PARITY RESULTS FOR 13-CORE PARTITIONS

Kuwali Das

Abstract

We find some interesting congruences modulo 2 for 13-core partitions.

1. Introduction

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right)$ of a natural number n is a finite sequence of non-increasing positive integer parts λ_{i} such that $n=\sum_{i=1}^{k} \lambda_{i}$. The Ferrers-Young diagram of the partition λ of n is formed by arranging n nodes in k rows so that the $i^{\text {th }}$ row has λ_{i} nodes. The nodes are labeled by row and column coordinates as one would label the entries of a matrix. Let λ_{j}^{\prime} denote the number of nodes in column j. The hook number $H(i, j)$ of the (i, j) node is defined as the number of nodes directly below and to the right of the node including the node itself. That is, $H(i, j)=\lambda_{i}+\lambda_{j}^{\prime}-j-i+1$. A partition λ is said to be a t-core if and only if it has no hook numbers that are multiples of t. If $a_{t}(n)$ denotes the number of partitions of n that are t-cores, then the generating function for $a_{t}(n)$ satisfies the identity [9, Equation 2.1]

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\frac{\left(q^{t} ; q^{t}\right)_{\infty}^{t}}{(q ; q)_{\infty}} \tag{1.1}
\end{equation*}
$$

where as customary, for any complex numbers a and q with $|q|<1$,

$$
(a ; q)_{\infty}:=\prod_{n=1}^{\infty}\left(1-a q^{n-1}\right)
$$

A number of results on $a_{t}(n)$ have been proven by various mathematicians. Garvan, Kim and Stanton [9] gave analytic and bijective proofs of the identity $a_{5}(5 n+4)=$ $5 a_{5}(n)$. Granville and Ono [10] proved that for $t \geq 4$, every natural number n has a t-core, thereby settling a conjecture of Brauer regarding the existence of defect zero characters for finite simple groups. E. X. W. Xia [15] established some new

[^0]Ramanujan-type congruences modulo 2 and 4 for t-core partitions, (see [5,6,10,1315] for further results). In this paper, we prove the following parity results on 13-cores.

Theorem 1.1. We have

$$
\sum_{n=0}^{\infty} a_{13}(104 n+6) q^{n} \equiv(q ; q)_{\infty}^{3}(\bmod 2)
$$

and

$$
\sum_{n=0}^{\infty} a_{13}(4(26 n+i)+2) q^{n} \equiv 0(\bmod 2)
$$

where $i=0$ or $2 \leq i \leq 25$.
Theorem 1.2. Let $n \geq 0$. Then for any positive integer k we have

$$
\begin{aligned}
a_{13}\left(104 \cdot 3^{2 k} n+13 \cdot 3^{2 k}-7\right) & \equiv a_{13}(104 n+6)(\bmod 2) \\
a_{13}\left(104 \cdot 5^{2 k} n+5 \cdot \frac{13 \cdot 5^{2 k-1}+1}{3}\right) & \equiv a_{13}(104 n+6)(\bmod 2)
\end{aligned}
$$

and

$$
a_{13}\left(104 \cdot 7^{2 k} n+7 \cdot\left(13 \cdot 7^{2 k-1}-1\right)\right) \equiv a_{13}(104 n+6)(\bmod 2)
$$

THEOREM 1.3. If $p \geq 5$ is a prime with $\left(\frac{-13}{p}\right)=-1$, then for all nonnegative integers n and k we have

$$
a_{13}\left(4 \cdot p^{2 k+1}(p n+j)+7 \cdot\left(p^{2 k+2}-1\right)\right) \equiv 0 \quad(\bmod 2)
$$

where $1 \leq j \leq p-1$.
THEOREM 1.4. If $p \geq 5$ is a prime with $\left(\frac{-2}{p}\right)=-1$, then for all nonnegative integers n and k we have

$$
a_{13}\left(4 \cdot p^{2 k+1}(p n+j)+13 \cdot p^{2 k+2}-7\right) \equiv 0 \quad(\bmod 2)
$$

where $1 \leq j \leq p-1$.

2. Background

For $|a b|<1$, Ramanujan's general theta-function $f(a, b)$ is defined by

$$
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}
$$

In this notation, Jacobi's famous triple product identity [4, p. 35, Entry 19] takes the form

$$
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}
$$

Two important special cases of the above are

$$
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}
$$

and

$$
\begin{equation*}
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty} \tag{2.1}
\end{equation*}
$$

where the last equality in (2.1) is Euler's famous pentagonal number theorem. We will also need the following results.

Lemma 2.1. [8, Theorem 2.2] For any prime $p \geq 5$,

$$
\begin{align*}
f(-q)=\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \pm p-1}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},\right. & \left.-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right) \tag{2.2}\\
& +(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f\left(-q^{p^{2}}\right)
\end{align*}
$$

where

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6}, & \text { if } p \equiv 1(\bmod 6) \\ \frac{-p-1}{6}, & \text { if } p \equiv-1(\bmod 6)\end{cases}
$$

Furthermore, if $\frac{-(p-1)}{2} \leq k \leq \frac{(p-1)}{2}$ and $k \neq \frac{(\pm p-1)}{6}$, then

$$
\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24} \quad(\bmod p) .
$$

Lemma 2.2. [1] For any prime $p \geq 5$, we have

$$
\begin{align*}
& f^{3}(-q)=\sum_{\substack{k=0 \\
k \neq \frac{p-1}{2}}}^{p-1}(-1)^{k} q^{\frac{k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n \frac{p n+2 k+1}{2}} \tag{2.3}\\
&+p(-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}} f^{3}\left(-q^{p^{2}}\right)
\end{align*}
$$

Furthermore, if $k \neq \frac{p-1}{2}$ and $0 \leq k \leq p-1$, then

$$
\frac{k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{8} \quad(\bmod p)
$$

3. Congruences modulo 2 for 13 -core partitions

Theorem 3.1. We have

$$
\sum_{n=0}^{\infty} a_{13}(4 n) q^{n} \equiv(q ; q)_{\infty}^{3}\left(q^{13} ; q^{13}\right)_{\infty}^{3}(\bmod 2)
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}(4 n+2) q^{n} \equiv q\left(q^{26} ; q^{26}\right)_{\infty}^{3}(\bmod 2) \tag{3.1}
\end{equation*}
$$

Proof. For $t>1$ a partition is called t-regular if none of its parts is divisible by t, and we denote by $b_{t}(n)$ the number of t-regular partitions of n. Then the generating function for $b_{t}(n)$ satisfies the identity

$$
\sum_{n=0}^{\infty} b_{t}(n) q^{n}=\frac{\left(q^{t} ; q^{t}\right)_{\infty}}{(q ; q)_{\infty}}
$$

Putting $t=13$ in (1.1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}(n) q^{n}=\frac{\left(q^{13} ; q^{13}\right)_{\infty}^{13}}{(q ; q)_{\infty}} \tag{3.2}
\end{equation*}
$$

Using binomial expansion and then taking congruence modulo 2, we have

$$
\begin{equation*}
(q ; q)_{\infty}^{2} \equiv\left(q^{2} ; q^{2}\right)_{\infty} \quad(\bmod 2) \tag{3.3}
\end{equation*}
$$

Employing (3.3) in (3.2), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}(n) q^{n} \equiv \frac{\left(q^{26} ; q^{26}\right)_{\infty}^{6}\left(q^{13} ; q^{13}\right)_{\infty}}{(q ; q)_{\infty}} \equiv\left(q^{26} ; q^{26}\right)_{\infty}^{6} \sum_{n=0}^{\infty} b_{13}(n) q^{n} \quad(\bmod 2) \tag{3.4}
\end{equation*}
$$

Extracting the terms involving even powers of q from both sides of (3.4) yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}(2 n) q^{n} \equiv\left(q^{13} ; q^{13}\right)_{\infty}^{6} \sum_{n=0}^{\infty} b_{13}(2 n) q^{n} \quad(\bmod 2) \tag{3.5}
\end{equation*}
$$

From [7, Theorem 2] we recall that

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{13}(2 n) q^{n} \equiv\left(q^{2} ; q^{2}\right)_{\infty}^{3}+q^{3}\left(q^{26} ; q^{26}\right)_{\infty}^{3} \quad(\bmod 2) \tag{3.6}
\end{equation*}
$$

Applying (3.6) in (3.5), we obtain

$$
\sum_{n=0}^{\infty} a_{13}(2 n) q^{n} \equiv\left(q^{26} ; q^{26}\right)_{\infty}^{3}\left(q^{2} ; q^{2}\right)_{\infty}^{3}+q^{3}\left(q^{26} ; q^{26}\right)_{\infty}^{6} \quad(\bmod 2)
$$

Extracting the even and odd parts respectively, we obtain

$$
\sum_{n=0}^{\infty} a_{13}(4 n) q^{2 n} \equiv\left(q^{26} ; q^{26}\right)_{\infty}^{3}\left(q^{2} ; q^{2}\right)_{\infty}^{3} \quad(\bmod 2)
$$

and

$$
\sum_{n=0}^{\infty} a_{13}(4 n+2) q^{2 n+1} \equiv q^{3}\left(q^{26} ; q^{26}\right)_{\infty}^{6} \equiv q^{3}\left(q^{52} ; q^{52}\right)_{\infty}^{3} \quad(\bmod 2)
$$

Replacing q^{2} by q in the above two congruences, we can easily obtain the required result.

Theorem 3.2. We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}(104 n+6) q^{n} \equiv(q ; q)_{\infty}^{3} \quad(\bmod 2) \tag{3.7}
\end{equation*}
$$

and

$$
\sum_{n=0}^{\infty} a_{13}(4(26 n+i)+2) q^{n} \equiv 0 \quad(\bmod 2)
$$

where $i=0$ or $2 \leq i \leq 25$.
Proof. This follows directly from the fact that the series on the right hand side of (3.1) only involves powers of q that are congruent to 1 modulo 26 .

Theorem 3.3. Let $n \geq 0$. Then for any positive integer k we have

$$
\begin{align*}
a_{13}\left(104 \cdot 3^{2 k} n+13 \cdot 3^{2 k}-7\right) & \equiv a_{13}(104 n+6)(\bmod 2), \tag{3.8}\\
a_{13}\left(104 \cdot 5^{2 k} n+5 \cdot \frac{13 \cdot 5^{2 k-1}+1}{3}\right) & \equiv a_{13}(104 n+6)(\bmod 2) \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
a_{13}\left(104 \cdot 7^{2 k} n+7 \cdot\left(13 \cdot 7^{2 k-1}-1\right)\right) \equiv a_{13}(104 n+6)(\bmod 2) \tag{3.10}
\end{equation*}
$$

Proof. Note that for a non-zero integer r and a nonnegative integer n, the general partition function $p_{r}(n)$ is defined as the coefficient of q^{n} in the expansion of $(q ; q)_{\infty}^{r}$. From (3.7), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}(104 n+6) q^{n} \equiv \sum_{n=0}^{\infty} p_{3}(n) q^{n} \quad(\bmod 2) \tag{3.11}
\end{equation*}
$$

From [3], we have

$$
\begin{aligned}
& p_{3}\left(3^{2 k} n+\frac{3^{2 k}-1}{8}\right)=(-3)^{k} p_{3}(n), \\
& p_{3}\left(5^{2 k} n+\frac{5^{2 k}-1}{24}\right)=5^{k} p_{3}(n)
\end{aligned}
$$

and

$$
p_{3}\left(7^{2 k} n+\frac{7^{2 k}-1}{8}\right)=(-7)^{k} p_{3}(n)
$$

Employing the above three identities in (3.11), we can easily obtain (3.8), (3.9) and (3.10).

ThEOREM 3.4. If $p \geq 5$ is a prime with $\left(\frac{-13}{p}\right)=-1$, then for all nonnegative
gers k we have integers k we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}\left(4 \cdot p^{2 k} n+7 \cdot\left(p^{2 k}-1\right)\right) q^{n} \equiv(q ; q)_{\infty}^{3}\left(q^{13} ; q^{13}\right)_{\infty}^{3} \quad(\bmod 2) \tag{3.12}
\end{equation*}
$$

Proof. Note first that (3.1) is the $k=0$ case of (3.12). Now suppose (3.12) holds for some $k \geq 0$, and consider the congruence

$$
\begin{equation*}
\frac{\left(\ell^{2}+\ell\right)}{2}+13 \cdot \frac{\left(m^{2}+m\right)}{2} \equiv 14 \cdot \frac{\left(p^{2}-1\right)}{8} \quad(\bmod p) \tag{3.13}
\end{equation*}
$$

for $0 \leq \ell, m \leq p-1$. Since the above congruence is equivalent to

$$
(2 \ell+1)^{2}+13 \cdot(2 m+1)^{2} \equiv 0 \quad(\bmod p)
$$

and $\left(\frac{-13}{p}\right)=-1$, it follows that (3.13) has only one solution, namely $k=m=$ $(p-1) / 2$. Therefore, extracting the terms involving $q^{p n+7\left(\frac{p^{2}-1}{4}\right)}$ from both sides of (3.12), by (2.3) we deduce that
$\sum_{n=0}^{\infty} a_{13}\left(4 \cdot p^{2 k}\left(p n+7\left(\frac{p^{2}-1}{4}\right)\right)+7 \cdot\left(p^{2 k}-1\right)\right) q^{n} \equiv\left(q^{p} ; q^{p}\right)_{\infty}^{3}\left(q^{13 p} ; q^{13 p}\right)_{\infty}^{3} \quad(\bmod 2)$.
Again, extracting terms involving $q^{p n}$ from both sides of the above congruence and replacing q^{p} by q, we obtain

$$
\sum_{n=0}^{\infty} a_{13}\left(4 \cdot p^{2 k+2} n+7 \cdot\left(p^{2 k+2}-1\right)\right) q^{n} \equiv(q ; q)_{\infty}^{3}\left(q^{13} ; q^{13}\right)_{\infty}^{3} \quad(\bmod 2)
$$

which is the $k+1$ case of (3.12).
We observe that in (3.14), there are no terms involving $q^{p n+j}$ with $1 \leq j \leq p-1$. This implies the following result.

TheOrem 3.5. If $p \geq 5$ is a prime with $\left(\frac{-13}{p}\right)=-1$, then for all nonnegative integers k we have

$$
a_{13}\left(4 \cdot p^{2 k+1}(p n+j)+7 \cdot\left(p^{2 k+2}-1\right)\right) \equiv 0 \quad(\bmod 2)
$$

where $1 \leq j \leq p-1$.
THEOREM 3.6. If $p \geq 5$ is a prime with $\left(\frac{-2}{p}\right)=-1$, then for all nonnegative
tegers k we have integers k we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}\left(104 \cdot p^{2 k} n+13 \cdot p^{2 k}-7\right) q^{n} \equiv(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty} \quad(\bmod 2) \tag{3.15}
\end{equation*}
$$

Proof. Note that (3.7) is the $k=0$ case of (3.15). Now suppose (3.15) holds for some $k \geq 0$, and consider the congruence

$$
\begin{equation*}
\frac{\left(3 \ell^{2}+\ell\right)}{2}+2 \cdot \frac{\left(3 m^{2}+m\right)}{2} \equiv 3 \cdot \frac{\left(p^{2}-1\right)}{24} \quad(\bmod p) \tag{3.16}
\end{equation*}
$$

for $0 \leq \ell, m \leq p-1$. The above congruence is equivalent to

$$
(6 \ell+1)^{2}+2 \cdot(6 m+1)^{2} \equiv 0 \quad(\bmod p)
$$

and $\left(\frac{-2}{p}\right)=-1$, it follows that (3.16) has only one solution, namely $\ell=m=$ $(\pm p-1) / 6$. Therefore, extracting the terms involving $q^{p n+\left(\frac{p^{2}-1}{8}\right)}$ from both sides of (3.15), by (2.2) we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{13}\left(104 \cdot p^{2 k}\left(p n+\frac{p^{2}-1}{8}\right)+13 \cdot p^{2 k}-7\right) q^{n} \equiv\left(q^{p} ; q^{p}\right)_{\infty}\left(q^{13 p} ; q^{13 p}\right)_{\infty} \quad(\bmod 2) \tag{3.17}
\end{equation*}
$$

Extracting the terms involving $q^{p n}$ from both sides of (3.17) and replacing q^{p} by q, we obtain

$$
\sum_{n=0}^{\infty} a_{13}\left(104 \cdot p^{2 k+2} n+13 \cdot p^{2 k+2}-7\right) q^{n} \equiv(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty} \quad(\bmod 2)
$$

which is the $k+1$ case of (3.15).
From (3.17), we can easily obtain the following result.
THEOREM 3.7. If $p \geq 5$ is a prime with $\left(\frac{-2}{p}\right)=-1$, then for all nonnegative integers k we have

$$
a_{13}\left(4 \cdot p^{2 k+1}(p n+j)+13 \cdot p^{2 k+2}-7\right) \equiv 0 \quad(\bmod 2)
$$

where $1 \leq j \leq p-1$.

REFERENCES

[1] Z. Ahmed and N. D Baruah, New congruences for ℓ-regular partitions for $\ell \in\{5,6,7,49\}$, Ramanujan J., 20pp., DOI 10.1007/s11139-015-9752-2, 2016.
[2] N.D. Baruah and K. K. Ojah, Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations, Ramanujan J. 28 (2012), 385-407.
[3] N.D. Baruah and B.K. Sarmah, Identities and congruences for the general partition and Ramanujans tau function, Indian J. Pure Appl. Math. 44 (2013), 643-671.
[4] B.C. Berndt, Ramanujan's Notebooks, Part III (Springer, New York, 1991).
[5] A. Berkovich and H. Yesilyurt, New identities for 7-cores with prescribed BG-rank, Discrete Math. 308 (2008), 5246-5259.
[6] A. Berkovich and H. Yesilyurt, On the representations of integers by the sextenary quadratic forms $x^{2}+y^{2}+z^{2}+7 s^{2}+7 t^{2}+7 u^{2}$, J. Number Theory. 79 (2009), 507-512.
[7] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, Divisibility properties of the 5-regular and 13-regular partition functions, Integers 8 (2008), A60.
[8] S.P. Cui and N.S.S. Gu, Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math. 51 (2013), 507-523.
[9] F.G. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1-17.
[10] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 331-347.
[11] M.D. Hirschhorn and J. A. Sellers, Two congruences involving 4-cores, Electron. J. Combin. 3 (2) (1996), R10.
[12] M.D. Hirschhorn and J.A. Sellers, Elementary proofs of various facts about 3-cores, Bull. Aust. Math. Soc. 129 (2009), 1366-1378.
[13] B. Kim, On inequalities and linear relations for 7-core partitions, Discrete Math. 310 (2010), 861-868.
[14] K. Ono and L. Sze, 4-core partitions and class numbers, Acta Arith. 80 (1997), 249-272.
[15] E.X.W. Xia, New congruences modulo powers of 2 for broken 3-diamond partitions and 7-core partitions, J. Number Theory, 141 (2014), 119-135.
(received 09.07.2015; in revised form 11.05.2016; available online 20.05.2016)
Department of Mathematical Sciences, Bodoland University, Kokrajhar-783370, Assam, India
E-mail: kwldas90@gmail.com

[^0]: 2010 Mathematics Subject Classification: 11P83, 05A17
 Keywords and phrases: t-core partition; theta function; dissection; congruence.

