1 \vee \mathcal{E}_2)(A) = \mathcal{E}_1(A) \cap \mathcal{E}_2(A).$

Proof. (a) is clear.

(b) $x \in (\mathcal{E}_1 \vee \mathcal{E}_2)(A)$ if and only if for every U_x , $U_x \cap A \supset E_1 \cup E_2$ for some $E_1 \in \mathcal{E}_1$ and $E_2 \in \mathcal{E}_2$ if and only if $U_x \cap A \supset E_1$ and $U_x \cap A \supset E_2$ if and only if $x \in \mathcal{E}_1(A)$ and $x \in \mathcal{E}_2(A)$ if and only if $x \in \mathcal{E}_1(A) \cap \mathcal{E}_2(A)$.

COROLLARY 3.3. Let (X, τ) be a space with two cluster systems \mathcal{E}_1 and \mathcal{E}_2 . Then the following hold.

- (a) $\mathcal{E}_1 \subseteq \mathcal{E}_2$ implies $\tau_{\mathcal{E}_2} \subseteq \tau_{\mathcal{E}_1}$.
- (b) $\tau_{\mathcal{E}_1 \cup \mathcal{E}_2} = \tau_{\mathcal{E}_1} \cap \tau_{\mathcal{E}_2}$.

In general, we do not have any cluster system \mathcal{E} which produces $\tau_{\mathcal{E}}$ = discrete topology. The following Theorem 3.4 shows that in a T_1 space, $\tau_{\mathcal{E}}$ can be discrete.

THEOREM 3.4. Let (X, τ) be a T_1 space. If $\mathcal{E} = \{\{x_0\}\}$ for some $x_0 \in X$, then $\tau_{\mathcal{E}}$ is discrete.

Proof. Let A be any nonempty subset of X. If $x_0 \notin A$, then for any open set $U, U \cap A$ contains no set from $\mathcal{E} = \{\{x_0\}\}$ and so $\mathcal{E}(A) = \emptyset$. If $x_0 \in A$, then for

any $U \in \tau(x_0)$, $U \cap A \supset \{x_0\}$ and so $x_0 \in \mathcal{E}(A)$. If $y \neq x_0$, then there exists a $U \in \tau(y)$ ($U = X - \{x_0\}$) such that $U \cap A$ contains no set from \mathcal{E} , so $y \notin \mathcal{E}(G)$ and $\mathcal{E}(G) = \{x_0\}$. Hence $\tau_{\mathcal{E}}$ is discrete.

REMARK 3.5. If (X, τ) is T_1 and $\{\{x_0\}\} = \mathcal{E}_1 \subset \mathcal{E}_2 \subset \mathcal{E}_3 = 2^X - \{\emptyset\}$ for some $x_0 \in X$, then by Corollary 3.3(a), we have $\tau = \tau_{\mathcal{E}_3} \subset \tau_{\mathcal{E}_2} \subset \tau_{\mathcal{E}_1} = \text{discrete topology.}$

If \mathcal{E} is a cluster system in X with the property \mathcal{H} , then the system \mathcal{E}' of all supersets of all sets from \mathcal{E} is equivalent with \mathcal{E} and $\mathcal{I} = 2^X - \mathcal{E}'$ is an ideal on X. Therefore, by Theorem 2.1 of [13], $\mathcal{E}(A) = A^*(\mathcal{I})$ and so $\tau_{\mathcal{E}} = \tau^*(\mathcal{I})$. The following Theorem 3.6 shows that \mathcal{I} is a codense ideal if and only if \mathcal{E} is a π -network.

THEOREM 3.6. Let (X, τ) be a topological space with a cluster system \mathcal{E} . If $\mathcal{I} = 2^X - \mathcal{E}'$, then \mathcal{E} is a π -network in X if and only if \mathcal{I} is codense.

Proof. Suppose that \mathcal{E} is a π -network in X. Let $\emptyset \neq A \in \tau \cap \mathcal{I}$. Then $A \in \tau$ and $A \in \mathcal{I}$. Since \mathcal{E} is a π -network, there exists $E \in \mathcal{E}$ such that $E \subset A$. Since \mathcal{I} is an ideal and $E \subset A$, $E \in \mathcal{I}$ which contradicts the fact that $E \in \mathcal{E}'$. Hence \mathcal{I} is codense. Converse follows from Theorem 2.2 of [13].

From Theorem 3.6 and the construction of \mathcal{E}' , we have the following Theorem 3.7 whose routine proof is omitted. Theorem 3.7(b) shows that (X, τ) and $(X, \tau_{\mathcal{E}})$ have the same semiregularizations if \mathcal{E} is a π -network in X. The proof of (c) and (d) follows from (b).

THEOREM 3.7. Let (X, τ) be a space and \mathcal{E} be a π -network in (X, τ) . Then the following hold.

- (a) $V \subset \mathcal{E}(V)$ for every $V \in \tau_{\mathcal{E}}$.
- (b) $\tau_s = (\tau_{\mathcal{E}})_s$.
- (c) Semiregular properties are shared by (X, τ) and (X, τ^*) .
- (d) If $(X, \tau_{\mathcal{E}})$ is semiregular, then $\tau = \tau_{\mathcal{E}}$.

Proof. (a) Observe that a subset A of X is $\tau_{\mathcal{E}}$ -closed if and only if $\mathcal{E}(A) \subset A$. Let $V \in \tau_{\mathcal{E}}$. Then X - V is $\tau_{\mathcal{E}}$ -closed implies that $\mathcal{E}(X - V) \subset X - V$ which implies $\mathcal{E}(X) - \mathcal{E}(V) \subset X - V$, by Theorem 2.11(b). Since \mathcal{E} is a π -network in $X, \mathcal{E}(X) = X$. Therefore, $X - \mathcal{E}(V) \subset X - V$ so that $V \subset \mathcal{E}(V)$.

THEOREM 3.8. Let (X, τ) be a space and \mathcal{E} be a π -network in X. Then $\tau_{\mathcal{E}} \subset PO(X, \tau)$.

Proof. Let $A \in \tau_{\mathcal{E}}$. Then $\mathcal{E}(X-A) \subset X-A$. By Theorem 2.5, $cl(int(X-A)) \subset X - A$ which implies $A \subset X - cl(int(X-A))$ so that $A \subset int(cl(A))$. Hence $A \in PO(X, \tau)$. Therefore, $\tau_{\mathcal{E}} \subset PO(X, \tau)$.

THEOREM 3.9. Let (X, τ) be a space and $\mathcal{E} \in \mathcal{E}_{\pi}$. Then the following hold. (a) $\tau_{\mathcal{E}} = PO(X)$.

(b) If X is submaximal, then $\tau = \tau^{\alpha} = \tau^*(\mathcal{N}) = \tau_{\mathcal{E}} = PO(X)$.

(c) If X is resolvable, then $\tau_{\mathcal{E}}$ is discrete.

Proof. (a) Let $A \in PO(X)$. Then $A \subset int(cl(A))$ implies that $X - int(cl(A)) \subset X - A$ which implies $cl(int(X - A)) \subset X - A$ and so $\mathcal{E}(X - A) \subset X - A$, by Theorem 2.5. Hence $A \in \tau_{\mathcal{E}}$ and so $\tau_{\mathcal{E}} \supset PO(X)$. Thus, $\tau_{\mathcal{E}} = PO(X)$, by Theorem 3.8.

- (b) follows from (a) and Lemma 1.1(b).
- (c) follows from (a) and Lemma 1.2. \blacksquare

From Example 2.6, we assure that the condition "every element of \mathcal{E} has nonempty interior" is necessary for equality in Theorem 3.9(a). Consider $X = [0, \infty), \tau = \{(a, \infty) \mid a \in X\} \cup \{X, \emptyset\}$ and $\mathcal{E} = \{(a, b) \mid a, b \in X\}$. Since every open subset of X contains many elements of \mathcal{E}, \mathcal{E} is a π -network in X and so $\tau_{\mathcal{E}} \subset PO(X, \tau)$, by Theorem 3.8. But $int(E) = \emptyset$ for every $E \in \mathcal{E}$. If $A = [1, \infty)$, then $\mathcal{E}(A) = X$. Since $\mathcal{E}(A) \subset cl(A), int(cl(A)) = X$ and so A is a preopen set in (X, τ) . Now X - A = [0, 1) and $\mathcal{E}(X - A) = [0, 1]$. But $cl_{\mathcal{E}}(X - A) = [0, 1] \neq X - A$. Therefore, $A \notin \tau_{\mathcal{E}}$. Hence $\tau_{\mathcal{E}} \neq PO(X, \tau)$.

Given a space (X, τ) and a proper ideal \mathcal{J} on X, we can form a cluster system \mathcal{E} which satisfies the property \mathcal{H} such that $\tau^* = \tau_{\mathcal{E}}$. For $A \subset X$ and $x \in X$, consider $\mathcal{J}(A, x) = \{B \subset U_x \cap A \mid U_x \cap A \in \mathcal{J}\}$ and $\mathcal{J}' = \bigcup_{A,x} \mathcal{J}(A, x), \mathcal{E}^{\mathcal{J}'} = 2^X - \mathcal{J}'$ and also $\mathcal{E}^{\mathcal{J}^c} = 2^X - \mathcal{J}$.

LEMMA 3.10. Let (X, τ) be any topological space with an ideal \mathcal{J} and $A \subset X$. Then the following hold.

- (a) $\mathcal{E}^{\mathcal{J}'}(A) = A^{\star}.$
- (b) $\mathcal{E}^{\mathcal{J}^c}(A) = A^{\star}.$

Proof. (a) Let $x \in A^*$. Then for every $U_x \in \tau(x)$, $U_x \cap A \notin \mathcal{J}$. Now $U_x \cap A \notin \mathcal{J}$ implies $U_x \cap A \in \mathcal{E}^{\mathcal{J}'}$ which implies $x \in \mathcal{E}^{\mathcal{J}'}(A)$ so that $A^* \subset \mathcal{E}^{\mathcal{J}'}(A)$. Again, $x \notin A^*$ implies that there exists $U_x \in \tau(x)$ such that $U_x \cap A \in \mathcal{J}$ so that every subset of $U_x \cap A$ is not in $\mathcal{E}^{\mathcal{J}'}$ and so $U_x \cap A \not\supseteq E$ for every $E \in \mathcal{E}$ which implies that $x \notin \mathcal{E}^{\mathcal{J}'}(A)$. Therefore, $A^* \supset \mathcal{E}^{\mathcal{J}'}(A)$. Hence $A^* = \mathcal{E}^{\mathcal{J}'}(A)$.

(b) If $x \in A^*$, then for every $U_x \in \tau(x)$, $U_x \cap A \notin \mathcal{J}$ and so $U_x \cap A \in \mathcal{E}^{\mathcal{J}^c}$ which implies that $x \in \mathcal{E}^{\mathcal{J}^c}(A)$. Therefore, $A^* \subset \mathcal{E}^{\mathcal{J}^c}(A)$. Let $x \notin A^*$. Then there exists $U_x \in \tau(x)$ such that $U_x \cap A \in \mathcal{J}$ so that every subset of $U_x \cap A$ is not in $\mathcal{E}^{\mathcal{J}^c}$ and so $U_x \cap A \not\supseteq E$ for every $E \in \mathcal{E}$ which implies that $x \notin \mathcal{E}^{\mathcal{J}^c}(A)$. Thus, $A^* \supset \mathcal{E}^{\mathcal{J}^c}(A)$. Hence $A^* = \mathcal{E}^{\mathcal{J}^c}(A)$.

LEMMA 3.11. Let (X, τ) be any topological space with an ideal \mathcal{J} on X. Then the cluster systems $\mathcal{E}^{\mathcal{J}'}$ and $\mathcal{E}^{\mathcal{J}^c}$ satisfy the property \mathcal{H} .

Proof. Suppose that for every $U \in \tau(x)$, $U \cap (A \cup B) \supset E$ for some $E \in \mathcal{E}^{\mathcal{J}'}$. Then $U \cap (A \cup B) \notin \mathcal{J}$ for every $U \in \tau(x)$ and so $x \in (A \cup B)^*$. Since $(A \cup B)^* = A^* \cup B^*$, $x \in A^*$ or $x \in B^*$. By Lemma 3.10, $x \in \mathcal{E}^{\mathcal{J}'}(A)$ or $x \in \mathcal{E}^{\mathcal{J}'}(B)$. Similar proof can be written for $\mathcal{E}^{\mathcal{J}^c}$. Hence the lemma is proved. THEOREM 3.12. Let (X, τ) be any topological space with an ideal \mathcal{J} on X. Then the three topologies τ^* , $\tau_{\mathcal{E}\mathcal{J}'}$ and $\tau_{\mathcal{E}\mathcal{J}^c}$ are the same. That is, $\tau^* = \tau_{\mathcal{E}\mathcal{J}'} = \tau_{\mathcal{E}\mathcal{J}^c}$.

4. Generalized Volterra spaces

In this section, we characterize \mathcal{E}' -Volterra spaces by choosing proper cluster system.

LEMMA 4.1. [10, Remark 1 (3)] Let (X, τ) be a space and \mathcal{E} be any cluster system on X. If A is weakly \mathcal{E} -Volterra and $\mathcal{E}(A) \subset \mathcal{E}(A_1)$ for any $A_1 \subset X$, then $A_1 \cap A \neq \emptyset$.

In Example 4.2 of [10], Matejdes proved that a subset A of X is weakly \mathcal{E} -Volterra if and only if A is cofinite. Also, he proved that there is no subset which is \mathcal{E} -Volterra. Here we show that weakly \mathcal{E} -Volterra need not imply \mathcal{E} -Volterra. Note that \mathcal{E} is not a π -network.

EXAMPLE 4.2. Let $X = \{0, \frac{1}{2}, \frac{1}{3}, \dots\}$ with the usual topology and $\mathcal{E} = \{E : E \text{ is cofinite }\}$. Then every element of \mathcal{E} does not contain finitely many elements of X. Also, \mathcal{E} is not a π -network in X, since every $\{x\}, x \neq 0$, is an open set not containing any element of \mathcal{E} . To prove $\mathcal{E}(X) = \{0\}$. Since $\{0\}$ is the only limit point of X, for given $\epsilon > 0$, $(0, 0 + \epsilon)$ does not contain finitely many elements of X and so $(0, 0 + \epsilon) \in \mathcal{E}$. Therefore, $0 \in \mathcal{E}(X)$. Also, every point other than 0 does not belong to \mathcal{E} . If $x \neq 0 \in X$, then $\{x\}$ does not contain any element of \mathcal{E} , since $\{x\}$ is open in X and every element of \mathcal{E} is countable. Therefore, $\mathcal{E}(X) = \{0\}$. Let A_1, A_2 be two sets such that $\mathcal{E}(X) \subset \mathcal{E}(A_i)$, i=1,2. Since $\{0\} \subset \mathcal{E}(A_i)$, there exists $E \in \mathcal{E}$ such that $U \cap A_i \supset E$ for every open set $U \in \mathcal{N}(0)$. Therefore, $U \cap A_i$ contains every points of X except the finitely many points. Hence $A_1 \cap A_2 \neq \emptyset$ and so X is weakly \mathcal{E} -Volterra. Take $A_1 = X - \{\frac{1}{2}\}$ and $A_2 = X - \{\frac{1}{3}\}$. Then $\mathcal{E}(X) \subset \mathcal{E}(A_i), i = 1, 2$. But $A_1 \cap A_2 = X - \{\frac{1}{2}, \frac{1}{3}\}$ is not dense, since $\{\frac{1}{2}\}$ is an open set in X which does not intersect $A_1 \cap A_2$. Hence X is not \mathcal{E} -Volterra.

In view of Matejdes, we introduce \mathcal{E}' -Volterra as follows. A subset A is said to be \mathcal{E}' -Volterra if for any two sets A_1 and A_2 of X such that $\mathcal{E}(A) \subset \mathcal{E}(A_i), i = 1, 2$ $A \subset \mathcal{E}(A_1 \cap A_2)$. Clearly, every \mathcal{E}' -Volterra set is both \mathcal{E} -Volterra and weakly \mathcal{E} -Volterra. The following Example 4.3 shows that a weakly \mathcal{E} -Volterra set need not be a \mathcal{E}' -Volterra set even though \mathcal{E} is a π -network.

EXAMPLE 4.3. Consider $X = (0, \infty)$ with the topology $\tau = \{(a, \infty) : a \in X\} \cup \{X, \emptyset\}$ and the cluster system $\mathcal{E} = \{(n, n + 2.5) : n \in \mathbb{N}\}$. Clearly, \mathcal{E} is a π -network on X and hence every open set of X. If $G = (2, \infty)$, then G is \mathcal{E} -Volterra and hence weakly \mathcal{E} -Volterra. Also, $\mathcal{E}(G) = X$. Let $A = X - \{2i : i \text{ is an odd natural number}\}$ and $B = X - \{2i : i \text{ is an even natural number}\}$. Then $\mathcal{E}(A) = X$ and $\mathcal{E}(B) = X$. By construction, $A \cap B \neq \emptyset$. Also, $A \cap B$ is dense in X and hence in G. But $\mathcal{E}(A \cap B) = \emptyset$ and so G is not \mathcal{E}' -Volterra.

The proof of the following Theorem 4.4 follows from Lemma 1.6 and the fact that every \mathcal{E}' -Volterra space is \mathcal{E} -Volterra. The converse of Theorem 4.4 need not

be true. In Example 4.3, it is clear that every open subset of X is weakly \mathcal{E} -Volterra but X is not \mathcal{E}' -Volterra. Theorem 4.5 below shows that the converse of Theorem 4.4 holds if \mathcal{E} satisfies the property \mathcal{I} . Since every \mathcal{E} -Volterra set is weakly \mathcal{E} -Volterra, Theorem 4.6 follows from Theorem 4.5. Also, Example 4.3 shows that the property \mathcal{I} is necessary in Theorem 4.5 and Theorem 4.6.

THEOREM 4.4. Let (X, τ) be a space and \mathcal{E} be a π -network in a nonempty open set X_0 of X. If X_0 is \mathcal{E}' -Volterra, then any nonempty open subset of X_0 is weakly \mathcal{E} -Volterra.

THEOREM 4.5. Let (X, τ) be a space and \mathcal{E} be a π -network in a nonempty open set X_0 with the property \mathcal{I} . If any nonempty open subset of X_0 is weakly \mathcal{E} -Volterra, then X_0 is \mathcal{E}' -Volterra.

Proof. Since X_0 itself an open subset of X_0 , X_0 is weakly \mathcal{E} -Volterra. Let A_1 and A_2 be two sets such that $\mathcal{E}(X_0) \subset \mathcal{E}(A_i), i = 1, 2$. By Theorem 2.10, $\mathcal{E}(A_1 \cap A_2) = \mathcal{E}(A_1) \cap \mathcal{E}(A_2)$. Therefore, $\mathcal{E}(X_0) \subset \mathcal{E}(A_i), i = 1, 2$ implies that $\mathcal{E}(X_0) \subset \mathcal{E}(A_1) \cap \mathcal{E}(A_2) = \mathcal{E}(A_1) \cap \mathcal{E}(A_2)$ which implies $X_0 \subset \mathcal{E}(A_1 \cap A_2)$, since \mathcal{E} is a π -network in X_0 . Hence X_0 is \mathcal{E}' -Volterra.

THEOREM 4.6. Let (X, τ) be a space and \mathcal{E} be a π -network in a nonempty open set X_0 with the property \mathcal{I} . Then X_0 is \mathcal{E} -Volterra if and only if X_0 is \mathcal{E}' -Volterra.

THEOREM 4.7. Let (X, τ) be a submaximal space. Then for every π -network \mathcal{E} in X, every nonempty open subset of X is \mathcal{E}' -Volterra and hence \mathcal{E} -Volterra. In particular, X is \mathcal{E}' -Volterra, hence \mathcal{E} -Volterra.

THEOREM 4.8. Let (X, τ) be a space. If $\mathcal{E} \in \mathcal{E}_{\pi}$, then every nonempty open subset of X is \mathcal{E}' -Volterra, hence \mathcal{E} -Volterra. In particular, X is also \mathcal{E}' -Volterra.

Proof. Let G be any nonempty open subset of X and A, B be two subsets of X such that $\mathcal{E}(G) \subset \mathcal{E}(A)$ and $\mathcal{E}(G) \subset \mathcal{E}(B)$. By Theorem 2.5, $G \subset cl(G) \subset cl(int(A))$ and $G \subset cl(G) \subset cl(int(B))$. Let $x \in cl(G)$ and U_x be any open set in G. Now $x \in U_x \subset cl(int(A))$ implies that $U_x \cap int(A) \neq \emptyset$. Therefore, there exists some $y \in U_x \cap int(A)$. Since $cl(G) \subset cl(int(B))$, $y \in U_x \cap int(A) \subset cl(G) \subset cl(int(B))$ implies that $U_x \cap int(A) \cap int(B) \neq \emptyset$ implies that $U_x \cap int(A \cap B) \neq \emptyset$. Therefore, $x \in cl(int(A \cap B))$. Hence $\mathcal{E}(G) \subset \mathcal{E}(A \cap B)$. Therefore, G is \mathcal{E}' -Volterra.

Here we partially answer the question that if (X, τ) is \mathcal{E}' -Volterra whether the new space $(X, \tau_{\mathcal{E}})$ is \mathcal{E}' -Volterra. The proof of Theorem 4.9 follows from Theorem 4.7 and Theorem 4.8.

THEOREM 4.9. Let (X, τ) be a submaximal space and $\mathcal{E} \in \mathcal{E}_{\pi}$. Then every open subset of $(X, \tau_{\mathcal{E}})$ is \mathcal{E}' -Volterra, and hence \mathcal{E} -Volterra. In particular, $(X, \tau_{\mathcal{E}})$ is \mathcal{E}' -Volterra, hence \mathcal{E} -Volterra.

ACKNOWLEDGEMENT. The authors sincerely thank the unknown referee for his valuable suggestions and comments for the perfect presentation of the paper.

R. Thangamariappan, V. Renukadevi

Research work of the first author is supported by the Council of Scientific & Industrial Research Fellowship in Sciences (CSIR, New Delhi) for Meritorious Students, India.

REFERENCES

(1990), 295-310.

- A.V. Arhangel'skii and P.J. Collins, On submaximal spaces, Topology Appl. 64 (1995), 219– 241.
- [2] N. Bourbaki, General Topology, Addison Wesley Publishing Company, Massachusets, 1966.
- [3] G. Choquet, Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224 (1947), 171–173.
- [4] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J. 27 (2) (1987), 135–143.
- [5] D. Gauld and Z. Piotrowski, On Volterra spaces, Far East J. Math. Sci. 1 (1993), 209–214.
 [6] D. Janković and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97
- [7] K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [9] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [10] M. Matejdes, Generalized Volterra spaces, Int. J. Pure Appl. Math. 85 (2013), 955–963.
- [11] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [12] B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math. 33 (4) (2007), 771–786.
- [13] V. Renukadevi, Relation between ideals and grills, J. Adv. Res. Pure Math. 2 (4) (2010), 9–14.
- [14] R. Vaidyanathaswamy, The localisation theory in set-topology, Proc. Indian Acad. Sci. Sect. A 20 (1944), 51–61.

(received 05.03.2014; in revised form 02.12.2014; available online 23.01.2015)

R.T.: ANJA College (Autonomous), Sivakasi-626 124, Tamil Nadu, India

E-mail: arti6arti@gmail.com

V.R.: Department of Mathematics, ANJA College (Autonomous), Sivakasi–626 124, Tamil Nadu, India

E-mail: renu_siva2003@yahoo.com

184