AN ENGEL CONDITION OF GENERALIZED DERIVATIONS WITH ANNIHILATOR ON LIE IDEAL IN PRIME RINGS

Basudeb Dhara, Sukhendu Kar and Krishna Gopal Pradhan

Abstract

Let R be a prime ring with its Utumi ring of quotients $U, C=Z(U)$ extended centroid of R, F a nonzero generalized derivation of R, L a noncentral Lie ideal of R and $k \geq 2$ a fixed integer. Suppose that there exists $0 \neq a \in R$ such that $a\left[F\left(u^{n_{1}}\right), u^{n_{2}}, \ldots, u^{n_{k}}\right]=0$ for all $u \in L$, where $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ are fixed integers. Then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$, or R satisfies s_{4}, the standard identity in four variables.

1. Introduction

Let R be an associative ring. For $x, y \in R$, the commutator of x, y is denoted by $[x, y]$ and defined by $[x, y]=x y-y x$. A Lie ideal L of R is an additive subgroup of R such that $[L, R] \subseteq L$. The Engel type identity is defined by $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for all $x, y \in R$, where $k \geq 2$ is an integer. We denote $\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left[\left[x_{1}, x_{2}, \ldots, x_{n-1}\right], x_{n}\right]$ for all $x_{1}, x_{2}, \ldots, x_{n} \in R$, for every positive integer $n \geq 2$. The standard polynomial identity s_{4} in four variables is defined as $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{\sigma \in S_{4}}(-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$ where $(-1)^{\sigma}$ is +1 or -1 according to σ being an even or odd permutation in symmetric group S_{4}.

Throughout this paper, unless specifically stated, R will always represent a prime ring with center $Z(R)$, extended centroid C and U is its Utumi quotient ring. For the properties of U and C, we refer the reader to [1]. By d we mean a derivation of R.

A well known result proved by Posner [14] states that if the commutator $[d(x), x] \in Z(R)$ for all $x \in R$, then either $d=0$ or R is commutative. The result of Posner was generalized in many directions by a number of authors.

Lanski generalized the Posner's theorem by considering Engel condition in [9]. He proved that if L is a noncommutative Lie ideal of R such that $[d(x), x]_{k}=0$ for all $x \in L$, where $k \geq 1$ is a fixed integer, then $\operatorname{char}(R)=2$ and $R \subseteq M_{2}(K)$ for a field K.

[^0]Later in [8], Lanski studied the more general situation $\left[d\left(x^{t_{0}}\right), x^{t_{1}}, \ldots, x^{t_{n}}\right]=0$ for all $x \in I$, where I is a nonzero left ideal of semiprime $\operatorname{ring} R$ and $t_{0}, \ldots, t_{n} \geq 1$ are fixed integers. In particular, Lanski proved that if R is prime ring and d is nonzero, then R must be commutative.

In [5], Dhara et al. generalized the Lanski's result [8] replacing derivation by a generalized derivation. An additive map $F: R \rightarrow R$ is called generalized derivation, if there exists a derivation d of R such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. A significant example is a map of the form $F(x)=a x+x b$, for some $a, b \in R$; such generalized derivations are called inner. In [5], Dhara et al. proved that if $\left[F\left(u^{n_{1}}\right), u^{n_{2}}, \ldots, u^{n_{k}}\right]=0$ holds for all $u \in L$, where L is a noncentral Lie ideal of R, and $k \geq 2, n_{1}, \ldots, n_{k} \geq 1$ are fixed integers, then there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x \in R$, unless R satisfies s_{4}, the standard identity in four variables.

In [17], Shiue studied the left annihilator of the set $\left\{[d(u), u]_{k}=0, u \in L\right\}$, where L is a noncentral Lie ideal of $R, d \neq 0$ and $k \geq 1$. In case the annihilator is not zero, the conclusion is that R satisfies s_{4} and $\operatorname{char}(R)=2$. Moreover, Shiue [18] obtained the same conclusion in case the left annihilator of the set $\left\{\left[d\left(u^{n}\right), u^{n}\right]_{k}=\right.$ $0, u \in L\}$ is nonzero, where L is a noncentral Lie ideal of $R, d \neq 0$ and $k \geq 1, n \geq 1$. Recently, in [15] Scudo proved that if for some $0 \neq a \in R, a[F(x), x]_{k} \in Z(R)$ for all $x \in L$, where L is a noncentral Lie ideal, F a generalized derivation of R and $k \geq 1$ fixed integer, then one of the following holds: (1) there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$; (2) char $(R)=2$ and R satisfies s_{4}; (3) R satisfies s_{4} and there exist $q \in U$ and $\gamma \in C$ such that $F(x)=q x+x q+\gamma x$ for all $x \in R$.

Following this line of investigation, in this paper we prove the following theorems.

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U, $C=Z(U)$ extended centroid of R, F a nonzero generalized derivation of R, L a noncentral Lie ideal of R and $k \geq 2$ a fixed integer. Suppose that there exists $0 \neq$ $a \in R$ such that $a\left[F\left(u^{n_{1}}\right), u^{n_{2}}, \ldots, u^{n_{k}}\right]=0$ for all $u \in L$, where $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ are fixed integers. Then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$, or R satisfies s_{4}, the standard identity in four variables.

THEOREM 1.2. Let R be a prime ring of characteristic different from 2, with its Utumi ring of quotient U, C the extended centroid of R, F a nonzero generalized derivation of R and $k \geq 2$ a fixed integer. Suppose that there exists $0 \neq a \in R$ such that $a\left[F\left(x^{n_{1}}\right), x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0$ for all $x \in R$, where $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ are fixed integers. Then there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$.

In [16], Shiue studied the situation $\left[d\left(u^{m}\right) u^{n}-u^{p} \delta\left(u^{q}\right), u^{r}\right]_{k}=0$ for all $u \in L$, where m, n, p, q, k are fixed positive integers and d, δ two derivations of R and obtained that either R satisfies s_{4} or $d=\delta=0$. Our next theorem investigate the situation with left annihilator condition.

Theorem 1.2. Let R be a prime ring with its Utumi ring of quotients U, $C=Z(U)$ extended centroid of R, d and δ two nonzero derivations of R and
L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a\left[d\left(u^{n_{1}}\right) u^{n_{2}}-u^{n_{3}} \delta\left(u^{n_{4}}\right), u^{n_{5}}, \ldots, u^{n_{k}}\right]=0$ for all $u \in L$, where $k \geq 5$ and $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ are fixed integers. Then either $d=\delta=0$, or R satisfies s_{4}, the standard identity in four variables.

We need the following remarks:
REMARK 1. Let R be a prime ring and L a noncentral Lie ideal of R. If $\operatorname{char}(R) \neq 2$, by [2, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. If char $(R)=2$ and $\operatorname{dim}_{C} R C>4$ i.e., char $(R)=2$ and R does not satisfy s_{4}, then by [10, Theorem 13] there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. Thus if either char $(R) \neq 2$ or R does not satisfy s_{4}, then we may conclude that there exists a nonzero ideal I of R such that $[I, I] \subseteq L$.

REMARK 2. Let R be a prime ring and U be the Utumi quotient ring of R and $C=Z(U)$, the center of U (see [1] for more details). It is well known that any derivation of R can be uniquely extended to a derivation of U. In [11, Theorem 3], Lee proved that every generalized derivation g on a dense right ideal of R can be uniquely extended to a generalized derivation of U. Furthermore, the extended generalized derivation g has the form $g(x)=a x+d(x)$ for all $x \in U$, where $a \in U$ and d is a derivation of U.

Remark 3. Let R be a prime ring and U be its Utumi quotient ring and $C=Z(U)$. Let $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, the countable set consisting of the noncommuting indeterminates $x_{1}, \ldots, x_{n}, \ldots$. Consider $T=U *_{C} C\{X\}$, the free product over C of the C-algebra U and the free C-algebra $C\{X\}$.

The elements of T are called the generalized polynomials with coefficients in U. By a nontrivial generalized polynomial, we mean a nonzero element of T. An element $m \in T$ of the form $m=q_{0} y_{1} q_{1} y_{2} q_{2} \ldots y_{n} q_{n}$, where $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\} \subseteq U$ and $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \subseteq X$, is called a monomial. $q_{0}, q_{1}, \ldots, q_{n}$ are called the coefficients of m. Each $f \in T$ can be represented as a finite sum of monomials.

Note that if I is a non-zero ideal of R, then I, R and U satisfy the same generalized polynomial identities with coefficients in U. For more details about these objects we refer the reader to [1] and [3].

2. Main Results

We begin with two lemmas.
Lemma 2.1. Let R be a prime ring with extended centroid C and $a, b, c \in R$. If $a \neq 0$ such that

$$
a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in R$, where $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ are fixed integers, then either R satisfies a nontrivial generalized polynomial identity (GPI) or $b, c \in C$.

Proof. Assume that R does not satisfy any nontrivial GPI. Let $T=U *_{C}$ $C\left\{x_{1}, x_{2}\right\}$, the free product of U and $C\left\{x_{1}, x_{2}\right\}$, the free C-algebra in noncom-
muting indeterminates x_{1} and x_{2}. If R is commutative, then R satisfies trivially a nontrivial GPI, a contradiction. So, R must be noncommutative.

Then,
$a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0 \in T$.
If $c \notin C$, then c and 1 are linearly independent over C. Thus, (1) implies

$$
a\left[x_{1}, x_{2}\right]^{n_{3}+n_{4}+\cdots+n_{k}} c=0
$$

in T implying $c=0$, since $a \neq 0$, a contradiction. Therefore, we conclude that $c \in C$ and hence (1) reduces to

$$
\begin{equation*}
a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}},\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0 \tag{2}
\end{equation*}
$$

in T. If $b \notin C$, then (2) implies

$$
a\left[x_{1}, x_{2}\right]^{n_{1}+n_{5}+n_{6}+\cdots+n_{k}} b\left[x_{1}, x_{2}\right]^{n_{2}}=0
$$

in T again implying $b=0$, a contradiction. Therefore, $b \in C$.
Lemma 2.2. Let R be a noncommutative prime ring with extended centroid C and $b, c \in R$. Suppose that there exists $0 \neq a \in R$ such that

$$
a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in R$, where $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ are all fixed integers. Then either $b, c \in C$, or R satisfies s_{4}.

Proof. Suppose that R does not satisfy s_{4}. We have that R satisfies generalized polynomial identity

$$
\begin{align*}
& f\left(x_{1}, x_{2}\right)= \\
& a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] . \tag{3}
\end{align*}
$$

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain $b, c \in C$ and we are done. So, we assume that R satisfies a nontrivial GPI. Since R and U satisfy the same generalized polynomial identities (see [3]), U satisfies $f\left(x_{1}, x_{2}\right)$. In case C is infinite, we have $f\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Moreover, both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed algebras [4]. Hence, replacing R by U or $U \otimes_{C} \bar{C}$ according to C finite or infinite, without loss of generality we may assume that $C=Z(R)$ and R is C-algebra centrally closed. By Martindale's theorem [13], R is then a primitive ring having nonzero socle $\operatorname{soc}(R)$ with C as the associated division ring. Hence, by Jacobson's theorem [6, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

If $\operatorname{dim}_{C} V=2$, then $R \cong M_{2}(C)$. This implies that R satisfies s_{4}, a contradiction. So let $\operatorname{dim}_{C} V \geq 3$.

We show that for any $v \in V, v$ and $c v$ are linearly C-dependent. Suppose that v and $c v$ are linearly independent for some $v \in V$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $u \in V$ such that $v, c v, u$ are linearly C-independent set of vectors. By density, there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=v, \quad x_{1} c v=0, \quad x_{1} u=c v ; \quad x_{2} v=0, \quad x_{2} c v=u, \quad x_{2} u=0
$$

Then

$$
\begin{aligned}
0 & =a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] v \\
& =a c v .
\end{aligned}
$$

This implies that if $a c v \neq 0$, then by contradiction we may conclude that v and $c v$ are linearly C-dependent. Now choose $v \in V$ such that v and $c v$ are linearly C-independent. Set $W=\operatorname{Span}_{C}\{v, c v\}$. Then $a c v=0$. Let $a c \neq 0$. Then, there exists $w \in V$ such that $a c w \neq 0$ and then $a c(v-w)=a c w \neq 0$. By the previous argument we have that $w, c w$ are linearly C-dependent and $(v-w), c(v-w)$ too. Thus there exist $\alpha, \beta \in C$ such that $c w=\alpha w$ and $c(v-w)=\beta(v-w)$. Then $c v=\beta(v-w)+c w=\beta(v-w)+\alpha w$ i.e., $(\alpha-\beta) w=c v-\beta v \in W$. Now $\alpha=\beta$ implies that $c v=\beta v$, a contradiction. Hence $\alpha \neq \beta$ and so $w \in W$. Again, if $u \in V$ with $a c u=0$ then $a c(w+u) \neq 0$. So, $w+u \in W$ forcing $u \in W$. Thus it is observed that $w \in V$ with $a c w \neq 0$ implies $w \in W$ and $u \in V$ with acu $=0$ implies $u \in W$. This implies that $V=W$ i.e., $\operatorname{dim}_{C} V=2$, a contradiction.

Hence, v and $c v$ are linearly C-dependent for all $v \in V$, unless $a c=0$. Thus for each $v \in V, c v=\alpha_{v} v$ for some $\alpha_{v} \in C$. It is very easy to prove that α_{v} is independent of the choice of $v \in V$. Thus we can write $c v=\alpha v$ for all $v \in V$ and $\alpha \in C$ fixed. Now let $r \in R, v \in V$. Since $c v=\alpha v$,

$$
[c, r] v=(c r) v-(r c) v=c(r v)-r(c v)=\alpha(r v)-r(\alpha v)=0 .
$$

Thus $[c, r] v=0$ for all $v \in V$ i.e., $[c, r] V=0$. Since $[c, r]$ acts faithfully as a linear transformation on the vector space $V,[c, r]=0$ for all $r \in R$. Therefore, $c \in Z(R)$, unless $a c=0$. Now let $a c=0$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $w \in V$ such that $v, c v, w$ are linearly C-independent set of vectors. By density, there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=v, \quad x_{1} c v=0, \quad x_{1} w=v+c v ; \quad x_{2} v=0, \quad x_{2} c v=w, \quad x_{2} w=0 .
$$

Then

$$
\begin{aligned}
0 & =a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] v \\
& =a v
\end{aligned}
$$

Then by the above argument, since $a \neq 0, c \in C$.
Now our hypothesis (3) becomes

$$
a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}},\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in R$. Let for any $v \in V, v$ and $b v$ are linearly C-independent. Since $\operatorname{dim}_{C} V \geq 3$, there exists $w \in V$ such that $v, b v, w$ are linearly C-independent set of vectors. By density, there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=0, \quad x_{1} b v=v, \quad x_{1} w=b v ; \quad x_{2} v=b v, \quad x_{2} b v=w, \quad x_{2} w=0
$$

which implies $0=a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}},\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] v=a b v$. By the same argument as earlier we have either $b \in C$ or $a b=0$.

Let $a b=0$. Again by density, there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=0, \quad x_{1} b v=v, \quad x_{1} w=v+b v ; \quad x_{2} v=b v, \quad x_{2} b v=w, \quad x_{2} w=0
$$

Then $\left[x_{1}, x_{2}\right] v=\left(x_{1} x_{2}-x_{2} x_{1}\right) v=v,\left[x_{1}, x_{2}\right] b v=\left(x_{1} x_{2}-x_{2} x_{1}\right) b v=v$ and hence

$$
0=a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}},\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] v=-a v
$$

Again, by the same argument as earlier we conclude either $b \in C$ or $a=0$. Since $a \neq 0, b \in C$.

Proof of Theorem 1.1. Suppose that R does not satisfy s_{4}. Since L is a noncentral Lie ideal of R, by Remark 1 , there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence, by our assumption, we have,

$$
a\left[F\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right),\left[x_{1}, x_{2}\right]^{n_{2}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in I$. Since I, R and U satisfy the same generalized polynomial identities (see [3]) as well as the same differential identities (see [12]), they also satisfy the same generalized differential identities. Hence,

$$
a\left[F\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right),\left[x_{1}, x_{2}\right]^{n_{2}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in U$. By Remark 2, there exist $b \in U$ and a derivation d of U such that $F(x)=b x+d(x)$ for all $x \in U$. Hence, U satisfies

$$
\begin{equation*}
a\left[b\left[x_{1}, x_{2}\right]^{n_{1}}+d\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right),\left[x_{1}, x_{2}\right]^{n_{2}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0 . \tag{4}
\end{equation*}
$$

Now we divide the proof into two cases:
Case I: Let for some $p \in U, d(x)=[p, x]$ for all $x \in U$ that is, d is an inner derivation of U. Then from (4), we obtain that U satisfies

$$
a\left[(b+p)\left[x_{1}, x_{2}\right]^{n_{1}}-\left[x_{1}, x_{2}\right]^{n_{1}} p,\left[x_{1}, x_{2}\right]^{n_{2}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

that is
$a\left[\left((b+p),\left[x_{1}, x_{2}\right]^{n_{2}}\right]\left[x_{1}, x_{2}\right]^{n_{1}}-\left[x_{1}, x_{2}\right]^{n_{1}}\left[p,\left[x_{1}, x_{2}\right]^{n_{2}}\right],\left[x_{1}, x_{2}\right]^{n_{3}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0$. By Lemma 2.2, since R and so U does not satisfy s_{4}, we have $b+p, p \in C$. This implies $F(x)=b x$ for all $x \in U$ and so for all $x \in R$, where $b \in C$. Thus the conclusion is obtained.

Case II: Next assume that d is not inner derivation of U. Then by Kharchenko's theorem [7], we have from (4) that U satisfies

$$
\begin{align*}
& a\left[b\left[x_{1}, x_{2}\right]^{n_{1}}+\right. \\
& \left.\sum_{i=0}^{n_{1}-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n_{1}-1-i},\left[x_{1}, x_{2}\right]^{n_{2}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0 . \tag{5}
\end{align*}
$$

Since R and so U is noncommutative, there exists some $q \in U$ such that $q \notin C$. Now replacing y_{1} with $\left[q, x_{1}\right]$ and y_{2} with $\left[q, x_{2}\right]$ in (5), where $q \notin C$, we can write that U satisfies

$$
a\left[(b+q)\left[x_{1}, x_{2}\right]^{n_{1}}-\left[x_{1}, x_{2}\right]^{n_{1}} q,\left[x_{1}, x_{2}\right]^{n_{2}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

Then by same argument as earlier of inner derivation case, we have $q \in C$, a contradiction. Thus the proof of theorem is complete.

Proof of Theorem 1.2. By Theorem 1.1, we consider only the case when R satisfies s_{4}. In this case R is a PI-ring, and so there exists a field K such that $R \subseteq$ $M_{2}(K)$ and both R and $M_{2}(K)$ satisfy the same GPI. Let F be inner generalized derivation on R. Then $F(x)=b x+x c$ for all $x \in R$. So our hypothesis becomes

$$
a\left[b x^{n_{1}}+x^{n_{1}} c, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0
$$

Here R is a dense ring of K-linear transformations over a vector space V. Our first aim is to show that for any $v \in V, c v$ and v are linearly K-dependent. If not, Assume there exists $v \neq 0$, such that $\{v, c v\}$ is linearly K-independent. By the density of R, there exists $x \in R$ such that $x v=0$ and $x c v=c v$. So we have

$$
0=a\left[b x^{n_{1}}+x^{n_{1}} c, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right] v=a c v
$$

Of course for any $u \in V,\{u, v\}$ linearly K-dependent implies $a c u=0$. Let $a c \neq$ 0 . Then there exists $w \in V$ such that $a c w \neq 0$ and so $\{w, v\}$ are linearly K independent. Also $a c(w+v)=a c w \neq 0$ and $a c(w-v)=a c w \neq 0$. By the above argument, it follows that w and $c w$ are linearly K-dependent, as are $\{w+v, c(w+v)\}$ and $\{w-v, c(w-v)\}$. Therefore, there exist $\alpha_{w}, \alpha_{w+v}, \alpha_{w-v} \in K$ such that

$$
c w=\alpha_{w} w, \quad c(w+v)=\alpha_{w+v}(w+v), \quad c(w-v)=\alpha_{w-v}(w-v)
$$

In other words, we have

$$
\begin{equation*}
\alpha_{w} w+c v=\alpha_{w+v} w+\alpha_{w+v} v \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{w} w-c v=\alpha_{w-v} w-\alpha_{w-v} v \tag{7}
\end{equation*}
$$

By comparing (6) with (7) we get both

$$
\begin{equation*}
\left(2 \alpha_{w}-\alpha_{w+v}-\alpha_{w-v}\right) w+\left(\alpha_{w-v}-\alpha_{w+v}\right) v=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
2 c v=\left(\alpha_{w+v}-\alpha_{w-v}\right) w+\left(\alpha_{w+v}+\alpha_{w-v}\right) v \tag{9}
\end{equation*}
$$

By (8), and since $\{w, v\}$ are K-independent and $\operatorname{char}(K) \neq 2$, we have $\alpha_{w}=$ $\alpha_{w+v}=\alpha_{w-v}$. Thus by (9) it follows $2 c v=2 \alpha_{w} v$. This leads to a contradiction with the fact that $\{v, c v\}$ is linear K-independent. Therefore, v and $c v$ are linearly K-dependent for all $v \in V$, unless $a c=0$.

Now let $a c=0$. By the density of R, there exists $x \in R$ such that $x v=0$ and $x c v=v+c v$. Then we have $0=a\left[b x^{n_{1}}+x^{n_{1}} c, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right] v=a v$. By the same argument as above, since $a \neq 0, v$ and $c v$ are linearly K-dependent for all $v \in V$. Thus in any case we have v and $c v$ are linearly K-dependent for all $v \in V$. Then for each $v \in V, c v=\alpha_{v} v$ for some $\alpha_{v} \in K$. It is very easy to prove that α_{v} is independent of the choice of $v \in V$. Thus we can write $c v=\alpha v$ for all $v \in V$, where $\alpha \in K$ is fixed. Now let $r \in R, v \in V$. Since $c v=\alpha v$,

$$
[c, r] v=(c r) v-(r c) v=c(r v)-r(c v)=\alpha(r v)-r(\alpha v)=0 .
$$

Thus $[c, R] V=0$. Since $[c, R]$ acts faithfully as a linear transformation on the vector space $V,[c, R]=0$. Therefore, $c \in Z(R)$.

Therefore our identity reduces to

$$
\begin{equation*}
a\left[b, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right] x^{n_{1}}=0 \tag{10}
\end{equation*}
$$

for all $x \in R$. Let us assume that there exists $0 \neq v \in V$ such that $b v$ and v are linearly K-independent. By density of R there exists $x \in R$ such that $x v=$ $v, x b v=0$. Then we have $0=a\left[b, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right] x^{n_{1}}=a b v$. By the same argument, either $b \in Z(R)$ or $a b=0$.

Now let $a b=0$. In this case we put $x=e_{11}$ in (10). Then we have $0=a\left[b, e_{11}, e_{11}, \ldots, e_{11}\right] e_{11}=a\left[b, e_{11}\right] e_{11}=a e_{11} b e_{11}$, since $a b=0$. This implies $a_{21} b_{11}=0=a_{11} b_{11}$. Similarly, by putting $x=e_{22}$ in (10), we get $a_{22} b_{22}=0=a_{12} b_{22}$. Moreover, $a b=0$ implies

$$
\begin{aligned}
& a_{11} b_{11}+a_{12} b_{21}=0, \\
& a_{11} b_{12}+a_{12} b_{22}=0, \\
& a_{21} b_{11}+a_{22} b_{21}=0, \\
& a_{21} b_{12}+a_{22} b_{22}=0 .
\end{aligned}
$$

Using these facts we get from above that $a_{12} b_{21}=a_{11} b_{12}=a_{22} b_{21}=a_{21} b_{12}=0$. Now we assert that b is diagonal. If not, then at least one of non-diagonal elements of b must be nonzero. Without loss of generality, let us assume that $b_{12} \neq 0$. Then $a_{11}=a_{21}=0$. For any automorphism θ of $R, \theta(a)$ and $\theta(b)$ satisfy the same property of a and b. Let $\theta(x)=\left(1+e_{21}\right) x\left(1-e_{21}\right)$. Denote by $\theta(a)_{i j}$ the (i, j)-entry of $\theta(a)$ and by $\theta(b)_{i j}$ the (i, j)-entry of $\theta(b)$. Now $\theta(b)_{12}=b_{12} \neq 0$ implies that $\theta(a)_{11}=\theta(a)_{21}=0$, that is $0=\theta(a)_{11}=-a_{12}$ and $0=\theta(a)_{21}=-a_{12}-a_{22}=-a_{22}$. Thus $a=0$, a contradiction. Therefore, b is a diagonal matrix.

Now since we have

$$
\theta(a)\left[\theta(b), x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right] x^{n_{1}}=0
$$

with $\theta(a) \neq 0$ and $\theta(a) \theta(b)=\theta(a b)=0, \theta(b)$ is also diagonal that is, $0=\theta(b)_{21}=$ $b_{11}-b_{22}$ implying $b_{11}=b_{22}$. Therefore $b \in Z(R)$. Moreover, in this case $b=0$, since if $b \neq 0$ then $a b=0$ implies $a=0$, which is a contradiction. Therefore, $F(x)=c x$ for all $x \in R$, where $c \in C$.

Next assume that $F(x)=b x+d(x)$, where d is not inner derivation of R. In this case our hypothesis reduces to

$$
a\left[b x^{n_{1}}+d\left(x^{n_{1}}\right), x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0
$$

that is

$$
a\left[b x^{n_{1}}+\sum_{i=0}^{n_{1}-1} x^{i} d(x) x^{n_{1}-i-1}, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0
$$

for all $x \in R$. By Kharchenko's theorem [7], R satisfies

$$
a\left[b x^{n_{1}}+\sum_{i=0}^{n_{1}-1} x^{i} y x^{n_{1}-i-1}, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0
$$

Now replacing y by $[q, x]$, where $q \notin C$, we have

$$
a\left[b x^{n_{1}}+\left[q, x^{n_{1}}\right], x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0
$$

that is

$$
a\left[(b+q) x^{n_{1}}-x^{n_{1}} q, x^{n_{2}}, x^{n_{3}}, \ldots, x^{n_{k}}\right]=0
$$

for all $x \in R$. Then by above arguments, $q \in C$, which is a contradiction.
Proof of Theorem 1.3. Suppose that R does not satisfy s_{4}. Since L is a noncentral Lie ideal of R, by Remark 1 , there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence, by our assumption, we have,

$$
a\left[d\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right)\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}} \delta\left(\left[x_{1}, x_{2}\right]^{n_{4}}\right),\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in I$. Since I, R and U satisfy the same differential identities (see [12]),

$$
a\left[d\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right)\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}} \delta\left(\left[x_{1}, x_{2}\right]^{n_{4}}\right),\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in U$.
Now we divide the proof into two following cases:
CASE I: Let $d(x)=[b, x]$ for all $x \in U$ and $\delta(x)=[c, x]$ for all $x \in U$, are two inner derivations of U, where $b, c \in U$. Then from (11), we have

$$
\left.a\left[\left[b,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[c,\left[x_{1}, x_{2}\right]^{n_{4}}\right)\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in U$. By Lemma 2.2, we conclude that $b, c \in C$, implying $d=\delta=0$.
Case II: Let d and δ are not both inner derivations of U.
Sub-Case i: Let d and δ be C-dependent modulo inner derivations of U. Then there exist $\alpha, \beta \in C$ such that $\alpha d+\beta \delta=a d_{p}$, where $a d_{p}(x)=[p, x]$ for all $x \in U$.

If $\alpha \neq 0$, then $d=\lambda \delta+a d_{q}$, where $\lambda=-\beta \alpha^{-1}$ and $q=p \alpha^{-1}$. Then (11) gives

$$
\begin{aligned}
a\left[\lambda \delta\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right)\left[x_{1}, x_{2}\right]^{n_{2}}\right. & +\left[q,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}} \\
& \left.-\left[x_{1}, x_{2}\right]^{n_{3}} \delta\left(\left[x_{1}, x_{2}\right]^{n_{4}}\right),\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
\end{aligned}
$$

for all $x_{1}, x_{2} \in U$. Applying Kharchenko's theorem [7], we can write

$$
\begin{array}{r}
a\left[\lambda\left(\sum_{i=0}^{n_{1}-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y, x_{2}\right]+\left[x_{1}, z\right]\right)\left[x_{1}, x_{2}\right]^{n_{1}-i-1}\right)\left[x_{1}, x_{2}\right]^{n_{2}}+\left[q,\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}\right. \\
\left.-\left[x_{1}, x_{2}\right]^{n_{3}}\left(\sum_{i=0}^{n_{4}-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y, x_{2}\right]+\left[x_{1}, z\right]\right)\left[x_{1}, x_{2}\right]^{n_{4}-i-1}\right),\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] \\
=0 \tag{12}
\end{array}
$$

for all $x_{1}, x_{2} \in U$. Since L is noncentral, U must be noncommutative and hence there exits $q^{\prime} \in U$ such that $q^{\prime} \notin C$. Now replacing y with $\left[q^{\prime}, x_{1}\right]$ and z with $\left[q^{\prime}, x_{2}\right]$ in (12), we get

$$
\begin{aligned}
a\left[[\lambda q ^ { \prime } + q , [x _ { 1 } , x _ { 2 }] ^ { n _ { 1 } }] \left[x_{1},\right.\right. & \left.x_{2}\right]^{n_{2}} \\
& \left.\quad-\left[x_{1}, x_{2}\right]^{n_{3}}\left[q^{\prime},\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
\end{aligned}
$$

for all $x_{1}, x_{2} \in U$. By Lemma 2.2, we get $q^{\prime} \in C$, a contradiction.

If $\alpha=0$, then $\delta=a d_{p^{\prime}}$, where $p^{\prime}=p \beta^{-1}$. Then (11) becomes

$$
a\left[d\left(\left[x_{1}, x_{2}\right]^{n_{1}}\right)\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[p^{\prime},\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in U$. Since δ is inner, d can not be inner. Hence by Kharchenko's theorem [7], we can write

$$
\begin{align*}
& a\left[\left(\sum_{i=0}^{n_{1}-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y, x_{2}\right]+\left[x_{1}, z\right]\right)\left[x_{1}, x_{2}\right]^{n_{1}-i-1}\right)\left[x_{1}, x_{2}\right]^{n_{2}}\right. \\
& \left.\quad-\left[x_{1}, x_{2}\right]^{n_{3}}\left[p^{\prime},\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0 \tag{13}
\end{align*}
$$

for all $x_{1}, x_{2}, y, z \in U$. Now replacing y with $\left[q^{\prime}, x_{1}\right]$ and z with $\left[q^{\prime}, x_{2}\right]$ in (13), for some $q^{\prime} \notin C$, we get

$$
a\left[\left[q^{\prime},\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[p^{\prime},\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in U$. Then by Lemma 2.2, we get $q^{\prime} \in C$, a contradiction.
Sub-CASE II: Let d and δ be C-independent modulo inner derivations of U. Then applying Kharchenko's theorem [7] to (11), we have

$$
\begin{aligned}
& a\left[\left(\sum_{i=0}^{n_{1}-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y, x_{2}\right]+\left[x_{1}, z\right]\right)\left[x_{1}, x_{2}\right]^{n_{1}-i-1}\right)\left[x_{1}, x_{2}\right]^{n_{2}}\right. \\
& \left.-\left[x_{1}, x_{2}\right]^{n_{3}}\left(\sum_{i=0}^{n_{4}-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[u, x_{2}\right]+\left[x_{1}, v\right]\right)\left[x_{1}, x_{2}\right]^{n_{4}-i-1}\right),\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right] \\
& =0
\end{aligned}
$$

for all $x_{1}, x_{2}, y, z, u, v \in U$. Then again replacing y and u with $\left[q^{\prime}, x_{1}\right]$ and z and v with $\left[q^{\prime}, x_{2}\right]$ in (12), for some $q^{\prime} \notin C$, (14) becomes

$$
a\left[\left[q^{\prime},\left[x_{1}, x_{2}\right]^{n_{1}}\right]\left[x_{1}, x_{2}\right]^{n_{2}}-\left[x_{1}, x_{2}\right]^{n_{3}}\left[q^{\prime},\left[x_{1}, x_{2}\right]^{n_{4}}\right],\left[x_{1}, x_{2}\right]^{n_{5}}, \ldots,\left[x_{1}, x_{2}\right]^{n_{k}}\right]=0
$$

for all $x_{1}, x_{2} \in U$. Then again by Lemma 2.2, we get $q^{\prime} \in C$, a contradiction.
Acknowledgement. This work is supported by a grant from National Board for Higher Mathematics (NBHM), India, Grant No. is NBHM/R.P. 26/2012/Fresh/1745 dated 15.11.12.

REFERENCES

[1] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Pure and Applied Math., 196, Marcel Dekker, New York, 1996.
[2] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
[3] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3) (1988), 723-728.
[4] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63.
[5] B. Dhara, A. Ali and D. Das, Engel conditions of generalized derivations on Lie ideals and left sided ideals in prime rings and Banach algebras, Afrika Mat., doi: 10.1007/s13370-016-0418-z
[6] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
[7] V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic 17 (1978), 155168.
[8] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (2) (1997), 339-345.
[9] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (3) (1993), 731-734.
[10] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1) (1972), 117-136.
[11] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999), 40574073.
[12] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 27-38.
[13] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[14] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[15] G. Scudo, Generalized derivations with annihilating and centralizing Engel conditions on Lie ideals, Rend. Cir. Mat. Palermo 61 (3) (2012), 343-353.
[16] W. K. Shiue, Note on derivations with Engel condition on Lie ideals, Bull. Inst. Math. Acad. Sinica 27 (4) (1999), 247-251.
[17] W. K. Shiue, Annihilators of derivations with Engel conditions on Lie ideals, Rend. Circ. Mat. Palermo 52 (3) (2003), 505-509.
[18] W. K. Shiue, Annihilators of derivations with Engel conditions on one sided ideals, Publ. Math. Debrecen 62 1-2 (2003), 237-243.
(received 09.06.2015; in revised form 08.04.2016; available online 25.04.2016)
B.D., Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B. (INDIA)
E-mail: basu_dhara@yahoo.com
S.K., Department of Mathematics, Jadavpur University, Kolkata-700032, (INDIA)

E-mail: karsukhendu@yahoo.co.in
K.G.P., Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B. (INDIA)
E-mail: kgp.math@gmail.com

[^0]: 2010 Mathematics Subject Classification: 16W25, 16N60, 16R50
 Keywords and phrases: Prime ring; generalized derivation; extended centroid; Utumi quotient ring; Engel condition.

