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ALMOST PARA-HERMITIAN SUBMERSIONS

Yılmaz Gündüzalp

Abstract. In this paper, we introduce the concept of almost para-Hermitian submersions
between almost para-Hermitian manifolds. We investigate the influence of a given structure
defined on the total manifold on the determination of the corresponding structure on the base
manifold. Moreover, we provide an example, investigate various properties of the O’Neill’s tensors
for such submersions, find the integrability of the horizontal distribution and obtain necessary and
sufficient conditions for the fibres of an almost para-Hermitian submersion to be totally geodesic.
We also obtain curvature relations between the base manifold and the total manifold.

1. Introduction

The theory of Riemannian submersions was introduced by O’Neill and Gray in
[18] and [10], respectively. Later, Riemannian submersions were considered between
almost Hermitian manifolds by Watson in [21] under the name of almost Hermit-
ian submersion. He showed that if the total manifold is a Kähler manifold, the
base manifold is also a Kähler manifold. Since then, Riemannian submersions have
been used as an effective tool to describe the structure of a Riemannian manifold
equipped with a differentiable structure. Presently, there is an extensive litera-
ture on the Riemannian submersions with different conditions imposed on the total
space and on the fibres. For instances, Riemannian submersions between almost
contact manifolds were studied by Chinea in [5] under the name of almost con-
tact submersions. (Semi-)Riemannian submersions have been also considered for
quaternionic Kähler manifolds [15,16], para-quaternionic Kähler manifolds [4] and
paracontact manifolds [11,12].

On the other hand, para-complex manifolds, almost para-Hermitian manifolds
and para-Kähler manifolds were defined by Libermann [17] in 1952. In fact, such
manifolds arose in [20]. Indeed, Rashevskij introduced the properties of para-Kähler
manifolds when he considered a metric of signature (n, n) defined from a potential
function, the so-called scalar field on a 2n-dimensional locally product manifold
called by him stratified space.

2010 Mathematics Subject Classification: 53C15, 53C20, 53C50
Keywords and phrases: Almost para-Hermitian manifold; semi-Riemannian submersion; al-

most para-Hermitian submersion.

241



242 Y. Gündüzalp

Semi-Riemannian submersions were introduced by O’Neill in his book [19]. It
is known that such submersions have their applications in Kaluza-Klein theories,
Yang-Mills equations, strings, supergravity. For applications of semi-Riemannian
submersions, see [8]. Since almost para-Hermitian manifolds are semi-Rieman-
nian manifolds, one should consider semi-Riemannian submersions between such
manifolds.

In this paper, we define almost para-Hermitian submersions between almost
para-Hermitian manifolds, and study the geometry of such submersions. We ob-
serve that almost para-Hermitian submersions have also rich geometric properties.

The paper is organized as follows: In Section 2 we collect basic definitions,
some formulas and results for later use. In Section 3 we introduce the notion of
almost para-Hermitian submersions and give an example of almost para-Hermitian
submersion. Moreover, we investigate properties of O’Neill’s tensors and show that
such tensors have nice algebraic properties for almost para-Hermitian submersions.
We find the integrability of the horizontal distribution. We also find necessary
and sufficient conditions for the fibres of an almost para-Hermitian submersion
to be totally geodesic and examine the influence of a given type of almost para-
Hermitian structure of the total manifold on the determination of the corresponding
structure on the base manifold. In Section 4, we obtain relations between bisectional
curvatures and sectional curvatures of the base manifold, the total manifold and
the fibres of an almost para-Hermitian submersion.

2. Preliminaries

In this section we are going to recall main definitions and properties of almost
para-Hermitian manifolds and semi-Riemannian submersions.

2.1. Almost para-Hermitian manifolds
A (1, 1)-tensor field P on a 2n-dimensional smooth manifold M is said to be

an almost product structure if P 2 = I. In this case the pair (M, P ) is called almost
product manifold. An almost para-complex manifold is an almost product manifold
(M, P ) such that the two eigenbundles T+M and T−M associated with the two
eigenvalues ±1 of P have the same rank.

An almost para-Hermitian manifold (M, g, P ) is a smooth manifold endowed
with an almost para-complex structure P and a pseudo-Riemannian metric g com-
patible in the sense that

g(PX, Y ) + g(X, PY ) = 0, X, Y ∈ χ(M). (1)

It follows that the metric g is neutral, i.e., it has signature (n, n) and the eigen-
bundles TM± are totally isotropic with respect to g. Let e1, . . . , en, en+1 =
Pe1, . . . , e2n = Pen be an orthonormal basis and denote εi = sign(g(ei, ei)) =
±1, εi = 1, i = 1, . . . , n, εj = −1, j = n + 1, . . . , 2n.

The fundamental 2-form of the almost para-Hermitian manifold is defined by

Φ(X, Y ) = g(X,PY ). (2)
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By (1), it immediately follows that Φ is skew-symmetric [6,14].
An almost para-Hermitian manifold, with Levi-Civita connection ∇, is called

(i) para-Kähler, if ∇P = 0;
(ii) para-Hermitian , if N = 0 ⇔ (∇PXP )PY + (∇XP )Y = 0, where N is the

Nijenhuis torsion of P ;
(iii) nearly para-Kähler, if (∇XP )X = 0;
(iv) almost para-Kähler, if dΦ = 0 [6,13,14].

2.2. Semi-Riemannian submersions
Let (M, g) and (B, g′) be two connected semi-Riemannian manifolds of index

s (0 ≤ s ≤ dim M) and s′ (0 ≤ s′ ≤ dim B) respectively, with s > s′. A semi-
Riemannian submersion is a smooth map π : M → B which is onto and satisfies
the following conditions:
(i) π∗p : TpM → Tπ(p)B is onto for all p ∈ M ;

(ii) The fibres π−1(p′), p′ ∈ B, are semi-Riemannian submanifolds of M ;
(iii) π∗ preserves scalar products of vectors normal to fibres.

The vectors tangent to fibres are called vertical and those normal to fibres are
called horizontal. We denote by V the vertical distribution, by H the horizontal
distribution and by v and h the vertical and horizontal projection. An horizontal
vector field X on M is said to be basic if X is π-related to a vector field X ′ on B.
It is clear that every vector field X ′ on B has a unique horizontal lift X to M and
X is basic.

We recall that the sections of V, respectively H, are called the vertical vector
fields, respectively horizontal vector fields. A semi-Riemannian submersion π :
M → B determines two (1, 2) tensor fields T and A on M , by the formulas:

T (E, F ) = TEF = h∇vEvF + v∇vEhF (3)

and
A(E, F ) = AEF = v∇hEhF + h∇hEvF (4)

for any E,F ∈ Γ(TM), where v and h are the vertical and the horizontal projections
(see [2,7]). From (3) and (4), one can obtain

∇UX = TUX + h(∇UX); (5)

∇XU = v(∇XU) + AXU ; (6)

∇XY = AXY + h(∇XY ), (7)

for any X,Y ∈ Γ(H), U ∈ Γ(V). Moreover, if X is basic then h(∇UX) =
h(∇XU) = AXU .

We note that for U, V ∈ Γ(V), TUV coincides with the second fundamental
form of the immersion of the fibre submanifolds and for X,Y ∈ Γ(H), AXY =
1
2v[X,Y ] reflecting the complete integrability of the horizontal distribution H. It
is known that A is alternating on the horizontal distribution: AXY = −AY X, for
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X, Y ∈ Γ(H) and T is symmetric on the vertical distribution: TUV = TV U , for
U, V ∈ Γ(V).

We now recall the following result which will be useful for later.

Lemma 2.1. (see [7,19]) If π : M → B is a semi-Riemannian submersion
and X, Y basic vector fields on M , π-related to X ′ and Y ′ on B, then we have the
following properties:
1. h[X, Y ] is a basic vector field and π∗h[X, Y ] = [X ′, Y ′] ◦ π;
2. h(∇XY ) is a basic vector field π-related to (∇′X′Y ′), where ∇ and ∇′ are the

Levi-Civita connection on M and B;
3. [E,U ] ∈ Γ(V), ∀U ∈ Γ(V) and ∀E ∈ χ(M).

3. Almost para-Hermitian submersions

In this section, we define the notion of almost para-Hermitian submersion, give
an example and study the geometry of such submersions. We now define a (P, P ′)-
paraholomorphic map which is similar to the notion of a (P, P ′)-holomorphic map
between almost Hermitian manifolds.

Definition 3.1. Let M2m and B2n be almost para-Hermitian manifolds with
almost para-complex structures P and P ′, respectively. A mapping π : M2m → B2n

is said to be almost para-complex map if π∗ ◦ P = P ′ ◦ π∗.

By using the above definition, we are ready to give the following notion.

Definition 3.2. Let (M, P, g) and (B, P ′, g′) be almost para-Hermitian man-
ifolds. A semi-Riemannian submersion π : M → B is called an almost para-
Hermitian submersion if π is an almost para-complex map.

Note that given a semi-Euclidean space R2n
n with coordinates (x1, . . . , x2n)

on R2n
n , we can naturally choose an almost para-complex structure P on R2n

n as
follows:

P
( ∂

∂x2i

)
=

∂

∂x2i−1
, P

( ∂

∂x2i−1

)
=

∂

∂x2i
,

where i = 1, . . . , n. Let R2n
n be a semi-Euclidean space of signature (+,-,+,-, . . . )

with respect to the canonical basis ( ∂
∂x1

, . . . , ∂
∂x2n

).
We give an example of an almost para-Hermitian submersion.
Example 3.1. Consider the following submersion defined by

π : R4
2 → R2

1

(x1, x2, x3, x4) →
(x1 + x3√

2
,
x2 + x4√

2

)
.

Then, the kernel of π∗ is

V = Ker π∗ = Span
{

V1 = − ∂

∂ x1
+

∂

∂ x3
, V2 = − ∂

∂ x2
+

∂

∂ x4

}
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and the horizontal distribution is spanned by

H = (Kerπ∗)⊥ = Span
{

X =
∂

∂ x1
+

∂

∂ x3
, Y =

∂

∂ x2
+

∂

∂ x4

}
.

Hence, we have

g(X, X) = g′(π∗X,π∗X) = 2, g(Y, Y ) = g′(π∗Y, π∗Y ) = −2.

Thus, π is a semi-Riemannnian submersion. Moreover, we can easily obtain that π
satisfies

π∗PX = P ′π∗X and π∗PY = P ′π∗Y.

Thus, π is an almost para-Hermitian submersion. 4
By using Definition 3.1, we have the following result.

Proposition 3.1. Let π : M → B be a para-Hermitian submersion from an
almost para-Hermitian manifold M onto an almost para-Hermitian manifold B,
and let X be a basic vector field on M , π-related to X ′ on B. Then, PX is also a
basic vector field π-related to P ′X ′.

The following result can be proved in a standard way.

Proposition 3.2. Let π : M → B be an almost para-Hermitian submersion
from an almost para-Hermitian manifold M onto an almost para-Hermitian man-
ifold B. If X, Y are basic vector fields on M , π-related to X ′, Y ′ on B, Then, we
have:
(i) h(∇XP )Y is the basic vector field π-related to (∇′X′P ′)Y ′;
(ii) h[X, Y ] is the basic vector field π-related to [X ′, Y ′].

Next proposition shows that an almost para-Hermitian submersion puts some
restrictions on the distributions V and H.

Proposition 3.3. Let π : M → B be an almost para-Hermitian submer-
sion from an almost para-Hermitian manifold M onto an almost para-Hermitian
manifold B. Then, the horizontal and the vertical distributions are P -invariant.

Proof. Consider a vertical vector field U . It is known that π∗(PU) = P ′(π∗U).
Since U is vertical and π is a semi-Riemannian submersion, we have π∗U = 0 from
which π∗(PU) = 0 follows and implies that PU is vertical, being in the kernel of
π∗. As concerns the horizontal distribution, let X be a horizontal vector field. We
have g(PX, U) = −g(X, PU) = 0 because PU is vertical and X is horizontal. From
g(PX, U) = 0 we deduce that PX is orthogonal to U and then PX is horizontal.

Proposition 3.4. Let π : M → B be an almost para-Hermitian submer-
sion from an almost para-Hermitian manifold M onto an almost para-Hermitian
manifold B. Then, we have:
(i) π∗Φ′ = Φ;
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(ii) The fibres are almost para-Hermitian manifolds.

Proof. We prove only statement (i), the other assertion can be obtained in a
similar way. If X and Y are basic vector fields on M , π-related to X ′, Y ′ on B,
then using the definition of an almost para-Hermitian submersion, we have

π∗Φ′(X, Y ) = Φ′(π∗X, π∗Y ) = g′(π∗X,P ′π∗Y ) = g′(π∗X, π∗PY )

= π∗g′(X,PY ) = g(X, PY ) = Φ(X, Y ),

which gives the proof of assertion (i).
In the sequel, we show that base space is a para-Hermitian manifold if the

total space is a para-Hermitian manifold.

Proposition 3.5. Let π : M → B be an almost para-Hermitian submersion.
If the total space M is a para-Hermitian manifold, then the base space B is a
para-Hermitian manifold.

Proof. Let X and Y be basic. Then, we have

π∗N(X,Y ) = π∗[P, P ](X, Y ),

where N = [P, P ] is the Nijenhuis torsion of the almost para-complex structure P .
On the other hand, π∗P = P ′π∗ implies that

π∗[P, P ](X, Y ) = π∗(P 2[X,Y ] + [PX, PY ]− P [PX, Y ]− P [X, PY ])

= [π∗X,π∗Y ] + [π∗PX, π∗PY ]− P ′π∗[PX, Y ]− P ′π∗[X, PY ]

= [X ′, Y ′] + [P ′X ′, P ′Y ′]− P ′[P ′X ′, Y ′]− P ′[X ′, P ′Y ′].

Then, we have
π∗[P, P ](X,Y ) = N ′(X ′, Y ′) = 0.

Proposition 3.6. Let π : M → B be an almost para-Hermitian submersion.
If the total space M is a para-Kähler manifold, then the base space B is a para-
Kähler manifold.

Proof. For X ′, Y ′ ∈ Γ(TB) such that π∗X = X ′, π∗Y = Y ′, where X,Y ∈
Γ(TM), since M is a para-Kähler manifold, for X, Y ∈ Γ(H), we have

(∇XP )Y = ∇XPY − P∇XY = 0.

Then, by using π∗P = P ′π∗, we get

π∗((∇XP )Y ) = π∗(∇XPY )− P ′π∗(∇XY ) = 0.

On the other hand, from Proposition 3.1, we know that if X is π-related to X ′,
then PX is π-related to P ′X ′. Also, from lemma 2.1(ii), it follows ∇XPY and
∇XY are π-related to ∇′X′P ′Y ′ and ∇′X′Y ′. Thus, we have

π∗((∇XP )Y ) = ∇′X′P ′Y ′ − P ′∇′X′Y ′ = 0.
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Hence
π∗((∇XP )Y ) = (∇′X′P ′)Y ′ = 0,

which proves the assertion.
In a similar way, we have the following result.

Proposition 3.7. Let π : M → B be an almost para-Hermitian submersion.
If the total space M is a nearly para-Kähler manifold, then the base space B is a
nearly para-Kähler manifold.

Proposition 3.8. Let π : M → B be an almost para-Hermitian submersion.
If the total space M is an almost para-Kähler manifold, then the base space B is
an almost para-Kähler manifold.

Proof. Let X, Y, Z be basic vector fields. Since M is an almost para-Kähler
manifold it implies dΦ(X,Y, Z) = 0. Then, we have

X(Φ(Y, Z))− Y (Φ(X,Z)) + Z(Φ(X, Y ))

− Φ([X, Y ], Z) + Φ([X, Z], Y )− Φ([Y, Z], X) = 0.

On the other hand, by direct calculations, we obtain

0 = g(∇XY, PZ) + g(Y,∇XPZ)− g(∇Y X, PZ)− g(X,∇Y PZ) + g(∇XZ, PY )

+ g(X,∇ZPY )− g([X, Y ], PZ) + g([X, Z], PY )− g([Y,Z], PX).

Then, by using π∗P = P ′π∗, we get

0 = g′(∇′X′Y ′, P ′Z ′) + g′(Y ′,∇′X′P ′Z ′)− g′(∇′Y ′X ′, P ′Z ′)− g′(X ′,∇′Y ′P ′Z ′)
+ g′(∇′X′Z ′, P ′Y ′) + g′(X ′,∇′Z′P ′Y ′)− g′([X ′, Y ′], P ′Z ′)

+ g′([X ′, Z ′], P ′Y ′)− g′([Y ′, Z ′], P ′X ′)

0 = X ′(Φ′(Y ′, Z ′))− Y ′(Φ′(X ′, Z ′)) + Z ′(Φ′(X ′, Y ′))

− Φ′([X ′, Y ′], Z ′) + Φ′([X ′, Z ′], Y ′)− Φ′([Y ′, Z ′], X ′).

Hence 0 = dΦ′(X ′, Y ′, X ′), which proves the assertion.
We now check the properties of the tensor fields T and A for an almost para-

Hermitian submersion; we will see that such tensors have extra properties for such
submersions.

Lemma 3.1. Let π : M → B be an almost para-Hermitian submersion from a
para-Kähler manifold M onto an almost para-Hermitian, hence para-Kähler, man-
ifold B, and let X and Y be horizontal vector fields, and U vertical. Then, we
have
(i) AXPY = PAXY ,
(ii) APXY = PAXY ,
(iii) AXPU = PAXU .
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Proof. (i) Let X and Y be horizontal vector fields. Para-Kähler manifold M
implies that ∇XPY = P∇XY . Then using (7), we have

AXPY + h∇XPY = P{AXY + h∇XY }.
Thus, taking the vertical components of this equation we get

AXPY = PAXY.

(ii) In a similar way, by using (i) we have

APXY = −AY PX = −PAY X.

Hence, we obtain APXY = PAXY .
(iii) is obtained in a similar way.
For the tensor field T we have the following.

Lemma 3.2. Let π : M → B be an almost para-Hermitian submersion from
a para-Kähler manifold M onto an almost para-Hermitian manifold B, and let U
and V be vertical vector fields, and X horizontal. Then, we have:
(i) TUPV = PTUV ,
(ii) TPUV = PTUV ,
(iii) TUPX = PTUX.

Since for a nearly para-Kähler manifold ∇P = 0, we have the following result.

Lemma 3.3. Let π : M → B be an almost para-Hermitian submersion from a
nearly para-Kähler manifold M onto an almost para-Hermitian manifold B, X a
horizontal vector field on M , U vertical. Then, we have:
(i) TUPU = PTUU ,
(ii) APXX = PAXX.

We now investigate the integrability of the horizontal distribution H.

Theorem 3.1. Let π : M → B be an almost para-Hermitian submersion from
an almost para-Kähler manifold M onto an almost para-Hermitian manifold B.
Then, the horizontal distribution is integrable.

Proof. Let X and Y be basic vector fields. It suffices to prove that v([X, Y ]) =
0, for basic vector fields on M . Since M is an almost para-Kähler manifold, it
implies dΦ(X, Y, V ) = 0, for any vertical vector V . Then, one obtains

X(Φ(Y, V ))− Y (Φ(X,V )) + V (Φ(X, Y ))

− Φ([X,Y ], V ) + Φ([X,V ], Y )− Φ([Y, V ], X) = 0.

Since [X,V ], [Y, V ] are vertical and the two distributions are P -invariant, the last
two and the first two terms vanish. Thus, one gets

g([X, Y ], PV ) = V (g(X,PY )).
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On the other hand, if X is basic then h(∇V X) = h(∇XV ) = AXV , thus we have

V (g(X,PY )) = g(∇V X, PY ) + g(∇V PY, X)

= g(AXV, PY ) + g(APY V, X).

Since A is skew-symmetric and alternating operator, we get V (g(X,PY )) = 0. This
proves the assertion.

Since for a para-Kähler manifold ∇P = 0, we have the following result.

Theorem 3.2. Let π : M → B be an almost para-Hermitian submersion from
a para-Kähler manifold M onto an almost para-Hermitian manifold B. Then, the
horizontal distribution is integrable.

Proof. Let X be basic vector field on M , a and U vertical and Y horizontal.
By using Lemma 3.1, we have

g(APXY,U) = g(AXPY, U) = −g(AXU,PY ).

On the other hand, if X is a basic then h∇UX = h∇XU = AXU , thus we obtain

g(APXY, U) = −g(PY, h∇UX) = g(Y, P∇UX) = g(Y,∇UPX)

= g(Y,∇PXU) = g(Y, APXU).

Since A is skew-symmetric operator, we get 2g(APXY,U) = O. Hence, we have
APXY = 0, that is A = 0.

Theorem 3.3. Let π : M → B be an almost para-Hermitian submersion
from an almost para-Kähler manifold M onto an almost para-Hermitian manifold
B. Then, fibres are totally geodesic if and only if LXP = 0 for any X horizontal
vector field.

Proof. Let W and V be vertical vector fields on M , X horizontal. Since M is
an almost para-Kähler manifold, it implies dΦ = 0. Then, we obtain:

dΦ(W,PV, X) = W (Φ(PV, X))− PV (Φ(W,X)) + X(Φ(W,PV ))

− Φ([W,PV ], X) + Φ([W,X], PV )− Φ([PV,X], W ) = 0.

Since [W,PV ] is vertical and the two distributions are P -invariant, the first two
terms and the fourth term vanish. Thus, one gets

X(Φ(W,PV )) + Φ([W,X], PV )− Φ([PV, X],W ) = 0.

Thus, by direct computations, we have

0 = g([X,V ] +∇V X, W ) + g(∇W X,V ) + g([X, PV ], PW ).

From (1) and (5), we obtain

0 = −2g(TV W,X)− g(P [X, V ], PW ) + g([X, PV ], PW )

0 = −2g(TV W,X) + g((LXP )V, PW ),

which proves the assertion.
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4. Curvature relations for almost para-Hermitian submersions

We begin this section relating the P -paraholomorphic bisectional and sectional
curvatures of the total space, the base and the fibres of an almost para-Hermitian
submersions.

Let us recall the sectional curvature of semi-Riemannian manifolds for non-
degenerate planes. Let M be a semi-Riemannian manifold and S a non-degenerate
tangent plane to M at p. The number

K(U, V ) =
g(R(U, V )U, V )

g(U,U)g(V, V )− g(U, V )2

is independent on the choice of basis U, V for S and is called the sectional curva-
ture [9].

Let π be an almost para-Hermitian submersion from an almost para-Hermitian
manifold (M, P, g) onto an almost para-Hermitian manifold (N,P

′
, g
′
). We denote

the Riemannian curvatures of M, N and any fibre π−1(x) by R, R′ and R̂, respec-
tively.

Let π : M → N be an almost para-Hermitian submersion, where M and N are
almost para-Hermitian manifolds with structures (P, g) and (P ′, g′), respectively.
We denote by B the P -paraholomorphic bisectional curvature, defined for any pair
of nonzero nonlightlike vectors X and Y on M by the formula

B(X,Y ) =
R(X, PX, Y, PY )

‖X‖2‖Y ‖2 .

We note that if X is a nonlightlike vector field, the PX is also a nonlightlike vector
field.

The P -paraholomorphic sectional curvature is H(X) = B(X,X) for any nonze-
ro nonlightlike vector X. We denote by B′ and H ′ the P -paraholomorphic bisec-
tional and P -paraholomorphic sectional curvature of B [3]. Similarly, B̂ and Ĥ
denote the bisectional and the sectional paraholomorphic curvatures of a fibre.

The following is a translation of the results of Gray [10] and O’Neill [18] to the
present situation:

Proposition 4.1. Let π : M → N an almost para-Hermitian submersion from
an almost para-Hermitian manifold M onto an almost para-Hermitian manifold N .
Let U and V be nonzero nonlightlike unit vertical vectors, and X and Y nonzero
nonlightlike unit horizontal vectors. Then, we have

(a) B(U, V ) = B̂(U, V )− εU εV [g(TUV, TPUPV )− g(TPUV, TUPV )];

(b) B(X, U) = εU εX [g((∇UA)XPX, PU)− g((∇PUA)XPX, U)

+ g(AXU,APXPU)− g(AXPU,APXU)

− g(TUX,TPUPX) + g(TPUX, TUPX)];
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(c) B(X, Y ) = B′(π∗X,π∗Y ) ◦ π − εXεY [2g(AXPX, AY PY )

− g(APXY, AXPY ) + g(AXY, APXPY )],

where εU = g(U,U) ∈ {±1}, εV = g(V, V ) ∈ {±1}, εX = g(X, X) ∈ {±1} and
εY = g(Y, Y ) ∈ {±1}.

Using Proposition 4.1, we have the following result.

Proposition 4.2. Let π : M → N be an almost para-Hermitian submer-
sion from an almost para-Hermitian manifold M onto an almost para-Hermitian
manifold N . Let U be nonzero nonlightlike unit vertical vector, and X nonzero
nonlightlike unit horizontal vector. Then, one has:

(a) H(U) = Ĥ(U) + ‖TUPU‖2 − g(TPUPU, TUU);
(b) H(X) = H ′(π∗X) ◦ π − 3‖AXPX‖2.

If the total manifold is a para-Kähler manifold, then we have the following
result for curvature relations between M, N and π−1(x).

Theorem 4.1. Let π : M → N be an almost para-Hermitian submersion from
a para-Kähler manifold M onto an almost para-Hermitian manifold N . Let U and
V be nonzero nonlightlike unit vertical vectors, and X and Y nonzero nonlightlike
unit horizontal vectors. Then, we have:

(a) B(U, V ) = B̂(U, V )− εU εV 2‖TUV ‖2;
(b) B(X, Y ) = B′(π∗X, π∗Y ) ◦ π + εXεY [2g(AXX, AY Y )− 2‖AXY ‖2].

Proof. (a) From Proposition 4.1(a), we have

B(U, V ) = B̂(U, V ) + g(TUPV, TPUV )− g(TPUPV, TUV ).

Using Lemma 3.2, we get

g(TUPV, TPUV ) = g(PTUV, PTUV ) = −g(TUV, TUV ) = −‖TUV ‖2. (8)

Using again Lemma 3.2, we get

g(TPUPV, TUV ) = g(P 2TUV, TUV ) = g(TUV, TUV ) = ‖TUV ‖2. (9)

From (8) and (9), we have (a).
(b) From Proposition 4.1(c), we have

B(X,Y ) = B′(π∗X, π∗Y ) ◦ π − 2g(AXPX, AY PY )

+ g(APXY, AXPY )− g(AXY, APXPY ).

Using Lemma 3.1, we get

g(AXPX, AY PY ) = −g(AXX, AY Y ). (10)
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Using again Lemma 3.1, we get

g(APXY, AXPY ) = −‖AXY ‖2, (11)

g(AXY,APXPY ) = ‖AXY ‖2. (12)

From (10)–(12), we have (b).
As a result of Theorem 4.1, we have the following results.

Corollary 4.1. Let π : M → N be an almost para-Hermitian submersion
from a para-Kähler manifold M onto an almost para-Hermitian manifold N . Let
U be unit vertical vector, and X a unit horizontal vector field. Then, one has

(a) H(U) = Ĥ(U)− 2‖TUU‖2;
(b) H(X) = H ′(π∗X) ◦ π.

Since M is an almost para-Kähler manifold and the distributionH is integrable
we have A = 0, then we have the following relations

Theorem 4.2. Let π : M → N be an almost para-Hermitian submersion from
an almost para-Kähler manifold M onto an almost para-Hermitian manifold N .
Let U be unit vertical vector, and X and Y unit horizontal vectors. Then, we have:
(a) B(X, Y ) = B′(π∗X, π∗Y ) ◦ π;
(b) B(X, U) = −g(TUX,TPUPX) + g(TPUX, TUPX).

Using Lemma 3.3, we have following results.

Corollary 4.2. Let π : M → N be an almost para-Hermitian submersion from
a nearly para-Kähler manifold M onto an almost para-Hermitian manifold N . Let
U be unit vertical vector, and X unit horizontal vector. Then, we have:

(a) H(U) = Ĥ(U)− 2‖TUU‖2;
(b) H(X) = H ′(π∗X) ◦ π.
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