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EXISTENCE OF A POSITIVE SOLUTION FOR A
THIRD-ORDER THREE POINT BOUNDARY VALUE PROBLEM

Ali Rezaiguia and Smail Kelaiaia

Abstract. By applying the Krasnoselskii fixed point theorem in cones and the fixed point
index theory, we study the existence of positive solutions of the non linear third-order three point
boundary value problem

u//l(t) + a(t)f(t7 u(t)) =0, te (07 1)7
u'(0) = v/ (1) = au(n), u(0) = Bu(n),
where a, 8 and n are constants with a € [0, %), and 0 < n < 1. The results obtained here

generalize the work of Torres [Positive solution for a third-order three point boundary value
problem, Electronic J. Diff. Equ. 2013 (2013), 147, 1-11].

1. Introduction

Third order equations arise in a variety of different areas of applied mathemat-
ics and physics, as the deflection of a curved beam having a constant or varying cross
section, three layer beam, electromagnetic waves or gravity driven flows and so on
[9]. Different types of techniques have been used to study such problems: reduce
them to first and/or second order equations [5], use Green’s functions and com-
parison principles [2, 3, 15] (for periodic boundary value conditions), [4,6, 7, 10, 20]
(two point ones), and [16,19] (three point boundary conditions). A large part of
the literature on multiple solutions to boundary value problems seems to be traced
back to Krasnoseleskii’s work on nonlinear operator equations [1], especially the
part dealing with the theory of cones in Banach spaces.

In this paper, we are interested in the analysis of qualitative theory of positive
solutions of third-order differential equations. Motivated by the papers [12-14,17]
and the references therein, we concentrate on the existence of positive solutions for
the nonlinear third-order differential equation three point boundary value problem

o (t) +a(t)f(t,u(t)) =0, te(0,1), (1.1)
W' (0) = /(1) = au(n), u(0) = Bu(n), (1.2)
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where «, § and 7 are constants with « € [0, %), 0<n<land f€[0,1—an). In
the case 3 = 0, Torres in [18] showed that (1.1) and (1.2) has positive solutions by
using Krasnoselskii’s fixed point theorem and the fixed point index theory.

This paper is organized as follows. In Section 2, we present some theorems
and lemmas that will be used to prove our main results. In Section 3, we discuss
the existence of single positive solutions of BVP (1.1) and (1.2). In Section 4, we
discuss the existence conditions of multiple positive solutions of BVP (1.1) and
(1.2). In Section 5, we give some examples to illustrate our results. The results
presented in this paper generalize the main results in [18].

2. Preliminaries
We shall consider the Banach space X = C[0, 1] equipped with the norm ||z| =
maxo<¢<1 |z(t)|. Define a cone in X by CT[0,1] = {z € X : z(t) > 0 for ¢ € [0, 1]},
and the ordering < by = <y iff 2(t) < y(¢) for all t € [0, 1].

DEFINITION 1. A function u(t) is called a positive solution of (1.1) and (1.2)
if ue C[0,1] and u(t) > 0 for all t € (0,1).

The proof of existence of positive solutions is based on applications of the
following theorems.

THEOREM 1. [8,11] Let X be a Banach space and K be a cone in X. Assume
that 1 and Qo are open subsets of X with 0 € Q1 C Q1 C Qs and let

T: KN(Q2\ Q) —
be a completely continuous operator such that either
(@) | Tul| < |lul| if we KNy and |[Tul|| > |Ju|| if u € K NOQs, or
(i) || Tu|| > Jullif u e KNOQy and ||[Tu|| < ||u|| if u € K NOQ,.
Then T has a fized point in K N (Q2\ Q1).
THEOREM 2. [8,11] Let X be a Banach space and K be a cone in X. For

r >0, define K, = {u € K : ||u| <r} and assume T : K, — K is a completely
continuous operator such that Tu # u for u € 0K,..

(1) If | Tull < |u|| for all uw € OK, then i(T,K,,K) = 1.
(2) If || Tul| > ||ul| for allw € OK, then i(T,K,,K) =0.
LEMMA 1. Assume that 8 € [0,1 — an). Then for y € C[0,1] the problem
u"(t) +y(t) =0, te(0,1), (2.1)
w'(0) = /(1) = au(n), u(0) = Pu(n), (2.2)

has a unique solution

1
ut>=/0 G(t. s)y(s) ds + 1fta:ﬁﬁ/ o)

%(2t—t2—s)s, 0<s<t<1,
21— s), 0<t<s<l.

where

Glt,s) = { (2.3)
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Proof. Rewriting the differential equation as u'”’(t) = —y(¢) and integrating
three times, we obtain

1t
u(t) = —3 / (t — 5)%y(s) ds + A1t* + Aot + Az where Ay, Ay, Az € R.  (2.4)
0

Since u/(0) = u/(1),
1
Ag = —/ (1 —=3s)y(s)ds+2A; + A,,
0

Ay = %/0 (1 —9)y(s)ds.

Since u'(0) = au(n), we obtain

Ag—a(—/( d8+—/ 1—s)y ds+A2n+A3>

ads=(1—an)As+ = /( ds——/ 1—3s)y
From u(0) = fu(n), we have
1 [
Aa=(=5 [ /0= 9 ds-+ AP 4 a1 40
0

_57772 ' — S S S—L ! —528 S
45 = JICERVOEE JRCESRTOLR

20—an—-p l—an-p
aﬁn2 ! af K
Then

_ 11 — s)y(s)ds — ——— 'L — 5)%y(s)ds
to = = [ ds— =i [ - 9Py

Replacing these expressions in (2.4)

4),
u(t) = — /(t—s ds—l——/ (1-3s)y

}L —s)y(s s—lait ! —5)2%y(s)ds
T e 6)/()(1 Ju(s)d 2(1_%_@/0(7; Py(s)d
ﬁnz ! ﬁ K 2
e 5)/ (1-s)y <S>d8—i2<1,m, 5)/0 (n— )y(s) ds

— /(t—s ds+—/ (1-9)y

il )/"<n—s> y(s)ds +

2 1

(1-an—-p
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= /(tfs2y(s ds+—/ (1-s)y

1?2;55( <>d5+’722/01(1_3)y<5)ds)
- /(t—s>2y<s>ds+ /(1—s> (s)ds+ & /1<1—s>y<s>ds

at+
l—om ﬂ( ds+—/ 1—s)y )

= ;[/o (2t — t2 — s5)sy(s) ds +/ t2(1 — s)y(s) ds}

t

bt (3 [ sraeras+ D [0 a)

/Gts s)ds + ——— at+5 /Gn, s)ds m
l—an—-0

LEMMA 2. For allt and s such that 0 < s <1 and 0 <7 <t <1, we have

0G(1,s) < G(t,s) < G(1,s) = %(1 —s)s where 0 =12 (2.5)

Proof. For all t,s € [0,1], if s < ¢,

Gt s) = %(Qt 2 g)s= %[(1 — 8= (1—1)s
< %(1 _ s =G(1, ),
and
G(t,s) = %(275 —t? —5)s = %stQ(l —5)+ %(1 —t)[(t—s)+ (1 —s)t]s
> 0G(1,s);

ift <s,

B 1 9s<Glts) = 2201 —5) < G(Ls)

5 s)s 5 5) < ,5).
Therefore

0G(1,s) < G(t,s) < G(1,s), Y(t,s) € [1,1] x [0,1]. = (2.6)

LEMMA 3. For all y € CT[0,1], the unique solution u(t) of (2.1) and (2.2) is
nonnegative and satisfies

i > .
Join () = 6fful
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Proof. From Lemma 1 and Lemma 2, u(¢) is nonnegative,

u(t):/ G(t,s)y at—i—ﬁ /Gn,
<[ (1—s><>ds+1_a L0 [ e
then L p 5
a+
<3 [ o0 sweras+ 250 [ agsueas @0
For t € [r,1],

u(t):/o G(t, 5)y(s) ds + O‘Hﬁﬁ/ G, s)

1—an

1 2
= %s(l—S)y(S)ds—klata:ﬁﬁ/ Gn,s)
0 -
1q art? + 3
2
>t [ s - owe s+ 120 [t
1
>t [ st - s 0 )
— 1 ' +ﬂ 1
9[2/0 s(lfs)y(s)derm ; G(nvs)y(S)dS}

> 0|ull.

Therefore min, <¢<1(¢) > 0u/|. m
Now, we assume the following
(J1) f € C([0,1] x [0,00), [0, 00)),
(J2) a € L'0,1] is nonnegative and a(t) 2 0 on any subinterval [0, 1].
Define the cone

K- {u € Cl0,1) 5 u(t) 2 0, min u(t) > 9|u||} ,

and the operator T: K — X by

B ! at +
0= [ s+ [ am gase ())d;g)

By Lemmal and Lemma 3, it is easy to see that the BVP (1.1) and (1.2) has a
positive solution u(t) if and only if u is a fixed point of T.

LEMMA 4. The operator defined in (2.8) is completely continuous and satisfies
T(K)CK.

Proof. By Lemma 3, T(K) C K, and by Ascoli-Arzela theorem we prove that
T is a completely continuous operator. m
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3. Existence results

Throughout this paper, we shall use the following notations

_ f(t,u) e f(tu)
f1= s gugs 7 o= tmipfomin, T
t,u) f(tau)
J7 e g e T T A g, T
A= /Gls ath /Gn, s, R A1,
l—om 6
B=T2</ G(1,s)a(s)ds + a+ﬂ /Gn, >, r=B"%

THEOREM 3. Assume that f© =0 and fs = oo are valid. Then the problem
(1.1) and (1.2) has at least one positive solution.

Proof. Since f9 = 0, there exists H; > 0 such that f(¢,u) < eu, for all t € [0, 1]
where 0 < u < Hy and € > 0. Then for u € KNOQy with Q) = {u € X : |Ju|]| < H1},

we have

u(t) = / G(t, s)a(s) f (5, u(s)) ds + lj“;:ﬁ . / G, )a(s)f (s, u(s)) ds
1 a+f !
< | 6 st st ds + 22 [ G s9ats) fs,u(s) ds

/013 s)eu(s) ds + “ﬁﬂ/en, (s)eu(s) ds

{/Gls d8+1—om ﬁ/Gn, ds}||u|

If eA < 1, then Tu(t) < |lu||. Therefore
I1Tul|| < |Ju|| for u € K NOQy.

On the other hand, since fo, = oo, there exists H, > 0 such that ft,u) > du,
for all t € [r,1] where u > ﬁg and 0 > O.AThen for u € K N 9y where Qy =
{u € X,|lul| < Hy} with Hy = max{2H;, %2}, Then u € K N 99, implies that
min,<,<1 u(t) > 0||u|| = 6H, > Hy, and

= [ ot st s+ L [t gats) s ue) as
1 o 1
>/ s [ G el (s u(s)) ds

N~ N

> s(1—s)a(s)f(s,u(s))ds+
a+f
> s(1 — s)a(s)du(s) ds + 7&/ G(n,s)a(s)du(s) ds

}
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1.2 1
> 5{/ %5(1 — s)a(s) ds+72% [ G s)als) ds] lull-
If 6B > 1 then Tu(1l) > |lu||. We conclude that
ITu|l > |Ju|| for u € K N ONs.
Then T has a fixed point in K N (Qz \ 1) such that Hy < ||lul| < Hy. m

THEOREM 4. Assume that fo = oo and f°° = 0 are valid. Then the problem
(1.1) and (1.2) has at least one positive solution.

Proof. Since fo = oo, there exists H; > 0 such that f(¢,u) > du, for allt € [r, 1]
where 0 < u < Hy and § > 0. Then for u € KNIy with Q; = {u € X : |Ju|]| < H1},

we have

D=A%MﬁMﬂMW®MHEf;ﬁ5/Gm F(s,u(s)) ds
zlgqlsM@ﬂwm»w+L1ﬂ;3lamwmﬁ@mmm
Z/Tl;s(l—s)a(s)&a(s) “ﬁ / G(n, s)a(s)du(s) ds
:mﬂ[Ljdl—@d$d&+ /“Gn, @pwn

If 6B > 1, then Tu(1) > |lul|. Therefore
ITu|| > |Ju|| for u € K NOQy.

On the other hand, Since f°° = 0, there exists ﬁg > 0 such that f(¢,u) < eu, for
all t € [0,1] where u > Hs and € > 0.
We consider two cases:

CASE 1. Suppose f is bounded. Let L be such that f(t,u) < L and Q5 =
{u € X : |lu|| < Ho} with Hy = max{2H;, LA}. Then for u € K N 9Oy, we have

/Gts ,u(s))ds + ft—i_ﬁ /Gn, ,u(s))ds
a+ 0 !
SA§M=$@V<<»@+T:%—B G, 5)a(s) (5. u(s)) ds
11 a+ 0
g/fs(l—s)()Ld s ﬂ/an, §)Lds
a+ 0
‘L[/G” T Toan- B/G”’ yis|
< Hy = ||ul|.

Then ||Tul| < [[ul.
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CASE 2. Suppose f is unbounded. Then from (J1), there exists Hy >
max{2H7, Hy} such that f(t,u) < f(t, Ha) with 0 < u < Hs and let Qs = {u €
X, ||lull < Hz}. Then for u € K N 90y, we have

! «
M@AG@m®ﬂm$Whl_$€&/Gm (s, u(s)) ds
S/o %s(l—s)a(s)f(s,Hg)ds—l— 1_a0j;7ﬁ ﬂ/ G(n,s (s, Hs) ds

1
1
§/0 58(1—8) a(s )6H2d$+ +ﬂ ﬁ/ G(n, s)a(s)eHsz ds

_ ' a+/5'
_€H2|: ; G(l,s)a(s)ds—|—1_a77 ﬂ/ G(n,s) }

If eA < 1, then Tu(t) < Hy = ||u|. Therefore [|[Tu|| < |jul|. =

THEOREM 5. Assume that 0 < fO < R and r < foo < 00 hold. Then the
problem (1.1) and (1,2) has at least one positive solution.

Proof. Since 0 < f° < R, there exist H; > 0 and 0 < ¢; < R such that
ft,u) <(R—e)u, 0<t<1,0<u<H;. Let Q; ={ue X :|ju| < H1}. So for
any u € K N0, and RA =1 we have

1 a 1
M@—Aawwwﬁ@mm@+l“”%/Gm@mw@mmm

1
S/ %s(l—s)a(s)(R—el)uds—l—1_a;7ﬂ ﬂ/ G(n,s) R —€)uds

<(R—e) U G(1,s)a(s)ds + ———— ath /Gn, dS}IIUl

l—an—p
= (B —e))Allul] < ull.
Thus [|[Tu|| < |jul.
Since r < f < oo there exist Ha > 0 and 0 < €5 such that f(¢,u) > (r+e2)u,
u> Hyand 7 <t < 1. Let Hy > max{2H;, 7} and Qo = {u € X : |ju|| < H}. If

u € K N9Qs, then min,<¢<q u(t) > 0||u|| = 0Hz > Ha. So by a property of G(t, s)
we have

= ' s)al(s S,uls S a+ﬁ S

= [ ot st ds L [t sgats) st uon d
1 o 1

> [ G salo)r+ euds + 22 [ G sats)(r + eauds

2(r+62)[/TlT2G(1,S)a(s)ds+ O‘” /Gn, ds]lull

= (r+ ) Bllul| > [|ull.
Thus ||[Tul| > ||ull.
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Therefore, by Theorem 1, the operator T' has at least one fixed point, which is
a positive solution of (1.1) and (1.2). m

THEOREM 6. Suppose that r < fo < oo and 0 < f*° < R hold. Then the
problem (1.1) and (1.2) has at least one positive solution.

Proof. Since r < fo < oo there exist H; > 0 and 0 < ¢; such that f(¢t,u) >
(r+e)u, 0 <u<Hyand 7 <t <1 Let Q ={ue X :|u| < H} If
u € K N 9Q, then we have

U:KJQL$M@ﬂ&M$M&+1%;ﬁﬁ/me )£ (5, u(s)) ds

1 a 1
>/Gu@<vuwmw+T:§@B Gl 9)a(s) (s u(s)) ds
/ G(1,s)a(s)(r + e1)uds + 1_04(:'5 5/ G(n,s) (r+e)uds
o) / PG als)ds +7° / (0.5 ds]iun

= (r+e)Bllull > [|ull.

Thus, Tu(1) > |ju||. Then |[|[Tul|| > |lul.

Since 0 < f* < R, there exist Ho > 0 and 0 < ez < R such that f(t,u) <
(R—e€)u, Hy <wand 0 <t < 1. Let Q2 = {u € X : |u|| < H2} where
Hy > max{2HL%}. If u € K NOQy then min, <;<1 u(t) > 0||u|| = 6Hy > Hsy. So
by a property of G(t, s) we have

1 @]
w:Awamﬁ@wm@ t+ﬁl/am )£ (s,u(s)) ds

l—an—-p
1
S/ G(t,s)a(s)(R — ex)uds + 1_aoj;7ﬁ ﬂ/ G(n,s) R —er)uds

<(R- &) [/Gls ds+ a+ﬁ /Gn, dS}IIUI

= (B —e))Afjul] < ful]

Then Tu(t) < ||ul|. Therefore, by Theorem 1, the operator 1" has at least one fixed
point, which is a positive solution of (1.1) and (1.2). m

4. Multiplicity results
Now, we will study the problem (1.1) and (1.2) in the following cases:
(a) 3p>0: f(t,u) < Rp, 0 <u < p,te0,1].
(b) 3p>0: f(t,u) >rp, 0 <u< g ter1].

THEOREM 7. Assume that (a) holds, fo = 00 and foo = co. Then the problem
(1.1) and (1.2) has at least two positive solutions.
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Proof. Since fy = oo, there exists H; > 0 where 0 < H; < p such that
f(t,u) > ru, for all t € [r,1] where 0 < u < Hj. Then for u € K N 0Qy with
Oy ={u € X :|ju|| < H1}, we have

n= [ G(Ls>a<s>f<s,u<s>>ds+1_“;7”3 5 | GG, uts s

/ G(1,s) Tuds—i— / G(n,s)a(s)ruds

>7~UT 2G(1, s)a (s)ds+7'2% TlG(n,s)a(s)dS} I

= rBllul] = [ull
Then Tu(1) > |lu||. Therefore
ITu|| > |ju|| for u e K NOQy.

By Theorem 2, we have (T, Kp,, K) = 0.

Since fo = oo, there exists Hy, > p such that f(¢,u) > ru, for all t € [r,1],
where u > Hy. Then u € K NdQy where Oy = {u € X : ||u| < Ha} with Hy > %.
This implies that min-<;<1 u(t) > 0||u|| = 6Hy > Hy and

D= [ 6006 s uto) s+ L [ sgats) s u(e) ds

/Gls ()ruderiﬁ/ G(n,s)a(s)ruds

1
>r[ P2G(1, s)als) ds + 72 ‘”ﬂ /Gn, ds}nu

Then T'u(1) > ||u||. Therefore
ITw|| > |ju|| for u € K NOQ,.

By Theorem 2, we have (T, Kg,, K) = 0.

On the other hand, let Q3 = {u € X : |Ju|| < p}. Then for u € K N 093 such
that f(t,u) < Rp for all t € [0,1] we get

B ! at +
—/0 G(t,s)a(s)f(s,u(s))ds+ [p—— ,6’/ G(n,s) ,u(s))ds

1 1
< | Grttoarp as+ =L [ G e mo ds

<RUG13 ds+17a;ﬁ6/c¢n, }

= RAp < ul].
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Then Tu(t) < |lul|. Therefore
I1Tul|| < |Ju|| for u € K NOQs.
By Theorem 2, we have (T, K,, K) = 1. Hence
T, Ky, \ K, K) = i(T, Kpy, K) — i(T, K,, K) = —1.
(T, K,\ Ky, K) =i(T, K, K) —i(T, Ky, K) = +1.

Therefore, there exist at least two positive solutions uy € K N (Q3\ Q1) and uy €
KN (Q2\Q3) of (1.1) and (1.2) in K, such that

0<flurl <p<fuzf. =

THEOREM 8. Assume that (b) holds, fO =0 and f> = 0. Then the problem
(1.1) and (1,2) has at least two positive solutions.

Proof. Since f° = 0 there exists H; > 0 such that f(¢,u) < eu, for all t € [0, 1]
where 0 < u < Hj and € > 0. Then for u € KNOQ; with @y = {u € X : ||u|| < H1},

we have

S T / G, 5)a(s) (5, u(s)) ds
a+ 0
/Gls fls,uts)ds + 20 ﬁ/ G s)a(s)f(s,u(s)) ds
a+p !

</ 551 = s)as)eu ()ds+m G(n, s)a(s)eu(s) ds

<e[/ G(1,s)a(s)ds + ————— ath /Gn, ds}||u|
l—an—p

If eA < 1, then Tu(t) < |lu|. Therefore
(ITul|| < |Ju|| for u € K NOQy.

By Theorem 1, we have
i(T,Ky,,K)=1.

Since f* = 0, there exists Hy > 0 such that f(¢,u) < eu, for all t € [0,1] where
u > Hy and € > 0.

We consider two cases:

CASE 1. Suppose f is bounded. Let L be such that f(t,u) < L and Qy =
{u € X :||lu|]| < Hy} with Hy = max{2H;, LA}. Then for u € K N 00y, we have

at+6 [

1
Tu(t) :/o G(t,s)a(s)f(sau(s))d5+m

G(n, s)a(s) f(s, u(s))ds

</ 51— S)ale)f (s ule)) ds-+ T / G(1, $)a(s) (s, u(s)) ds
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1 1
g/ 15(1—3) (s)Lds+ 1_a;_ﬂ_6 G(n,s)a(s)Lds
a+f
_L[/Gls ds—|— - ﬂ/Gn, ]
< Hy = ||ul|.

Then || Tu|| < ||ul-
CASE 2. Suppose [ is unbounded. Then from (J1), there exists Hy >
max{QHl,fIQ} such that f(¢t,u) < f(t,H2) with 0 < uw < Hy. Let Q5 = {u €
i lul] < Ha}. Then for u € K N 9Ny, we have

/ G(t, s)a u(s))ds+1f‘i;56/ G(n, s) Juls)) ds
a+ 3
S/o 55(1—3)(1( s)f(s, Hg)ds+1_an ﬂ/ G(n, s)a(s)f(s, Hz) ds
1y a—i—ﬁ
<[ Zs0- Hyd G(n, s)a(s)eHs d
_/0 25( s)a(s)eHs s—|— — / (n, s)a(s)eHsz ds

— e, UOIG(LS)Q(S) ds + %/ G(n, s)a(s) ds}

If eA <1 then Tu(t) < Ho = |Ju||, and ||Tu|| < ||ul|. Therefore
(1Tu|| < JJu|| for u € K N ONs.
By Theorem 2, we have (T, Kp,, K) = 1.

On the other hand, let Q3 = {u € X : |lu]| < p}. Then for u € K N 0Nz such
that f(t,u) > rp for all ¢ € [r,1] we get

/ G(1,s)a u(s))ds—l—liao:;ﬁﬂ/ G(n,s) ,u(s))ds

1
> / G(1,5)a ()Tpds+% G, s)a(s)rpds

1
>rp [/ 2G(1,8)a(s)ds + T a—i—ﬁ / G(n,s ds] [lue]]

=rpB|lu|.
If p = 1 then Tu(1) > |ju||. Therefore
|Tull > [Ju|| for u e K NoQs.
By Theorem 2, we have (T, K,, K) = 0. Hence

i(T, Ky \ K, K) = i(T, Ky, , K) —i(T,K,, K) =1 -0 = 1.

i(T, K,\ K, K) = i(T, K, K) —i(T, Ky, , K) =0 — 1 = —1.
Therefore, there exist at least two positive solutions u; € K N (Q3\ Q1) and uy €
KN (Q\ Q) of (1.1) and (1.2) in K, such that

0<fluall <p<uzll =
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5. Examples

EXAMPLE 1. If f(t,u) = (u® + t)e™ ", then the condition of Theorem 3 hold
(superlinear case). If f(t,u) = at + ch(u), a > 0, then the conditions of Theorem
4 hold (sublinear case).

ExXAMPLE 2. Consider the boundary value problem
u"(t) + ch(u) =0, te€(0,1), (5.1)
0) = w'(1) = LufL e
u'(0) =u'(1) = 2u(2), u(0) = 2u(2), (5.2)
where f(t,u) = f(u) = ch(u), a(t) = 1. Then fy = co and fo = co. By simple

calculation, A = i and R = 4.

On the other hand, we could chose p = 1. Then f(t,u) < (e+e™ ') <4 =pR,
for (t,u) € [0,1] x [0, p]. By Theorem 7, (5.1) and (5.2) have at least two positive
solutions.

ExaMpLE 3. Consider the boundary value problem

" (t) +ueIn(t +u) =0, te(0,1), (5.3)
. ) 1 /1 1 /1
W/ (0) = /(1) = §u(§), u(0) = Zu(i), (5.4)

where f(t,u) = f(u) = ue*In(t + u), a(t) = 1. Then f* = 0 and f., = co. By
. . 0'5 0'4 0'2

simple calculation A = 4—78, R = 4—78, B = % and r = m.
Therefore 0 < fo =0 < 2 = R and r < fo < co. By Theorem 3, (5.3) and (5.4)

have at least one positive solution.
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