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ON A GENERALIZATION OF A RESULT OF ZHANG AND YANG

Abhijit Banerjee and Sujoy Majumder

Abstract. In this paper we find out the specific form of a meromorphic function when
a generalized linear expression of the function share a small function with its k-th derivative
counterpart. Our result will improve and generalize a few existing results, especially that of
Zhang and Yang [J. L. Zhang and L. Z. Yang, A power of a meromorphic function sharing a small
function with its derivative, Ann. Acad. Sci. Fenn. Math., 34 (2009), 249-260].

1. Introduction, definitions and results

In this paper, by a meromorphic function we will always mean meromorphic
function in the complex plane C. We adopt the standard notations of the Nevan-
linna theory of meromorphic functions as explained in [3]. It will be convenient to
let E denote any set of positive real numbers of finite linear measure, not necessar-
ily the same at each occurrence. For a non-constant meromorphic function h, we
denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity
satisfying S(r, h) = o{T (r, h)}, as r →∞ and r /∈ E.

Let f and g be two non-constant meromorphic functions and let a be a complex
number. We say that f and g share a CM, provided that f − a and g − a have
the same zeros with the same multiplicities. Similarly, we say that f and g share a
IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In
addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say
that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

A meromorphic function a is said to be a small function of f provided that
T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r → ∞, r /∈ E. If a is a small
function we define that f and g share a CM if f − a and g − a share 0, CM.

During the last four decades the uniqueness theory of entire and meromorphic
functions has become a prominent branch of the value distribution theory (see [12]).
Rubel-Yang [7] first established the fact that when f and its derivative f ′ share
two complex values CM then they are identical. In 1979, improving the result

2010 Mathematics Subject Classification: 30D35
Keywords and phrases: Meromorphic function; small function; weighted sharing.

155



156 A. Banerjee, S. Majumder

in [6] analogous result corresponding to IM sharing was obtained by Mues and
Steinmetz [4].

In course of time many researchers such as Brück [1], Gundersen [2], Yang [8] et
al. became more involved to find out the relation between an entire or meromorphic
function with its higher derivatives or more general (linear) differential expressions,
sharing one value. To find the most specific form of the function, Yang-Zhang [9]
(see also [13]) first considered the uniqueness of a power of a meromorphic (entire)
function F = fn and its derivative F ′ when they share certain value.

The paper is devoted to the specific type of form of the function first used by
Yang-Zhang [9]. To this end we are invoking the following results which elaborates
the gradual developments to this setting of meromorphic functions. Zhang [13]
proved the following theorem, which improved all the results obtained in [9].

Theorem A. [13] Let f be a non-constant meromorphic function, n, k be pos-
itive integers and a(z)( 6≡ 0,∞) be a meromorphic small function of f . Suppose
fn − a and (fn)(k) − a share the value 0 CM and

(n− k − 1)(n− k − 4) > 3k + 6.

Then fn ≡ (fn)(k), and f assumes the form

f(z) = ce
λ
nz

,

where c is a nonzero constant and λk = 1.

In 2009, Zhang-Yang [14] further improved the above results in the following
manner.

Theorem B. [14] Let f be a non-constant meromorphic function, n, k be pos-
itive integers and a(z)( 6≡ 0,∞) be a meromorphic small function of f . Suppose
fn − a and (fn)(k) − a share the value 0 CM and

n > k + 1 +
√

k + 1.

Then fn ≡ (fn)(k), and f assumes the form

f(z) = ce
λ
nz

,

where c is a nonzero constant and λk = 1.

A recent development in the uniqueness theory of meromorphic functions is
the introduction of the notion of weighted sharing of values [5]. This measures
a gradual increment from IM (ignoring multiplicities) sharing to CM (counting
multiplicities) sharing.

Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞} we denote by
Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. If for two meromorphic functions f
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and g we have Ek(a; f) = Ek(a; g), then we say that f and g share the value a with
weight k.

The IM and CM sharing respectively correspond to weight 0 and ∞. If a is
a small function we define that f and g share a IM or a CM or with weight l
according as f − a and g − a share (0, 0) or (0,∞) or (0, l) respectively.

Throughout this paper, we always use P (f) to denote an arbitrary polynomial
in f of degree n as follows,

P (f) = anfn + an−1f
n−1 + · · ·+ a0.

Now observing the above results the following questions are inevitable.
Question 1: Can the lower bound of n be further reduced in Theorem B?
Question 2: What happens if fn is replaced by a general linear expression

in f , namely of the form P (f) in Theorem B?
Question 3: Can the “CM” sharing in Theorem B be reduced to finite weight

sharing?
In this paper, taking the possible answer of the above questions into back-

ground we obtain our main result. To proceed further we require the following.
Let

P (f) = an(f − cl1)
l1(f − cl2)

l2 · · · (f − cls)
ls , (1.1)

where ai (i = 0, 1, . . . , n − 1), an 6= 0 and clj (j = 1, 2, . . . , s) are distinct fi-
nite complex numbers and l1, l2, . . . , ls, s, n and k are all positives integers with∑s

i=1 li = n. Let l = max{l1, l2, . . . , ls}. We set an arbitrary non-zero polynomial
P1(f1) by

P1(f1) = an

s∏

i=1
li 6=l

(f1 + cl − cli)
li = bmfm

1 + bm−1f
m−1
1 + · · ·+ b0, (1.2)

where an = bm, f1 = f − cl and m = n− l. Obviously

P (f) = f l
1P1(f1). (1.3)

Let P1(f1) = bmfm
1 + bm−1f

m−1
1 + · · · + b1f1 + b0 = bm

∏r
i=1(f1 − αi)li , where

r = s − 1, αi = cli − cl, i = 1, 2, . . . , r be the distinct zeros of P1(f1). For
i = 1, 2, . . . , r we define

l∗i =
{

k + 1, if li > k + 1
li, if li ≤ k + 1.

Theorem 1. Let f be a non-constant meromorphic function and a(z)( 6≡ 0,∞)
be a meromorphic small function of f . Suppose P (f) − a and [P (f)](k) − a share
(0, r + 3) and

n > max{k + m + 1, k +
r∑

i=1

l∗i + 2}. (1.4)
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Then P1(f1) reduces to a non-zero monomial, namely P1(f1) = bif
i
1 6≡ 0 for some

i ∈ {0, 1, . . . ,m}; and f l+i
1 ≡ (f l+i

1 )(k), where f1 assumes the form f1(z) = ce
λ

l+i z,
i.e.,

f(z) = ce
λ

l+iz + cl,

where c is a nonzero constant and λk = 1.

Corollary 1. Since n = m + l, (1.4) can also be replaced by

l > max{k + 1, k +
r∑

i=1

l∗i + 2−m}.

So we see that if P1(f1) has at least one factor with multiplicity li > k + 1, i =
1, 2, . . . , r then

∑r
i=1 l∗i ≤ m − 1, and so Theorem 1 would have been true for

l > k + 1. Otherwise we always have l > k + 2.

Corollary 2. When m = 0, i.e., P (f) is of the form f l = fn, then P1(f1) =
constant and so r = 0. Thus conclusion of Theorem B can be obtained when
n > k + 2 and fn − a and (fn)(k) − a share (0, 3).

Remark 1. The following two examples show that the conclusion of Theorem
1 ceases to hold for n = 1.

Example 1. Let f(z) = z+1
1+e−z . Then f and f ′ share (1,∞), but f(z) 6≡ f ′(z).

Example 2. Let

f(z) =
1
2z2 + b

1 + ce−z
,

where b and c 6= 0 are constants. Then f(z) − z and f ′(z) − z share (0,∞), but
f(z) 6≡ f ′(z).

We are now going to explain the following definitions and notations which will
be used in the paper.

Definition 1. [6] Let p be a positive integer and a ∈ C∪{∞}. N(r, a; f |≥ p)
(N(r, a; f |≥ p)) denotes the counting function (reduced counting function) of those
a-points of f whose multiplicities are not less than p.

Definition 2. [5] Let f , g share a value (a, 0). We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡
N∗(r, a; g, f).

Definition 3. [11] For a ∈ C ∪ {∞} and a positive integer p we denote by
Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + · · · + N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

2. Lemmas

In this section we present lemmas which will be needed in the sequel.
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Lemma 1. [10] Let f be a non-constant meromorphic function and let an(z)(6≡
0), an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, . . . , n. Then

T (r, anfn + an−1f
n−1 + · · ·+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2. [6] If N(r, 0; f (k) | f 6= 0) denotes the counting function of those
zeros of f (k) which are not zeros of f , where a zero of f (k) is counted according to
its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 3. Let F = P (f)
a(z) and G = [P (f)](k)

a(z) , where P (f) is defined as in (1.1)
and they share (1, p). Then

N∗(r, 1; F, G) ≤ 1
p
{N(r,∞; f) + N(r, 0; f) + (s− 1)T (r, f)}+ S(r, f).

Proof. Clearly, in view of Lemma 2 we have

N∗(r, 1; F, G) ≤ N(r, 1; F |≥ p + 1) + S(r, f)

≤ 1
p

(N(r, 1;F )−N(r, 1; F )) + S(r, f)

≤ 1
p

N(r, 0; F
′ | F 6= 0) + S(r, f)

≤ 1
p
{N(r,∞; f) + N(r, 0; f1) + N(r, 0; P1(f1))}+ S(r, f)

≤ 1
p
{N(r,∞; f) + N(r, 0; f) + (s− 1)T (r, f)}+ S(r, f).

3. Proof of the theorem

Proof of Theorem 1. Let F and G be defined as in Lemma 3. Then F and G
share (1, s + 2) except for the zeros and poles of a(z) and so

N(r, 1; F ) = N(r, 1; G) + S(r, f).

Suppose

Φ =
1
F

(
G
′

G− 1
− F

′

F − 1

)
=

G

F

(
G
′

G− 1
− G

′

G

)
−

(
F
′

F − 1
− F

′

F

)
. (3.1)

We now consider the following two cases:
Case 1: Φ ≡ 0.
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On integration we get
F − 1 ≡ c(G− 1), (3.2)

where c is a nonzero constant. This implies that N(r,∞; f) = S(r, f). Let c 6= 1.
Then from (3.2) we get

1
F
≡ 1

c− 1

(
c
G

F
− 1

)
. (3.3)

Now using (1.3), (3.3) and Lemma 1 we get

nT (r, f) = T (r, F ) + O(1)

≤ T (r,
G

F
) + S(r, f)

= N(r,∞;
[P (f)](k)

P (f)
) + m(r,∞;

[P (f)](k)

P (f)
) + S(r, f)

≤ Nk(r, 0; P (f)) + kN(r,∞; f) + S(r, f)

≤ Nk(r, 0; f l
1P1(f1)) + S(r, f)

≤ k N(r, 0; f1) + m T (r, f1) + S(r, f)

≤ (k + m) T (r, f) + S(r, f),

which is impossible since n > k + m + 1.

Hence c = 1. From (3.2) we get F ≡ G, i.e.,

f l
1P1(f1) ≡ [f l

1P1(f1)](k). (3.4)

We now prove that P1(ω1) = biω
i
1 6≡ 0 for some i ∈ {0, 1, . . . , m}. On the contrary

we assume that P1(ω1) = bmωm
1 + bm−1ω

m−1
1 + · · · + b1ω1 + b0, where at least

two of b0, b1, . . . , bm−1, bm are nonzero. Without loss of generality, we assume that
bs, bt 6= 0, where s 6= t, s, t = 0, 1, 2, . . . , m.

From (3.4) it is clear that f1 is an entire function. Also since l > k + 1, it
follows from (3.4) that 0 is a Picard Exceptional Value of f1. So we have f1 = eα,
where α is a non-constant entire function. Then by induction we get

bi[f l+i
1 − (f l+i

1 )(k)] = ti(α′, α′′, . . . , α(k))e(l+i)α, (3.5)

where ti(α′, α′′, . . . , α(k)) (i = 0, 1, 2, . . . , m) are differential polynomials in α′, α′′,
. . . , α(k).

From (3.4) and (3.5) we obtain

tm(α′, α′′, . . . , α(k))emα + · · ·+ t1(α′, α′′, . . . , α(k))eα + t0(α′, α′′, . . . , α(k)) ≡ 0.
(3.6)

Since T (r, ti) = S(r, f) (i = 0, 1, . . . ,m), by the Borel unicity theorem (Theorem
1.52 [12]), (3.6) gives ti ≡ 0 (i = 0, 1, . . . , m). As bs, bt 6= 0, from (3.5) we have

f l+s
1 ≡ (f l+s

1 )(k) and f l+t
1 ≡ (f l+t

1 )(k),
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which is a contradiction. Actually in this case we get two different forms of f1(z)
simultaneously. Hence P1(ω1) = biω

i
1 6≡ 0 for some i ∈ {0, 1, . . . ,m}. So from

(3.4) we get f l+i
1 ≡ [f l+i

1 ](k), where i ∈ {0, 1, . . . , m}. Clearly f1 assumes the form
f1(z) = ce

λ
l+i z, i.e.,

f(z) = ce
λ

l+iz + cl,

where c is a nonzero constant and λk = 1.
Case 2: Φ 6≡ 0.
Clearly F 6≡ G. Now from the fundamental estimate of logarithmic derivative

it follows that
m(r,Φ) = S(r, f). (3.7)

Also from (3.1) we get m(r,Φ) = S(r, f) and

m(r, F ) ≤ m(r,
1
Φ

) + S(r, f). (3.8)

If z0 is a pole of f with multiplicity p ≥ 1 such that a(z0) 6= 0,∞, then

Φ(z) = O((z − z0)p−1). (3.9)

Let z1 be a zero of f1 with multiplicity q such that a(z1) 6= 0,∞. Then z1 will
be a zero of F and F ′ with multiplicities lq and lq − 1 respectively. By the given
condition we have l > k + 1. On the other hand z1 will be a zero of G′ with
multiplicity lq − (k + 1). As a result we have

F ′(z)
F (z)− 1

− G′(z)
G(z)− 1

= O((z − z1)lq−(k+1)).

Consequently,
1

Φ(z)
= O((z − z1)k+1). (3.10)

Then z1 will be a pole of Φ with multiplicity k + 1.
Let zqi be a zero of f1 − αi, with multiplicity qi such that a(zqi) 6= 0,∞,

where i = 1, 2, . . . , r. Then zqi will be a zero of F with multiplicity liqi, where
i = 1, 2, . . . , r. Clearly zqi will be a zero of F

′
with multiplicity liqi − 1, where

i = 1, 2, . . . , r.
On the other hand zqi will be a zero of G with multiplicity liqi − k(i =

1, 2, . . . , r), provided liqi > k. Clearly zqi will be a zero of G′ with multiplicity
liqi − (k + 1)(i = 1, 2, . . . , r), provided liqi > k + 1. So when liqi > k + 1, we have

F ′z)
F (z)− 1

− G′(z)
G(z)− 1

= O((z − zqi)
liqi−(k+1)).

Therefore
1

Φ(z)
=

{
O((z − zqi)

k+1), if liqi > k + 1

O((z − zqi)
liqi), if liqi ≤ k + 1.

(3.11)

Consequently, zqi will be a pole of Φ with multiplicity at least l∗i , where i =
1, 2, . . . , r.
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Also, if z2 (a(z2) 6= 0,∞) is a common zero of F − 1 and G− 1 with different
multiplicities, then z2 will be a pole of Φ. Thus

N(r,∞; Φ) ≤ (k+1)N(r, 0; f1)+
r∑

i=1

l∗i N(r, αi; f1)+N∗(r, 1; F, G)+S(r, f). (3.12)

Then from (3.1), (3.7), (3.9), (3.12), Lemmas 2 and 3 we get

N(r,∞; F )−N(r,∞;F ) ≤ N(r, 0;Φ) + S(r, f)

≤ T (r,
1
Φ

)−m(r,
1
Φ

) + S(r, f)

≤ T (r,Φ)−m(r,
1
Φ

) + S(r, f)

= N(r,∞; Φ) + m(r,Φ)−m(r,
1
Φ

) + S(r, f)

≤ (k + 1)N(r, 0; f1) +
r∑

i=1

l∗i N(r, αi; f1) + N∗(r, 1; F, G)−m(r,
1
Φ

) + S(r, f)

≤ (k + 1)N(r, 0; f1) +
( r∑

i=1

l∗i
)
T (r, f1) +

r + 2
r + 3

T (r, f)−m(r,
1
Φ

) + S(r, f).
(3.13)

Now using (3.8), (3.13) and Lemma 1 we get

n T (r, f) = (m + l)T (r, f) = T (r, F ) + O(1)

= N(r,∞;F ) + m(r, F ) + O(1)

≤ N(r,∞;F ) + m(r,
1
Φ

) + S(r, f)

≤ (k + 1)N(r, 0; f1) + N(r,∞;F ) +
( r∑

i=1

l∗i
)
T (r, f1) +

r + 2
r + 3

T (r, f) + S(r, f)

= (k + 1)N(r, 0; f1) + N(r,∞; f) +
( r∑

i=1

l∗i
)
T (r, f1) + r+2

r+3T (r, f) + S(r, f)

≤
(
k +

r∑
i=1

l∗i +
r + 2
r + 3

+ 2
)
T (r, f) + S(r, f),

which is impossible since n > k +
∑r

i=1 l∗i + 2 and 0 < r+2
r+3 < 1.

This completes the proof of the theorem.

4. An open question

Keeping other conditions intact can the sharing condition in Theorem 1 be
relaxed to (0, 2) so that conclusion remains the same?
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