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PARITY RESULTS FOR 13-CORE PARTITIONS

Kuwali Das

Abstract. We find some interesting congruences modulo 2 for 13-core partitions.

1. Introduction

A partition λ = (λ1, λ2, · · · , λk) of a natural number n is a finite sequence of
non-increasing positive integer parts λi such that n =

∑k
i=1 λi. The Ferrers-Young

diagram of the partition λ of n is formed by arranging n nodes in k rows so that
the ith row has λi nodes. The nodes are labeled by row and column coordinates
as one would label the entries of a matrix. Let λ′j denote the number of nodes in
column j. The hook number H(i, j) of the (i, j) node is defined as the number of
nodes directly below and to the right of the node including the node itself. That
is, H(i, j) = λi + λ′j − j − i + 1. A partition λ is said to be a t-core if and only
if it has no hook numbers that are multiples of t. If at(n) denotes the number of
partitions of n that are t-cores, then the generating function for at(n) satisfies the
identity [9, Equation 2.1]

∞∑
n=0

at(n)qn =
(qt; qt)t

∞
(q; q)∞

, (1.1)

where as customary, for any complex numbers a and q with |q| < 1,

(a; q)∞ :=
∞∏

n=1

(1− aqn−1).

A number of results on at(n) have been proven by various mathematicians. Garvan,
Kim and Stanton [9] gave analytic and bijective proofs of the identity a5(5n+4) =
5a5(n). Granville and Ono [10] proved that for t ≥ 4, every natural number n has
a t-core, thereby settling a conjecture of Brauer regarding the existence of defect
zero characters for finite simple groups. E. X. W. Xia [15] established some new
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Ramanujan-type congruences modulo 2 and 4 for t-core partitions, (see [5,6,10,13–
15] for further results). In this paper, we prove the following parity results on
13-cores.

Theorem 1.1. We have
∞∑

n=0
a13 (104n + 6) qn ≡ (q; q)3∞ (mod 2)

and
∞∑

n=0
a13 (4(26n + i) + 2) qn ≡ 0 (mod 2),

where i = 0 or 2 ≤ i ≤ 25.

Theorem 1.2. Let n ≥ 0. Then for any positive integer k we have

a13

(
104 · 32kn + 13 · 32k − 7

) ≡ a13(104n + 6) (mod 2),

a13

(
104 · 52kn + 5 · 13 · 52k−1 + 1

3

)
≡ a13(104n + 6) (mod 2),

and

a13

(
104 · 72kn + 7 · (13 · 72k−1 − 1)

) ≡ a13(104n + 6) (mod 2).

Theorem 1.3. If p ≥ 5 is a prime with
(−13

p

)
= −1, then for all nonnegative

integers n and k we have

a13

(
4 · p2k+1(pn + j) + 7 · (p2k+2 − 1)

) ≡ 0 (mod 2),

where 1 ≤ j ≤ p− 1.

Theorem 1.4. If p ≥ 5 is a prime with
(−2

p

)
= −1, then for all nonnegative

integers n and k we have

a13

(
4 · p2k+1(pn + j) + 13 · p2k+2 − 7

) ≡ 0 (mod 2),

where 1 ≤ j ≤ p− 1.

2. Background

For |ab| < 1, Ramanujan’s general theta-function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2.

In this notation, Jacobi’s famous triple product identity [4, p. 35, Entry 19] takes
the form

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.
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Two important special cases of the above are

ψ(q) := f(q, q3) =
∞∑

n=0
qn(n+1)/2 =

(q2; q2)∞
(q; q2)∞

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞, (2.1)

where the last equality in (2.1) is Euler’s famous pentagonal number theorem. We
will also need the following results.

Lemma 2.1. [8, Theorem 2.2] For any prime p ≥ 5,

f(−q) =

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
3k2+k

2 f
(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1

24 f(−qp2
), (2.2)

where

±p− 1
6

:=





p− 1
6

, if p ≡ 1 (mod 6);

−p− 1
6

, if p ≡ −1 (mod 6).

Furthermore, if
−(p− 1)

2
≤ k ≤ (p− 1)

2
and k 6= (±p− 1)

6
, then

3k2 + k

2
6≡ p2 − 1

24
(mod p).

Lemma 2.2. [1] For any prime p ≥ 5, we have

f3(−q) =
p−1∑

k=0
k 6= p−1

2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn + 2k + 1)qpn pn+2k+1
2

+ p(−1)
p−1
2 q

p2−1
8 f3(−qp2

). (2.3)

Furthermore, if k 6= p− 1
2

and 0 ≤ k ≤ p− 1, then

k2 + k

2
6≡ p2 − 1

8
(mod p).

3. Congruences modulo 2 for 13-core partitions

Theorem 3.1. We have
∞∑

n=0
a13 (4n) qn ≡ (q; q)3∞(q13; q13)3∞ (mod 2)
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and
∞∑

n=0
a13 (4n + 2) qn ≡ q(q26; q26)3∞ (mod 2). (3.1)

Proof. For t > 1 a partition is called t-regular if none of its parts is divisible
by t, and we denote by bt(n) the number of t-regular partitions of n. Then the
generating function for bt(n) satisfies the identity

∞∑
n=0

bt(n)qn =
(qt; qt)∞
(q; q)∞

.

Putting t = 13 in (1.1), we have
∞∑

n=0
a13(n)qn =

(q13; q13)13∞
(q; q)∞

. (3.2)

Using binomial expansion and then taking congruence modulo 2, we have

(q; q)2∞ ≡ (q2; q2)∞ (mod 2). (3.3)

Employing (3.3) in (3.2), we find that
∞∑

n=0
a13(n)qn ≡ (q26; q26)6∞(q13; q13)∞

(q; q)∞
≡ (q26; q26)6∞

∞∑
n=0

b13(n)qn (mod 2). (3.4)

Extracting the terms involving even powers of q from both sides of (3.4) yields
∞∑

n=0
a13(2n)qn ≡ (q13; q13)6∞

∞∑
n=0

b13(2n)qn (mod 2). (3.5)

From [7, Theorem 2] we recall that
∞∑

n=0
b13(2n)qn ≡ (q2; q2)3∞ + q3(q26; q26)3∞ (mod 2). (3.6)

Applying (3.6) in (3.5), we obtain
∞∑

n=0
a13(2n)qn ≡ (q26; q26)3∞(q2; q2)3∞ + q3(q26; q26)6∞ (mod 2).

Extracting the even and odd parts respectively, we obtain
∞∑

n=0
a13(4n)q2n ≡ (q26; q26)3∞(q2; q2)3∞ (mod 2)

and ∞∑
n=0

a13(4n + 2)q2n+1 ≡ q3(q26; q26)6∞ ≡ q3(q52; q52)3∞ (mod 2).

Replacing q2 by q in the above two congruences, we can easily obtain the required
result.

Theorem 3.2. We have
∞∑

n=0
a13 (104n + 6) qn ≡ (q; q)3∞ (mod 2) (3.7)
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and ∞∑
n=0

a13 (4(26n + i) + 2) qn ≡ 0 (mod 2),

where i = 0 or 2 ≤ i ≤ 25.

Proof. This follows directly from the fact that the series on the right hand side
of (3.1) only involves powers of q that are congruent to 1 modulo 26.

Theorem 3.3. Let n ≥ 0. Then for any positive integer k we have

a13

(
104 · 32kn + 13 · 32k − 7

) ≡ a13(104n + 6) (mod 2), (3.8)

a13

(
104 · 52kn + 5 · 13 · 52k−1 + 1

3

)
≡ a13(104n + 6) (mod 2) (3.9)

and

a13

(
104 · 72kn + 7 · (13 · 72k−1 − 1)

) ≡ a13(104n + 6) (mod 2).
(3.10)

Proof. Note that for a non-zero integer r and a nonnegative integer n, the
general partition function pr(n) is defined as the coefficient of qn in the expansion
of (q; q)r

∞. From (3.7), we have
∞∑

n=0
a13 (104n + 6) qn ≡

∞∑
n=0

p3(n)qn (mod 2). (3.11)

From [3], we have

p3

(
32kn +

32k − 1
8

)
= (−3)kp3(n),

p3

(
52kn +

52k − 1
24

)
= 5kp3(n)

and

p3

(
72kn +

72k − 1
8

)
= (−7)kp3(n).

Employing the above three identities in (3.11), we can easily obtain (3.8), (3.9) and
(3.10).

Theorem 3.4. If p ≥ 5 is a prime with
(−13

p

)
= −1, then for all nonnegative

integers k we have
∞∑

n=0
a13

(
4 · p2kn + 7 · (p2k − 1)

)
qn ≡ (q; q)3∞(q13; q13)3∞ (mod 2). (3.12)

Proof. Note first that (3.1) is the k = 0 case of (3.12). Now suppose (3.12)
holds for some k ≥ 0, and consider the congruence

(`2 + `)
2

+ 13 · (m2 + m)
2

≡ 14 · (p2 − 1)
8

(mod p), (3.13)



180 K. Das

for 0 ≤ `, m ≤ p− 1. Since the above congruence is equivalent to

(2` + 1)2 + 13 · (2m + 1)2 ≡ 0 (mod p),

and
(−13

p

)
= −1, it follows that (3.13) has only one solution, namely k = m =

(p− 1)/2. Therefore, extracting the terms involving qpn+7( p2−1
4 ) from both sides of

(3.12), by (2.3) we deduce that
∞∑

n=0
a13

(
4 ·p2k(pn+7(

p2 − 1
4

))+7 ·(p2k−1)
)
qn ≡ (qp; qp)3∞(q13p; q13p)3∞ (mod 2).

(3.14)
Again, extracting terms involving qpn from both sides of the above congruence and
replacing qp by q, we obtain

∞∑
n=0

a13

(
4 · p2k+2n + 7 · (p2k+2 − 1)

)
qn ≡ (q; q)3∞(q13; q13)3∞ (mod 2),

which is the k + 1 case of (3.12).
We observe that in (3.14), there are no terms involving qpn+j with 1 ≤ j ≤ p−1.

This implies the following result.

Theorem 3.5. If p ≥ 5 is a prime with
(−13

p

)
= −1, then for all nonnegative

integers k we have

a13

(
4 · p2k+1(pn + j) + 7 · (p2k+2 − 1)

) ≡ 0 (mod 2),

where 1 ≤ j ≤ p− 1.

Theorem 3.6. If p ≥ 5 is a prime with
(−2

p

)
= −1, then for all nonnegative

integers k we have
∞∑

n=0
a13

(
104 · p2kn + 13 · p2k − 7

)
qn ≡ (q; q)∞(q2; q2)∞ (mod 2). (3.15)

Proof. Note that (3.7) is the k = 0 case of (3.15). Now suppose (3.15) holds
for some k ≥ 0, and consider the congruence

(3`2 + `)
2

+ 2 · (3m2 + m)
2

≡ 3 · (p2 − 1)
24

(mod p), (3.16)

for 0 ≤ `, m ≤ p− 1. The above congruence is equivalent to

(6` + 1)2 + 2 · (6m + 1)2 ≡ 0 (mod p),

and
(−2

p

)
= −1, it follows that (3.16) has only one solution, namely ` = m =

(±p − 1)/6. Therefore, extracting the terms involving qpn+( p2−1
8 ) from both sides

of (3.15), by (2.2) we deduce that
∞∑

n=0
a13

(
104 · p2k(pn+

p2 − 1
8

)+13 · p2k− 7
)
qn ≡ (qp; qp)∞(q13p; q13p)∞ (mod 2).

(3.17)
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Extracting the terms involving qpn from both sides of (3.17) and replacing qp by q,
we obtain

∞∑
n=0

a13

(
104 · p2k+2n + 13 · p2k+2 − 7

)
qn ≡ (q; q)∞(q2; q2)∞ (mod 2),

which is the k + 1 case of (3.15).
From (3.17), we can easily obtain the following result.

Theorem 3.7. If p ≥ 5 is a prime with
(−2

p

)
= −1, then for all nonnegative

integers k we have

a13

(
4 · p2k+1(pn + j) + 13 · p2k+2 − 7

) ≡ 0 (mod 2),

where 1 ≤ j ≤ p− 1.
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