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AN EXISTENCE RESULT FOR A KIRCHHOFF
p(x)-LAPLACIAN EQUATION

S. Khademloo, M. Fattah

Abstract. In this article, using Mountain Pass Theorem, we investigate the existence of a
nontrivial weak solution for nonlocal equations driven by p(x)-Laplacian, under Dirichlet boundary
condition.

1. Introduction

Let Ω be a bounded smooth domain in RN and N ≥ 3. In this paper, we
consider the problem

{
−M

(∫
Ω

1
p(x) |∇u|p(x)dx

)
div(|∇u|p(x)−2∇u) = µf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where M : R+ → R+ is a continuous map, p ∈ C+(Ω̄) with 1 < p− := infΩ p(x) ≤
p(x) ≤ p+ := supΩ p(x) < N , f : Ω̄ × R → Ris a Carathéodory function satisfying
some certain conditions and µ is a parameter.

The problem (1.1) is related to the stationary problem

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

|∂u

∂x
|2 dx

)
∂2u

∂x2
= 0, (1.2)

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, E is the Young modulus, ρ is the mass density, h is
the cross-section area, L is the length and p0 the initial axial tension, proposed by
Kirchhoff [19] as an extension of the classical D’Alembert’s wave equation for free
vibrations of elastic strings. Such nonlinear Kirchhoff model can also be used for
describing the dynamics of an axially moving string. In recent years, axially moving
string-like continua such as wires, belts, chains, band-saws have been subjects of
the study of researchers (see [24]).
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In recent years, elliptic problems involving p-Kirchhoff type operators have
been studied in many papers, we refer to [2, 3, 5, 10, 15–18, 20, 23, 25], in which
the authors have used different methods to get the existence of the solutions for
(1.1) in the case when p(x) = p is a constant.

If p : Ω̄ → R is a continuous function, the problem (1.1) has been firstly studied
by variational methods in [6, 7]. The p(x)-Laplacian possesses more complicated
nonlinearities than p-Laplacian, for example it is not homogeneous. The study of
differential equations and variational problems involving p(x)-growth conditions is
a consequence of their applications.

Infinitely many solution of the problem (1.1) in the special case when M(t) =
a+bt, has been studied by Dai and Liu in [7], by using a direct variational approach.
In [4], the author considered the problem (1.1) in the case when M : R+ → R+ is
a continuous function satisfying the following conditions:
(M1

′) there exists m2 ≥ m1 > 0, δ2 ≥ δ1 > 1 such that

m1t
δ1−1 ≤ M(t) ≤ m2t

δ2−1

for all t ∈ R+;
(M2

′) for all t ∈ R+, M̂(t) ≥ M(t)t holds, where M̂(t) =
∫ t

0
M(s)ds;

and the special case

f(x, u) = λ
(
a(x)|u|α(x)−2u + b(x)|u|β(x)−2u

)
,

where p, α, β ∈ C(Ω̄) satisfy

1 < α− ≤ α+ < δ1p
− < δ2p

+ < β− ≤ β+ < min
{

N,
Np−

N − p−

}
.

Using the Mountain Pass Theorem and Ekeland variational principle, he has proved
that the problem (1.1) has at least two distinct, nontrivial weak solution.

In the present paper, we establish the existence of a nontrivial weak solution
of the problem (1.1) on a certain range of λ. For this purpose, we will adapt some
arguments developed in [21]. In fact, we will make use of the Palais-Smale condition
introduced by Ambrosetti-Rabinowitz in [1] to prove the existence of a nontrivial
weak solution for the problem (1.1) which corresponds to the local minimum of the
energy functional.

We assume that:
(M1) there exists a constant m0 such that 0 < m0 ≤ M(t), ∀t ∈ [0,∞);

(M2) there exists t0 ≥ 0 such that M̂(t) ≥ tM(t), for every t ∈ [t0,∞), where
M̂(t) :=

∫ t

0
M(s) ds.

Definition 1.1. We say that u ∈ X = W
1,p(x)
0 (Ω) is a weak solution of the

problem (1.1) if

M

(∫

Ω

1
p(x)

|∇u|p(x) dx

) ∫

Ω

|∇u|p(x)−2∇u · ∇v dx− µ

∫

Ω

f(x, u)vdx = 0,

for any v ∈ X.
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Let us associate with the problem (1.1) the functional energy ϕ : X =
W

1,p(x)
0 (Ω) → R defined by

ϕ(u) = Φ(u)− µΨ(u),

where

Φ(u) = M̂

(∫

Ω

1
p(x)

|∇u|p(x) dx

)
, Ψ(u) =

∫

Ω

F (x, u) dx, (1.3)

and F (x, u) =
∫ u

0
f(x, s) ds. The functional ϕ associated with problem (1.1) is well

defined and of C1 class on X. Then

〈ϕ′(u), u〉 = M

(∫

Ω

1
p(x)

|∇u|p(x) dx

) ∫

Ω

|∇u|p(x)−2∇u∇v dx− µ

∫

Ω

f(x, u)v dx

= 〈Φ′(u), v〉 − µ〈Ψ′(u), v〉

for all u, v ∈ X. Thus, weak solutions of the problem (1.1) are exactly the critical
points of the functional ϕ.

2. Preliminaries

Recall that for a real Banach space X with topological dual X∗, we say that
a C1 -functional ϕ : X → R satisfies the Palais-Smale condition at level c ∈ R
(briefly (PS)c) when every sequence {un} in X such that

ϕ(un) → c and ‖ϕ′(un)‖X∗ → 0,

as n →∞, possesses a convergent subsequence. We say that ϕ satisfies the Palais-
Smale condition (in short (PS)) if (PS)c holds for every c ∈ R.

Theorem 2.1. [1, 22] Let (X, ‖·‖) be a real Banach space and let ϕ : X → R be
a continuously Gâteaux differentiable function, such that ϕ(0X) = 0 and satisfying
the (PS) condition. Suppose that:

(I1) there exist constants ρ, α > 0 such that ϕ(u) ≥ α if ‖u‖ = ρ,

(I2) there exists e ∈ X with ‖e‖ > ρ such that ϕ(e) ≤ 0.

Then ϕ possesses a critical value C ≥ α, which can be characterized as

C := inf
γ∈Γ

max
u∈γ([0,1])

ϕ(u),

where
Γ := {γ ∈ C([0, 1]; X) : γ(0) = 0 ∧ γ(1) = e}.

For the reader’s convenience, we recall some necessary background knowledge
and propositions concerning the generalized Lebesgue-Sobolev spacea. We refer the
reader to [8, 9, 11, 14] for details.
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Let Ω be a bounded domain of RN . Denote

C+(Ω) = {p : p ∈ C(Ω̄), p(x) > 1, for all x ∈ Ω̄};
p+ = max{p(x); x ∈ Ω̄}, p− = min

{
p(x); x ∈ Ω̄

}
;

Lp(x)(Ω) = {u : u is a measurable real-valued function,
∫
Ω
|u(x)|p(x)dx < ∞}.

Under the norm

‖u‖Lp(x)(Ω) = ‖u‖p(x) = inf
{

λ > 0 :
∫

Ω

∣∣∣u(x)
λ

∣∣∣
p(x)

dx ≤ 1
}

it becomes a Banach space [11]. We also define the space

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

,

equipped with the norm

‖u‖W 1,p(x)(Ω) = ‖u(x)‖Lp(x)(Ω) + ‖∇u(x)‖Lp(x)(Ω).

We denote by W0
1,p(x)(Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). Then ‖u‖ =

‖∇u‖Lp(x)(Ω) is an equivalent norm in W
1,p(x)
0 (Ω).

Proposition 2.2. [11] The space (W0
1,p(x)(Ω), ‖ · ‖) is a separable Banach

space. Moreover, if q ∈ C+(Ω̄) and 1 ≤ q(x) < p∗(x) for all x ∈ Ω̄ then the
embedding W0

1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact and continuous, where p∗(x) =
Np(x)

N−p(x) if p(x) < N or p∗(x) = ∞ if p(x) ≥ N .

Proposition 2.3. [8, 14] (i) The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω),
where 1

p(x) + 1
p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have

∣∣∣∣
∫

Ω

uv dx

∣∣∣∣ ≤
( 1

p−
+

1
(p′)−

)
‖u‖p(x)‖v‖p′(x).

(ii) If p1, p2 ∈ C+(Ω) and p1(x) ≤ p2(x) for all x ∈ Ω̄, then

Lp2(x)(Ω) ↪→ Lp1(x)(Ω)

and the embedding is continuous.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
aspects: they are Banach spaces, the Hölder inequality holds, they are reflexive if
and only if 1 < p− ≤ p+ < ∞ and continuous functions are dense if p+ < ∞. An
important role in manipulating the generalized Lebesgue-Sobolev space is played
by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R
defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.
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Proposition 2.4. [11] If u ∈ Lp(x)(Ω) and p+ < ∞ then the following rela-
tions hold

‖u‖p−

p(x) ≤ ρp(x)(u) ≤ ‖u‖p+

p(x)

provided ‖u‖p(x) > 1, while

‖u‖p+

p(x) ≤ ρp(x)(u) ≤ ‖u‖p−

p(x)

provided ‖u‖p(x) < 1 and

‖un − u‖p(x) → 0 ⇐⇒ ρp(x)(un − u) → 0.

Lemma 2.5. [12] Denote

A(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx, for all u ∈ X.

Then A(u) ∈ C1(X, R) and the derivative operator A′ of A is

〈A′(u), v〉 =
∫

Ω

|∇u|p(x)−2∇u∇v dx for all u, v ∈ X,

and we have
(1) A is a convex functional;
(2) A′ : X → X∗ is a bounded homeomorphism and strictly monotone operator;
(3) A′ is a mapping of type S+, namely: un ⇀ u and lim sup〈A′(un), un− u〉 ≤ 0,

imply un → u (strongly) in X.

3. Proof of the main result

Put

λ1,p(x) = inf

{∫
Ω
|∇u(x)|p(x) dx∫

Ω
|u(x)|p(x) dx

: u ∈ W0
1,p(x)(Ω) \ {0}

}
.

In [13], the authors were interested in the eigenvalues of the p(x)-Laplacian Dirichlet
problem. They showed that Λ, the set of eigenvalues, is a nonempty infinite set
such that sup Λ = +∞. Moreover, they proved that if there is a vector l ∈ RN \{0}
such that for any x ∈ Ω, p(x + tl) is monotone for t ∈ Ix = {t | x + tl ∈ Ω}, then
λ∗ = inf Λ > 0.

Lemma 3.1. [13] λ∗ > 0 ⇐⇒ λ1,p(x) > 0.

Theorem 3.2. Let us assume that M : [0,∞) → [0,∞) is a continuous map
such that conditions (M1) and (M2) hold. Further, require that f : Ω̄ × R → R is
a continuous function that verifies:
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(GR) the subcritical growth condition:

|f(x, t)| ≤ c(1 + |t|q(x)−1), ∀x ∈ Ω̄, ∀t ∈ R,

where c > 0 and p(x) < q(x) < p∗(x);
(AR) the Ambrosetti-Rabinowitz condition: there exists t∗ > 0 such that

0 < θF (x, ξ) ≤ f(x, ξ)ξ, ∀x ∈ Ω̄, ∀|ξ| ≥ t∗,

where θ > p+.
We assume that

lim sup
t→0

f(x, t)
|t|p(x)−2t

≤ λ, (3.1)

uniformly for x ∈ Ω̄, where λ < m0λ1,p(x)(Ω). Then there exists µ∗ > 0 such that
the problem (1.1) has at least one nontrivial weak solution in X, for µ ∈ (0, µ∗).

Proof. We will complete the proof of this theorem in four steps.
Step 1. We claim that there exist constants m1 > 0 and m2 ≥ 0 such that

m0‖u‖p−

p+
≤ φ(u) ≤ m1‖u‖p+

p−
+ m2. (3.2)

Pick t1 > t0, where t0 appears in the relation (M2). Then we have M(t)

M̂(t)
≤ 1

t for
every t ∈]t1,∞). So

∫ t

t1

M(s)
M̂(s)

ds = log
M̂(t)
M̂(t1)

≤
∫ t

t1

ds

s
= log

t

t1
,

for every t ∈]t1,∞). Thus M̂(t) ≤ M̂(t1)
t1

t for every t ∈]t1,∞). Hence we can say
that

M̂(t) ≤ m1t + m2,

for every t ∈ [0, +∞). For instance, m1 := M̂(t1)
t1

and m2 = maxt∈[0,t1] M̂(t).
Noting this for constants m1 and m2, Step 1 is completed.
Step 2. We claim that every Palais-Smale sequence for the functional ϕ is

bounded in W
1,p(x)
0 (Ω).

Let {un} ⊂ W
1,p(x)
0 (Ω) be a Palais-Smale sequence, that is, ϕ(un) → c for

c ∈ R and
‖ϕ′(un)‖W−1,p(x) → 0.

Suppose the contrary. Then passing to a subsequence if necessary, we may assume
that ‖un‖ → +∞. By conditions M1 and M2, it follows that there exists n0 ∈ N
such that

ϕ(un)− 〈ϕ′(un)〉
θ

= M̂

(∫

Ω

1
p(x)

|∇un|p(x) dx

)

− µ

∫

Ω

F (x, un) dx− 1
θ

(
〈Φ′(un), un〉 − µ

∫

Ω

f(x, un)un dx

)

≥ m0

(
1

p+
− 1

θ

)
‖un‖p− + µ

∫

Ω

[
f(x, un(x))un(x)

θ
− F (x, un(x))

]
dx
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for every n ≥ n0. Thus

m0

(
θ − p+

p+θ

)
‖un‖p− ≤ ϕ(un)− 1

θ
〈ϕ′(un), un〉

− µ

∫

|un|>t∗

(
f(x, un)un

θ
− F (x, un) dx

)
+ C meas(Ω), ∀n ≤ n0,

where “meas(Ω)” denotes the standard Lebesgue measure of Ω and

C := sup
{∣∣∣∣

f(x, t)t
θ

− F (x, t)
∣∣∣∣ : x ∈ Ω̄, |t| < t∗

}
.

Now, we observe that, the (AR) condition yields
∫

|un(x)|>t∗

[
f(x, un(x))un(x)

θ
− F (x, un(x))

]
dx ≥ 0.

So, we deduce that

m0

(
θ − p+

p+θ

)
‖un‖p− ≤ ϕ(un)− < ϕ′(un), un >

θ
+ µC meas(Ω),

for every n ≥ n0. Then, for every n ≥ n0 one has

C ′‖unv‖p− ≤
{

ϕ(un) + ‖ϕ′(un)‖W−1,p(x)(Ω)

‖un‖
θ

+ µC meas(Ω)
}

,

where C ′ := m0

(
θ−p+

p+θ

)
> 0. In conclusion, dividing by ‖un‖ and letting n →∞,

we obtain a contradiction. This completes the proof of the claim.
Step 3. We claim that the functional ϕ satisfies the compactness (PS) condi-

tion.
Take {un} ⊂ X to be a Palais Smale sequence. Thus, by Step 2 the sequence

{un} is necessarily bounded in X. Since X is reflexive, we may extract a subse-
quence, that for simplicity we call again {un}, such that un ⇀ u in X. We will
prove that un strongly converges to u ∈ X. Exploiting the derivative ϕ(un)(un−u),
we obtain

〈ϕ′(un), un − u〉 = 〈Φ′(un), un − u〉+ µ

∫

Ω

f(x, un(x))(un − u) dx,

〈Φ′(un), un − u〉 = 〈ϕ′(un), un − u〉+ µ

∫

Ω

f(x, un(x))(un − u) dx.

Since ‖ϕ′(un)‖W−1,p′(x)(Ω) → 0 and the sequence {un− u} is bounded in X, taking
into account that

|〈ϕ′(un), un − u〉| ≤ ‖ϕ′(un)‖X∗‖un − u‖,
one has

〈ϕ′(un), un − u〉 → 0.
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Further, by (GR) and taking into account that un → u in Lq(x) we obtain
∫

Ω

|f(x, un(x))|(un − u) dx → 0.

We can conclude (by (M1)) that

〈A(un), un − u〉 → 0,

as n → ∞. Since the operator A has the (S+) property, in conclusion, un → u
strongly in X. Hence, as claimed, the functional ϕ fulfills condition (PS).

Step 4. We claim that the functional ϕ has the geometry of the Mountain
Pass Theorem. More precisely:

1) there exist µ∗ > 0 and ρ, r > 0 such that for any µ ∈ (0, µ∗), we have

ϕ(u) > r > 0 ∀u ∈ X with ‖u‖ = ρ;

2) for some u0 ∈ W0
1,p(x)(Ω) = X one has ϕ(zu0) → −∞, as z → +∞.

We choose ε > 0 small enough, verifying

m0 >
λ + ε

λ1, p(x)(Ω)
.

By condition (3.1) there exists δε > 0 such that f(x,t)
|t|p(x)−2 ≤ λ + ε, for every x ∈ Ω̄

and |t| < δε. Hence,

F (x, ξ) ≤ λ + ε

p+
|ξ|p+

,

for every |ξ| ≤ δε. As a consequence of the above inequality, using (GR) condition,
the Sobolev embedding X ↪→ Lq(x)(Ω) and (3.2), we can write

ϕ(u) = Φ(u)− µ

∫

Ω

F (x, u) dx

≥ M̂

(∫

Ω

1
p(x)

| 5 u|p(x)dx

)
− µ

∫

|u|≤δε

λ + ε

p+
|u|p+

dx−Dµ

∫

|u|>δε

|u|q+
dx

≥ m0

p+
‖u‖p− − µ

λ + ε

p+λ1,p(x)
‖u‖p+ −Dµ‖u‖q+

,

for a suitable positive constant D. Hence, for any u ∈ X with ‖u‖ = 1, we get

ϕ(u) ≥ 1
p+

(
m0 − µ

λ + ε

λ1,p(x)

)
−Dµ. (3.3)

Put µ∗ = m0λ1,p(x)

λ+ε−Dp+λ1,p(x)
. Using (3.3), for any µ ∈ (0, µ∗) we have ϕ(u) > 0 for all

u ∈ X.
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Next, pick u0 ∈ X such that meas({x ∈ Ω : u0(x) ≥ t∗}) > 0. Being F (x, ξ) a
θ-superhomogeneous function if |ξ| > t∗, for z > 1, we obtain

ϕ(zu0) = M̂

(∫

Ω

1
p(x)

|∇zu0|p(x) dx

)
− µ

∫

Ω

F (x, zu0) dx

≤ m1

p−
‖zu0‖p+

+ m2 − µ

∫

Ω

F (x, zu0) dx

≤ m1

p−
‖u0‖p+

zp+ − zθµ

∫

|u0|≥t∗
F (x, u0)dx + m2 + µC meas(Ω),

where M :=
{|F (x, ξ)| : x ∈ Ω̄, |ξ| ≤ t∗

}
. Thus, the (AR) condition implies that

ϕ(zu0) → −∞ as z → +∞. This concludes the claim and completes the proof of
the main theorem.

Note that in the last inequality we use the fact that

F (x, zξ) ≥ F (x, ξ)zθ,

for every x ∈ Ω̄, |ξ| ≥ t∗ and z ≥ 1. Indeed, for z = 1, clearly the equality hold.
Otherwise, fix |ξ| ≥ t∗ and define g(x, z) := F (x, zξ), for every x ∈ Ω̄ and z ∈]1,∞).
By (AR) condition it follows that

g′(x, z)
g(x, z)

≥ θ

z
and θF (x, z) ≤ F ′(x, z)z,

for every x ∈ Ω̄ and z > 1. Integrating in ]1, z] it follows that
∫ z

1

g′(x, s)
g(x, s)

ds = log
g(x, z)
g(x, 1)

≥ θ

∫ z

1

ds

s
= log zθ.

In conclusion, since for every x ∈ Ω̄, |ξ| ≥ t∗ and z > 1 one has

F (x, zξ) =: g(x, z) ≥ g(x, 1)zθ = F (x, ξ)zθ.

Remark. The (AR) condition that has appeared in this paper plays an
important role in studying the existence of nontrivial solutions of many quasilinear
elliptic boundary value problems. It is quite natural and important not only to
insure that the Euler functional associated to problem (1.1) has a mountain pass
geometry, but also to guarantee that Palais-Smale sequence is bounded. But this
condition is very restrictive eliminating many nonlinearities. There are always many
functions that do not satisfy this condition. For example, for the sake of simplicity,
we consider f(x, t) = 2t ln(1 + |t|), in the special case p(x) ≡ 2.

The procedure used in this paper can be applied for some other well known
solvability conditions (see [26]).
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