AN ENGEL CONDITION OF GENERALIZED DERIVATIONS WITH ANNIHILATOR ON LIE IDEAL IN PRIME RINGS

Basudeb Dhara, Sukhendu Kar and Krishna Gopal Pradhan

Abstract. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) extended centroid of R, F a nonzero generalized derivation of R, L a noncentral Lie ideal of R and $k \ge 2$ a fixed integer. Suppose that there exists $0 \ne a \in R$ such that $a[F(u^{n_1}), u^{n_2}, \ldots, u^{n_k}] = 0$ for all $u \in L$, where $n_1, n_2, \ldots, n_k \ge 1$ are fixed integers. Then either there exists $\lambda \in C$ such that $F(x) = \lambda x$ for all $x \in R$, or R satisfies s_4 , the standard identity in four variables.

1. Introduction

Let R be an associative ring. For $x, y \in R$, the commutator of x, y is denoted by [x, y] and defined by [x, y] = xy - yx. A Lie ideal L of R is an additive subgroup of R such that $[L, R] \subseteq L$. The Engel type identity is defined by $[x, y]_k = [[x, y]_{k-1}, y]$ for all $x, y \in R$, where $k \ge 2$ is an integer. We denote $[x_1, x_2, \ldots, x_n] = [[x_1, x_2, \ldots, x_{n-1}], x_n]$ for all $x_1, x_2, \ldots, x_n \in R$, for every positive integer $n \ge 2$. The standard polynomial identity s_4 in four variables is defined as $s_4(x_1, x_2, x_3, x_4) = \sum_{\sigma \in S_4} (-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$ where $(-1)^{\sigma}$ is +1 or -1 according to σ being an even or odd permutation in symmetric group S_4 .

Throughout this paper, unless specifically stated, R will always represent a prime ring with center Z(R), extended centroid C and U is its Utumi quotient ring. For the properties of U and C, we refer the reader to [1]. By d we mean a derivation of R.

A well known result proved by Posner [14] states that if the commutator $[d(x), x] \in Z(R)$ for all $x \in R$, then either d = 0 or R is commutative. The result of Posner was generalized in many directions by a number of authors.

Lanski generalized the Posner's theorem by considering Engel condition in [9]. He proved that if L is a noncommutative Lie ideal of R such that $[d(x), x]_k = 0$ for all $x \in L$, where $k \ge 1$ is a fixed integer, then char (R) = 2 and $R \subseteq M_2(K)$ for a field K.

²⁰¹⁰ Mathematics Subject Classification: 16W25, 16N60, 16R50

Keywords and phrases: Prime ring; generalized derivation; extended centroid; Utumi quotient ring; Engel condition.

¹⁶⁴

Later in [8], Lanski studied the more general situation $[d(x^{t_0}), x^{t_1}, \ldots, x^{t_n}] = 0$ for all $x \in I$, where I is a nonzero left ideal of semiprime ring R and $t_0, \ldots, t_n \ge 1$ are fixed integers. In particular, Lanski proved that if R is prime ring and d is nonzero, then R must be commutative.

In [5], Dhara et al. generalized the Lanski's result [8] replacing derivation by a generalized derivation. An additive map $F: R \to R$ is called generalized derivation, if there exists a derivation d of R such that F(xy) = F(x)y + xd(y) for all $x, y \in R$. A significant example is a map of the form F(x) = ax + xb, for some $a, b \in R$; such generalized derivations are called inner. In [5], Dhara et al. proved that if $[F(u^{n_1}), u^{n_2}, \ldots, u^{n_k}] = 0$ holds for all $u \in L$, where L is a noncentral Lie ideal of R, and $k \geq 2, n_1, \ldots, n_k \geq 1$ are fixed integers, then there exists $\alpha \in C$ such that $F(x) = \alpha x$ for all $x \in R$, unless R satisfies s_4 , the standard identity in four variables.

In [17], Shiue studied the left annihilator of the set $\{[d(u), u]_k = 0, u \in L\}$, where L is a noncentral Lie ideal of $R, d \neq 0$ and $k \geq 1$. In case the annihilator is not zero, the conclusion is that R satisfies s_4 and char(R) = 2. Moreover, Shiue [18] obtained the same conclusion in case the left annihilator of the set $\{[d(u^n), u^n]_k =$ $0, u \in L\}$ is nonzero, where L is a noncentral Lie ideal of $R, d \neq 0$ and $k \geq 1, n \geq 1$. Recently, in [15] Scudo proved that if for some $0 \neq a \in R$, $a[F(x), x]_k \in Z(R)$ for all $x \in L$, where L is a noncentral Lie ideal, F a generalized derivation of R and $k \geq 1$ fixed integer, then one of the following holds: (1) there exists $\lambda \in C$ such that $F(x) = \lambda x$ for all $x \in R$; (2) char (R) = 2 and R satisfies s_4 ; (3) R satisfies s_4 and there exist $q \in U$ and $\gamma \in C$ such that $F(x) = qx + xq + \gamma x$ for all $x \in R$.

Following this line of investigation, in this paper we prove the following theorems.

THEOREM 1.1. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) extended centroid of R, F a nonzero generalized derivation of R, L a noncentral Lie ideal of R and $k \ge 2$ a fixed integer. Suppose that there exists $0 \ne a \in R$ such that $a[F(u^{n_1}), u^{n_2}, \ldots, u^{n_k}] = 0$ for all $u \in L$, where $n_1, n_2, \ldots, n_k \ge 1$ are fixed integers. Then either there exists $\lambda \in C$ such that $F(x) = \lambda x$ for all $x \in R$, or R satisfies s_4 , the standard identity in four variables.

THEOREM 1.2. Let R be a prime ring of characteristic different from 2, with its Utumi ring of quotient U, C the extended centroid of R, F a nonzero generalized derivation of R and $k \ge 2$ a fixed integer. Suppose that there exists $0 \ne a \in R$ such that $a[F(x^{n_1}), x^{n_2}, x^{n_3}, \ldots, x^{n_k}] = 0$ for all $x \in R$, where $n_1, n_2, \ldots, n_k \ge 1$ are fixed integers. Then there exists $\lambda \in C$ such that $F(x) = \lambda x$ for all $x \in R$.

In [16], Shiue studied the situation $[d(u^m)u^n - u^p\delta(u^q), u^r]_k = 0$ for all $u \in L$, where m, n, p, q, k are fixed positive integers and d, δ two derivations of R and obtained that either R satisfies s_4 or $d = \delta = 0$. Our next theorem investigate the situation with left annihilator condition.

THEOREM 1.2. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) extended centroid of R, d and δ two nonzero derivations of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a[d(u^{n_1})u^{n_2} - u^{n_3}\delta(u^{n_4}), u^{n_5}, \ldots, u^{n_k}] = 0$ for all $u \in L$, where $k \geq 5$ and $n_1, n_2, \ldots, n_k \geq 1$ are fixed integers. Then either $d = \delta = 0$, or R satisfies s_4 , the standard identity in four variables.

We need the following remarks:

REMARK 1. Let R be a prime ring and L a noncentral Lie ideal of R. If char $(R) \neq 2$, by [2, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. If char (R) = 2 and $\dim_C RC > 4$ i.e., char (R) = 2 and R does not satisfy s_4 , then by [10, Theorem 13] there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. Thus if either char $(R) \neq 2$ or R does not satisfy s_4 , then we may conclude that there exists a nonzero ideal I of R such that $[I, I] \subseteq L$.

REMARK 2. Let R be a prime ring and U be the Utumi quotient ring of Rand C = Z(U), the center of U (see [1] for more details). It is well known that any derivation of R can be uniquely extended to a derivation of U. In [11, Theorem 3], Lee proved that every generalized derivation g on a dense right ideal of R can be uniquely extended to a generalized derivation of U. Furthermore, the extended generalized derivation g has the form g(x) = ax + d(x) for all $x \in U$, where $a \in U$ and d is a derivation of U.

REMARK 3. Let R be a prime ring and U be its Utumi quotient ring and C = Z(U). Let $X = \{x_1, \ldots, x_n, \ldots\}$, the countable set consisting of the noncommuting indeterminates x_1, \ldots, x_n, \ldots . Consider $T = U *_C C\{X\}$, the free product over C of the C-algebra U and the free C-algebra $C\{X\}$.

The elements of T are called the generalized polynomials with coefficients in U. By a nontrivial generalized polynomial, we mean a nonzero element of T. An element $m \in T$ of the form $m = q_0y_1q_1y_2q_2\ldots y_nq_n$, where $\{q_0, q_1, \ldots, q_n\} \subseteq U$ and $\{y_1, y_2, \ldots, y_n\} \subseteq X$, is called a monomial. q_0, q_1, \ldots, q_n are called the coefficients of m. Each $f \in T$ can be represented as a finite sum of monomials.

Note that if I is a non-zero ideal of R, then I, R and U satisfy the same generalized polynomial identities with coefficients in U. For more details about these objects we refer the reader to [1] and [3].

2. Main Results

We begin with two lemmas.

LEMMA 2.1. Let R be a prime ring with extended centroid C and $a, b, c \in R$. If $a \neq 0$ such that

$$a\Big[[b, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[c, [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}\Big] = 0$$

for all $x_1, x_2 \in R$, where $n_1, n_2, \ldots, n_k \ge 1$ are fixed integers, then either R satisfies a nontrivial generalized polynomial identity (GPI) or $b, c \in C$.

Proof. Assume that R does not satisfy any nontrivial GPI. Let $T = U *_C C\{x_1, x_2\}$, the free product of U and $C\{x_1, x_2\}$, the free C-algebra in noncom-

muting indeterminates x_1 and x_2 . If R is commutative, then R satisfies trivially a nontrivial GPI, a contradiction. So, R must be noncommutative.

Then,

$$a\Big[[b, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[c, [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}\Big] = 0 \in T.$$
(1)

If $c \notin C$, then c and 1 are linearly independent over C. Thus, (1) implies

$$a[x_1, x_2]^{n_3 + n_4 + \dots + n_k} c = 0$$

in T implying c = 0, since $a \neq 0$, a contradiction. Therefore, we conclude that $c \in C$ and hence (1) reduces to

$$a\Big[[b, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2}, [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}\Big] = 0$$
(2)

in T. If $b \notin C$, then (2) implies

$$a[x_1, x_2]^{n_1 + n_5 + n_6 + \dots + n_k} b[x_1, x_2]^{n_2} = 0$$

in T again implying b = 0, a contradiction. Therefore, $b \in C$.

LEMMA 2.2. Let R be a noncommutative prime ring with extended centroid C and $b, c \in R$. Suppose that there exists $0 \neq a \in R$ such that

$$a\Big[[b, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[c, [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}\Big] = 0$$

for all $x_1, x_2 \in R$, where $n_1, n_2, \ldots, n_k \ge 1$ are all fixed integers. Then either $b, c \in C$, or R satisfies s_4 .

Proof. Suppose that R does not satisfy s_4 . We have that R satisfies generalized polynomial identity

$$f(x_1, x_2) = a\left[[b, [x_1, x_2]^{n_1}] [x_1, x_2]^{n_2} - [x_1, x_2]^{n_3} [c, [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k} \right].$$
(3)

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain $b, c \in C$ and we are done. So, we assume that R satisfies a nontrivial GPI. Since R and Usatisfy the same generalized polynomial identities (see [3]), U satisfies $f(x_1, x_2)$. In case C is infinite, we have $f(x_1, x_2) = 0$ for all $x_1, x_2 \in U \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Moreover, both U and $U \otimes_C \overline{C}$ are prime and centrally closed algebras [4]. Hence, replacing R by U or $U \otimes_C \overline{C}$ according to C finite or infinite, without loss of generality we may assume that C = Z(R) and R is C-algebra centrally closed. By Martindale's theorem [13], R is then a primitive ring having nonzero socle soc(R) with C as the associated division ring. Hence, by Jacobson's theorem [6, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

If $\dim_C V = 2$, then $R \cong M_2(C)$. This implies that R satisfies s_4 , a contradiction. So let $\dim_C V \ge 3$.

We show that for any $v \in V$, v and cv are linearly C-dependent. Suppose that v and cv are linearly independent for some $v \in V$. Since $\dim_C V \ge 3$, there exists $u \in V$ such that v, cv, u are linearly C-independent set of vectors. By density, there exist $x_1, x_2 \in R$ such that

$$x_1v = v, \quad x_1cv = 0, \quad x_1u = cv; \quad x_2v = 0, \quad x_2cv = u, \quad x_2u = 0.$$

Then
$$0 = a \Big[[b, [x_1, x_2]^{n_1}] [x_1, x_2]^{n_2} - [x_1, x_2]^{n_3} [c, [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k} \Big] v$$
$$= acv$$

This implies that if $acv \neq 0$, then by contradiction we may conclude that v and cv are linearly C-dependent. Now choose $v \in V$ such that v and cv are linearly C-independent. Set $W = Span_C\{v, cv\}$. Then acv = 0. Let $ac \neq 0$. Then, there exists $w \in V$ such that $acw \neq 0$ and then $ac(v - w) = acw \neq 0$. By the previous argument we have that w, cw are linearly C-dependent and (v - w), c(v - w) too. Thus there exist $\alpha, \beta \in C$ such that $cw = \alpha w$ and $c(v - w) = \beta(v - w)$. Then $cv = \beta(v - w) + cw = \beta(v - w) + \alpha w$ i.e., $(\alpha - \beta)w = cv - \beta v \in W$. Now $\alpha = \beta$ implies that $cv = \beta v$, a contradiction. Hence $\alpha \neq \beta$ and so $w \in W$. Again, if $u \in V$ with acu = 0 then $ac(w + u) \neq 0$. So, $w + u \in W$ forcing $u \in W$. Thus it is observed that $w \in V$ with $acw \neq 0$ implies $w \in W$ and $u \in V$ with acu = 0 implies $u \in W$. This implies that V = W i.e., $\dim_C V = 2$, a contradiction.

Hence, v and cv are linearly C-dependent for all $v \in V$, unless ac = 0. Thus for each $v \in V$, $cv = \alpha_v v$ for some $\alpha_v \in C$. It is very easy to prove that α_v is independent of the choice of $v \in V$. Thus we can write $cv = \alpha v$ for all $v \in V$ and $\alpha \in C$ fixed. Now let $r \in R$, $v \in V$. Since $cv = \alpha v$,

$$[c, r]v = (cr)v - (rc)v = c(rv) - r(cv) = \alpha(rv) - r(\alpha v) = 0$$

Thus [c, r]v = 0 for all $v \in V$ i.e., [c, r]V = 0. Since [c, r] acts faithfully as a linear transformation on the vector space V, [c, r] = 0 for all $r \in R$. Therefore, $c \in Z(R)$, unless ac = 0. Now let ac = 0. Since $\dim_C V \ge 3$, there exists $w \in V$ such that v, cv, w are linearly *C*-independent set of vectors. By density, there exist $x_1, x_2 \in R$ such that

$$x_1v = v$$
, $x_1cv = 0$, $x_1w = v + cv$; $x_2v = 0$, $x_2cv = w$, $x_2w = 0$

Then

$$0 = a \Big[[b, [x_1, x_2]^{n_1}] [x_1, x_2]^{n_2} - [x_1, x_2]^{n_3} [c, [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k} \Big] v$$

= av.

Then by the above argument, since $a \neq 0, c \in C$.

Now our hypothesis (3) becomes

$$a\left| [b, [x_1, x_2]^{n_1}] [x_1, x_2]^{n_2}, [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k} \right| = 0$$

for all $x_1, x_2 \in R$. Let for any $v \in V$, v and bv are linearly *C*-independent. Since $\dim_C V \geq 3$, there exists $w \in V$ such that v, bv, w are linearly *C*-independent set of vectors. By density, there exist $x_1, x_2 \in R$ such that

$$x_1v = 0$$
, $x_1bv = v$, $x_1w = bv$; $x_2v = bv$, $x_2bv = w$, $x_2w = 0$,

which implies $0 = a[[b, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2}, [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}]v = abv$. By the same argument as earlier we have either $b \in C$ or ab = 0.

Let ab = 0. Again by density, there exist $x_1, x_2 \in R$ such that

$$x_1v = 0$$
, $x_1bv = v$, $x_1w = v + bv$; $x_2v = bv$, $x_2bv = w$, $x_2w = 0$.

Then $[x_1, x_2]v = (x_1x_2 - x_2x_1)v = v$, $[x_1, x_2]bv = (x_1x_2 - x_2x_1)bv = v$ and hence

$$0 = a \Big[[b, [x_1, x_2]^{n_1}] [x_1, x_2]^{n_2}, [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k} \Big] v = -av.$$

Again, by the same argument as earlier we conclude either $b \in C$ or a = 0. Since $a \neq 0, b \in C$.

Proof of Theorem 1.1. Suppose that R does not satisfy s_4 . Since L is a noncentral Lie ideal of R, by Remark 1, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence, by our assumption, we have,

$$a[F([x_1, x_2]^{n_1}), [x_1, x_2]^{n_2}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in I$. Since I, R and U satisfy the same generalized polynomial identities (see [3]) as well as the same differential identities (see [12]), they also satisfy the same generalized differential identities. Hence,

$$a[F([x_1, x_2]^{n_1}), [x_1, x_2]^{n_2}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in U$. By Remark 2, there exist $b \in U$ and a derivation d of U such that F(x) = bx + d(x) for all $x \in U$. Hence, U satisfies

$$a[b[x_1, x_2]^{n_1} + d([x_1, x_2]^{n_1}), [x_1, x_2]^{n_2}, \dots, [x_1, x_2]^{n_k}] = 0.$$
(4)

Now we divide the proof into two cases:

CASE I: Let for some $p \in U$, d(x) = [p, x] for all $x \in U$ that is, d is an inner derivation of U. Then from (4), we obtain that U satisfies

$$a[(b+p)[x_1,x_2]^{n_1} - [x_1,x_2]^{n_1}p, [x_1,x_2]^{n_2}, \dots, [x_1,x_2]^{n_k}] = 0$$

that is

 $a[[(b+p), [x_1, x_2]^{n_2}][x_1, x_2]^{n_1} - [x_1, x_2]^{n_1}[p, [x_1, x_2]^{n_2}], [x_1, x_2]^{n_3}, \dots, [x_1, x_2]^{n_k}] = 0.$ By Lemma 2.2, since R and so U does not satisfy s_4 , we have $b + p, p \in C$. This implies F(x) = bx for all $x \in U$ and so for all $x \in R$, where $b \in C$. Thus the conclusion is obtained.

CASE II: Next assume that d is not inner derivation of U. Then by Kharchenko's theorem [7], we have from (4) that U satisfies

$$a[b[x_1, x_2]^{n_1} + \sum_{i=0}^{n_1-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n_1-1-i}, [x_1, x_2]^{n_2}, \dots, [x_1, x_2]^{n_k}] = 0.$$
(5)

Since R and so U is noncommutative, there exists some $q \in U$ such that $q \notin C$. Now replacing y_1 with $[q, x_1]$ and y_2 with $[q, x_2]$ in (5), where $q \notin C$, we can write that U satisfies

$$a[(b+q)[x_1, x_2]^{n_1} - [x_1, x_2]^{n_1}q, [x_1, x_2]^{n_2}, \dots, [x_1, x_2]^{n_k}] = 0.$$

Then by same argument as earlier of inner derivation case, we have $q \in C$, a contradiction. Thus the proof of theorem is complete.

Proof of Theorem 1.2. By Theorem 1.1, we consider only the case when R satisfies s_4 . In this case R is a PI-ring, and so there exists a field K such that $R \subseteq M_2(K)$ and both R and $M_2(K)$ satisfy the same GPI. Let F be inner generalized derivation on R. Then F(x) = bx + xc for all $x \in R$. So our hypothesis becomes

$$a[bx^{n_1} + x^{n_1}c, x^{n_2}, x^{n_3}, \dots, x^{n_k}] = 0.$$

Here R is a dense ring of K-linear transformations over a vector space V. Our first aim is to show that for any $v \in V$, cv and v are linearly K-dependent. If not, Assume there exists $v \neq 0$, such that $\{v, cv\}$ is linearly K-independent. By the density of R, there exists $x \in R$ such that xv = 0 and xcv = cv. So we have

$$0 = a[bx^{n_1} + x^{n_1}c, x^{n_2}, x^{n_3}, \dots, x^{n_k}]v = acv.$$

Of course for any $u \in V$, $\{u, v\}$ linearly K-dependent implies acu = 0. Let $ac \neq 0$. Then there exists $w \in V$ such that $acw \neq 0$ and so $\{w, v\}$ are linearly K-independent. Also $ac(w + v) = acw \neq 0$ and $ac(w - v) = acw \neq 0$. By the above argument, it follows that w and cw are linearly K-dependent, as are $\{w+v, c(w+v)\}$ and $\{w - v, c(w - v)\}$. Therefore, there exist $\alpha_w, \alpha_{w+v}, \alpha_{w-v} \in K$ such that

$$cw = \alpha_w w, \quad c(w+v) = \alpha_{w+v}(w+v), \quad c(w-v) = \alpha_{w-v}(w-v).$$

In other words, we have

$$\alpha_w w + cv = \alpha_{w+v} w + \alpha_{w+v} v \tag{6}$$

and

$$a_w w - cv = \alpha_{w-v} w - \alpha_{w-v} v. \tag{7}$$

By comparing (6) with (7) we get both

a

$$(2\alpha_w - \alpha_{w+v} - \alpha_{w-v})w + (\alpha_{w-v} - \alpha_{w+v})v = 0$$

$$\tag{8}$$

and

$$2cv = (\alpha_{w+v} - \alpha_{w-v})w + (\alpha_{w+v} + \alpha_{w-v})v.$$
 (9)

By (8), and since $\{w, v\}$ are K-independent and $char(K) \neq 2$, we have $\alpha_w = \alpha_{w+v} = \alpha_{w-v}$. Thus by (9) it follows $2cv = 2\alpha_w v$. This leads to a contradiction with the fact that $\{v, cv\}$ is linear K-independent. Therefore, v and cv are linearly K-dependent for all $v \in V$, unless ac = 0.

Now let ac = 0. By the density of R, there exists $x \in R$ such that xv = 0 and xcv = v + cv. Then we have $0 = a[bx^{n_1} + x^{n_1}c, x^{n_2}, x^{n_3}, \ldots, x^{n_k}]v = av$. By the same argument as above, since $a \neq 0$, v and cv are linearly K-dependent for all $v \in V$. Thus in any case we have v and cv are linearly K-dependent for all $v \in V$. Then for each $v \in V$, $cv = \alpha_v v$ for some $\alpha_v \in K$. It is very easy to prove that α_v is independent of the choice of $v \in V$. Thus we can write $cv = \alpha v$ for all $v \in V$, where $\alpha \in K$ is fixed. Now let $r \in R$, $v \in V$. Since $cv = \alpha v$,

$$[c, r]v = (cr)v - (rc)v = c(rv) - r(cv) = \alpha(rv) - r(\alpha v) = 0$$

Thus [c, R]V = 0. Since [c, R] acts faithfully as a linear transformation on the vector space V, [c, R] = 0. Therefore, $c \in Z(R)$.

Therefore our identity reduces to

$$a[b, x^{n_2}, x^{n_3}, \dots, x^{n_k}]x^{n_1} = 0$$
(10)

for all $x \in R$. Let us assume that there exists $0 \neq v \in V$ such that bv and v are linearly K-independent. By density of R there exists $x \in R$ such that xv = v, xbv = 0. Then we have $0 = a[b, x^{n_2}, x^{n_3}, \ldots, x^{n_k}]x^{n_1} = abv$. By the same argument, either $b \in Z(R)$ or ab = 0.

Now let ab = 0. In this case we put $x = e_{11}$ in (10). Then we have $0 = a[b, e_{11}, e_{11}, \dots, e_{11}]e_{11} = a[b, e_{11}]e_{11} = ae_{11}be_{11}$, since ab = 0. This implies $a_{21}b_{11} = 0 = a_{11}b_{11}$. Similarly, by putting $x = e_{22}$ in (10), we get $a_{22}b_{22} = 0 = a_{12}b_{22}$. Moreover, ab = 0 implies

$$a_{11}b_{11} + a_{12}b_{21} = 0,$$

$$a_{11}b_{12} + a_{12}b_{22} = 0,$$

$$a_{21}b_{11} + a_{22}b_{21} = 0,$$

$$a_{21}b_{12} + a_{22}b_{22} = 0.$$

Using these facts we get from above that $a_{12}b_{21} = a_{11}b_{12} = a_{22}b_{21} = a_{21}b_{12} = 0$. Now we assert that *b* is diagonal. If not, then at least one of non-diagonal elements of *b* must be nonzero. Without loss of generality, let us assume that $b_{12} \neq 0$. Then $a_{11} = a_{21} = 0$. For any automorphism θ of R, $\theta(a)$ and $\theta(b)$ satisfy the same property of *a* and *b*. Let $\theta(x) = (1+e_{21})x(1-e_{21})$. Denote by $\theta(a)_{ij}$ the (i, j)-entry of $\theta(a)$ and by $\theta(b)_{ij}$ the (i, j)-entry of $\theta(b)$. Now $\theta(b)_{12} = b_{12} \neq 0$ implies that $\theta(a)_{11} = \theta(a)_{21} = 0$, that is $0 = \theta(a)_{11} = -a_{12}$ and $0 = \theta(a)_{21} = -a_{12}-a_{22} = -a_{22}$. Thus a = 0, a contradiction. Therefore, *b* is a diagonal matrix.

Now since we have

$$\theta(a)[\theta(b), x^{n_2}, x^{n_3}, \dots, x^{n_k}]x^{n_1} = 0$$

with $\theta(a) \neq 0$ and $\theta(a)\theta(b) = \theta(ab) = 0$, $\theta(b)$ is also diagonal that is, $0 = \theta(b)_{21} = b_{11} - b_{22}$ implying $b_{11} = b_{22}$. Therefore $b \in Z(R)$. Moreover, in this case b = 0, since if $b \neq 0$ then ab = 0 implies a = 0, which is a contradiction. Therefore, F(x) = cx for all $x \in R$, where $c \in C$.

Next assume that F(x) = bx + d(x), where d is not inner derivation of R. In this case our hypothesis reduces to

$$a[bx^{n_1} + d(x^{n_1}), x^{n_2}, x^{n_3}, \dots, x^{n_k}] = 0$$

that is

$$a[bx^{n_1} + \sum_{i=0}^{n_1-1} x^i d(x) x^{n_1-i-1}, x^{n_2}, x^{n_3}, \dots, x^{n_k}] = 0$$

for all $x \in R$. By Kharchenko's theorem [7], R satisfies

$$a[bx^{n_1} + \sum_{i=0}^{n_1-1} x^i y x^{n_1-i-1}, x^{n_2}, x^{n_3}, \dots, x^{n_k}] = 0.$$

Now replacing y by [q, x], where $q \notin C$, we have

$$u[bx^{n_1} + [q, x^{n_1}], x^{n_2}, x^{n_3}, \dots, x^{n_k}] = 0$$

that is

$$a[(b+q)x^{n_1} - x^{n_1}q, x^{n_2}, x^{n_3}, \dots, x^{n_k}] = 0$$

for all $x \in R$. Then by above arguments, $q \in C$, which is a contradiction.

Proof of Theorem 1.3. Suppose that R does not satisfy s_4 . Since L is a noncentral Lie ideal of R, by Remark 1, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence, by our assumption, we have,

$$a[d([x_1, x_2]^{n_1})[x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}\delta([x_1, x_2]^{n_4}), [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in I$. Since I, R and U satisfy the same differential identities (see [12]), $a[d([x_1, x_2]^{n_1})[x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}\delta([x_1, x_2]^{n_4}), [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$ (11)

for all $x_1, x_2 \in U$.

Now we divide the proof into two following cases:

CASE I: Let d(x) = [b, x] for all $x \in U$ and $\delta(x) = [c, x]$ for all $x \in U$, are two inner derivations of U, where $b, c \in U$. Then from (11), we have

$$a[[b, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[c, [x_1, x_2]^{n_4})], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in U$. By Lemma 2.2, we conclude that $b, c \in C$, implying $d = \delta = 0$. CASE II: Let d and δ are not both inner derivations of U.

SUB-CASE I: Let d and δ be C-dependent modulo inner derivations of U. Then there exist $\alpha, \beta \in C$ such that $\alpha d + \beta \delta = ad_p$, where $ad_p(x) = [p, x]$ for all $x \in U$.

If $\alpha \neq 0$, then $d = \lambda \delta + ad_q$, where $\lambda = -\beta \alpha^{-1}$ and $q = p\alpha^{-1}$. Then (11) gives

$$a[\lambda\delta([x_1, x_2]^{n_1})[x_1, x_2]^{n_2} + [q, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}\delta([x_1, x_2]^{n_4}), [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in U$. Applying Kharchenko's theorem [7], we can write

$$a[\lambda(\sum_{i=0}^{n_{1}-1}[x_{1},x_{2}]^{i}([y,x_{2}]+[x_{1},z])[x_{1},x_{2}]^{n_{1}-i-1})[x_{1},x_{2}]^{n_{2}} + [q,[x_{1},x_{2}]^{n_{1}}][x_{1},x_{2}]^{n_{2}} - [x_{1},x_{2}]^{n_{3}}(\sum_{i=0}^{n_{4}-1}[x_{1},x_{2}]^{i}([y,x_{2}]+[x_{1},z])[x_{1},x_{2}]^{n_{4}-i-1}), [x_{1},x_{2}]^{n_{5}}, \dots, [x_{1},x_{2}]^{n_{k}}] = 0 \quad (12)$$

for all $x_1, x_2 \in U$. Since L is noncentral, U must be noncommutative and hence there exits $q' \in U$ such that $q' \notin C$. Now replacing y with $[q', x_1]$ and z with $[q', x_2]$ in (12), we get

$$a[[\lambda q' + q, [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[q', [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in U$. By Lemma 2.2, we get $q' \in C$, a contradiction.

If $\alpha = 0$, then $\delta = ad_{p'}$, where $p' = p\beta^{-1}$. Then (11) becomes

$$a[d([x_1, x_2]^{n_1})[x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[p', [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$$

for all $x_1, x_2 \in U$. Since δ is inner, d can not be inner. Hence by Kharchenko's theorem [7], we can write

$$a[(\sum_{i=0}^{n_1-1} [x_1, x_2]^i ([y, x_2] + [x_1, z]) [x_1, x_2]^{n_1 - i - 1}) [x_1, x_2]^{n_2} - [x_1, x_2]^{n_3} [p', [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0 \quad (13)$$

for all $x_1, x_2, y, z \in U$. Now replacing y with $[q', x_1]$ and z with $[q', x_2]$ in (13), for some $q' \notin C$, we get

 $a[[q', [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[p', [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$

for all $x_1, x_2 \in U$. Then by Lemma 2.2, we get $q' \in C$, a contradiction.

SUB-CASE II: Let d and δ be C-independent modulo inner derivations of U. Then applying Kharchenko's theorem [7] to (11), we have

$$a[(\sum_{i=0}^{n_{1}-1} [x_{1}, x_{2}]^{i}([y, x_{2}] + [x_{1}, z])[x_{1}, x_{2}]^{n_{1}-i-1})[x_{1}, x_{2}]^{n_{2}} - [x_{1}, x_{2}]^{n_{3}}(\sum_{i=0}^{n_{4}-1} [x_{1}, x_{2}]^{i}([u, x_{2}] + [x_{1}, v])[x_{1}, x_{2}]^{n_{4}-i-1}), [x_{1}, x_{2}]^{n_{5}}, \dots, [x_{1}, x_{2}]^{n_{k}}]$$

$$= 0 \quad (14)$$

for all $x_1, x_2, y, z, u, v \in U$. Then again replacing y and u with $[q', x_1]$ and z and v with $[q', x_2]$ in (12), for some $q' \notin C$, (14) becomes

 $a[[q', [x_1, x_2]^{n_1}][x_1, x_2]^{n_2} - [x_1, x_2]^{n_3}[q', [x_1, x_2]^{n_4}], [x_1, x_2]^{n_5}, \dots, [x_1, x_2]^{n_k}] = 0$

for all $x_1, x_2 \in U$. Then again by Lemma 2.2, we get $q' \in C$, a contradiction.

ACKNOWLEDGEMENT. This work is supported by a grant from National Board for Higher Mathematics (NBHM), India, Grant No. is NBHM/R.P. 26/2012/Fresh/1745 dated 15.11.12.

REFERENCES

- K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, *Rings with generalized identities*, Pure and Applied Math., 196, Marcel Dekker, New York, 1996.
- [2] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259–267.
- [3] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3) (1988), 723–728.
- [4] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49–63.
- [5] B. Dhara, A. Ali and D. Das, Engel conditions of generalized derivations on Lie ideals and left sided ideals in prime rings and Banach algebras, Afrika Mat., doi: 10.1007/s13370-016-0418-z
- [6] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.

- [7] V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic 17 (1978), 155– 168.
- [8] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (2) (1997), 339–345.
- [9] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (3) (1993), 731–734.
- [10] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1) (1972), 117–136.
- [11] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999), 4057–4073.
- [12] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 27–38.
- [13] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
- [14] E. C. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [15] G. Scudo, Generalized derivations with annihilating and centralizing Engel conditions on Lie ideals, Rend. Cir. Mat. Palermo 61 (3) (2012), 343–353.
- [16] W. K. Shiue, Note on derivations with Engel condition on Lie ideals, Bull. Inst. Math. Acad. Sinica 27 (4) (1999), 247–251.
- [17] W. K. Shiue, Annihilators of derivations with Engel conditions on Lie ideals, Rend. Circ. Mat. Palermo 52 (3) (2003), 505–509.
- [18] W. K. Shiue, Annihilators of derivations with Engel conditions on one sided ideals, Publ. Math. Debrecen 62 1-2 (2003), 237–243.

(received 09.06.2015; in revised form 08.04.2016; available online 25.04.2016)

B.D., Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B. (INDIA)

E-mail: basu_dhara@yahoo.com

S.K., Department of Mathematics, Jadavpur University, Kolkata-700032, (INDIA)

E-mail: karsukhendu@yahoo.co.in

K.G.P., Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B. (INDIA)

E-mail: kgp.math@gmail.com