69, 1 (2017), 1-11

COMPOSITION OPERATORS AND THEIR PRODUCTS ON $L^{2}(\Sigma)$

M. R. Jabbarzadeh and S. Karimi

Abstract

The paper gives measure-theoretic characterizations of classical properties of composition operators and their products on $L^{2}(\Sigma)$ such as complex symmetric and semi-Kato type operators.

1. Introduction and preliminaries

Let (X, Σ, μ) be a complete sigma finite measure space. For any sub-sigma finite algebra $\mathcal{A} \subseteq \Sigma$, the L^{2}-space $L^{2}\left(X, \mathcal{A},\left.\mu\right|_{\mathcal{A}}\right)$ is abbreviated by $L^{2}(\mathcal{A})$, and its norm is denoted by $\|\cdot\|_{2}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ-null set. The support of a measurable function f is defined by $\sigma(f)=\{x \in X: f(x) \neq 0\}$. We denote the linear space of all complex-valued Σ-measurable functions on X by $L^{0}(\Sigma)$. Let φ be a nonsingular measurable transformation from X into X; that is, $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ and write $\mu \circ \varphi^{-1} \ll \mu$. Let h be the Radon-Nikodym derivative $d \mu \circ \varphi^{-1} / d \mu$. The pair (Σ, μ) is said to be normal invariant if $\varphi(\Sigma) \subseteq \Sigma$ and $\mu \ll \mu \circ \varphi^{-1}$. The composition operator $C_{\varphi}: L^{2}(\Sigma) \rightarrow L^{0}(\Sigma)$ induced by φ is given by $C_{\varphi}(f)=f \circ \varphi$, for each $f \in L^{2}(\Sigma)$. Here, the non-singularity of φ guarantees that C_{φ} is well defined. It is well known fact that for $u \in L^{0}(\Sigma)$, the multiplication operator $M_{u}: L^{2}(\Sigma) \rightarrow L^{0}(\Sigma)$ is bounded if and only if $u \in$ $L^{\infty}(\Sigma)$, and in this case, $\left\|M_{u}\right\|=\|u\|_{\infty}$. Now, by the change of variables formula; $\int_{X}|f \circ \varphi|^{2} d \mu=\int_{X} h|f|^{2} d \mu,\left\|C_{\varphi} f\right\|_{2}=\left\|M_{\sqrt{h}} f\right\|_{2}$ for each $f \in L^{2}(\Sigma)$. It follows that C_{φ} maps $L^{2}(\Sigma)$ boundedly into itself, if and only if $h \in L^{\infty}(\Sigma)$, and in this case, $\left\|C_{\varphi}\right\|=\|h\|_{\infty}^{1 / 2}$. Some other basic facts about composition operators can be found in [8, 19, 22].

For each f in $L^{2}(\Sigma)$ there is a unique function in $L^{2}(\mathcal{A})$, denoted $E^{\mathcal{A}}(f)$, such that, for every set $A \in \mathcal{A}$ of finite measure, $\int_{A} f d \mu=\int_{A} E^{\mathcal{A}}(f) d \mu . E^{\mathcal{A}}(f)$ is called

[^0]the conditional expectation of f with respect to \mathcal{A}, and $E^{\mathcal{A}}$ is the conditional expectation operator. As an operator on $L^{2}(\Sigma), E^{\mathcal{A}}$ is the contractive orthogonal projection onto $L^{2}(\mathcal{A})$. Take $\mathcal{A}=\varphi^{-1}(\Sigma)$. So for each function f in $L^{2}(\Sigma)$ there is a Σ measurable function F such that $E^{\varphi^{-1}(\Sigma)} f=F \circ \varphi$. Moreover, F is uniquely determined in $\sigma(h)$ (see [ca]). Therefore, even though φ is not invertible the expression $F=\left(E^{\varphi^{-1}(\Sigma)} f\right) \circ \varphi^{-1}$ is well defined. Note that domain of $E^{\mathcal{A}}$ contains $L^{2}(\Sigma) \cup\left\{f \in L^{0}(\Sigma): f \geq 0\right\}$. For further discussion of the conditional expectation operator see [13] and [17]. A result of Hoover, Lambert and Quinn [9] shows that the adjoint C_{φ}^{*} of C_{φ} on $L^{2}(\Sigma)$ is given by $C_{\varphi}^{*}(f)=h E^{\varphi^{-1}(\Sigma)}(f) \circ \varphi^{-1}$. From this it easily follows that $C_{\varphi}^{*} C_{\varphi}=M_{h}$ and $C_{\varphi} C_{\varphi}^{*}=M_{h \circ \varphi} E^{\varphi^{-1}(\Sigma)}$. The product $M_{u} \circ C_{\varphi}$ of M_{u} and C_{φ} is called a weighted composition operator.

Products of operators appear more often in the service of the study of other operators. More precisely, for any operator T, there exists a decomposition $T=$ $(U+K) S$, where U is a partial isometry, K is a compact operator and S is a strongly irreducible operator [20]. Composition operators and their products have been used to provide examples and illustrations of many operator theoretic properties. In several cases major conjectures in operator theory have been reduced to the (weighted) composition operators. The purpose of this note is to find some new characterizations of composition operators on $L^{2}(\Sigma)$ and present a relationship between $C_{\varphi_{3}}$ and their products.

2. On some classic properties of composition operators

Let \mathcal{H} be the infinite dimensional complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators on \mathcal{H}. For $A \in \mathcal{B}(\mathcal{H})$, the range and the null-space of A are denote by $\mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively.

Throughout this paper we assume that for $i=1,2, \varphi_{i}: X \rightarrow X$ is a nonsingular measurable transformation and $\varphi_{i}^{-1}(\Sigma)$ is a relatively μ-complete sub-sigma finite algebra of Σ. Put $\varphi_{3}=\varphi_{1} \circ \varphi_{2}, h_{i}=d \mu \circ \varphi_{i}^{-1} / d \mu$ and $E_{i}=E^{\varphi_{i}^{-1}(\Sigma)}$. Then $\mu \circ \varphi_{3}^{-1}$ is absolutely continuous with respect to μ, because the assumption $\mu \circ \varphi_{i}^{-1} \ll \mu$ implies that for each $A \in \Sigma$ with $\mu(A)=0$ we have $\mu\left(\varphi_{1}^{-1}(A)\right)=0$, and so $\mu \circ \varphi_{3}^{-1}(A)=\mu\left(\varphi_{2}^{-1}\left(\varphi_{1}^{-1}(A)\right)\right)=0$. It follows that $C_{\varphi_{3}}$ is a well-defined operator. Take $h_{3}=d \mu \circ \varphi_{3}^{-1} / d \mu$ and $E_{3}=E^{\varphi_{3}^{-1}(\Sigma)}$. Note that if h_{1} and h_{2} are essentially bounded, then for some $M_{1}>0$ and $M_{2}>0, \mu\left(\varphi_{3}^{-1}(A)\right) \leq M_{2} \mu\left(\varphi_{2}^{-1}(A)\right) \leq$ $M_{2} M_{1} \mu(A)$ for each $A \in \Sigma$. Hence h_{3} is essentially bounded and thus $\varphi_{3}^{-1}(\Sigma)$ is a sub-sigma finite algebra of Σ.

Proposition 2.1. For nonsingular measurable transformations φ_{1} and φ_{2}, let $\varphi_{3}^{-1}(\Sigma)$ be a sub-sigma finite algebra of Σ. Then the following assertions hold.
(a) $C_{\varphi_{3}}=C_{\varphi_{2}} \circ C_{\varphi_{1}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$ if and only if $h_{3}=h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1} \in L^{\infty}(\Sigma)$ and in this case $\left\|C_{\varphi_{3}}\right\|=\left\|h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right\|_{\infty}^{1 / 2}$.
(b) $C_{\varphi_{3}}$ is injective if and only if $C_{\varphi_{1}}$ is injective and $\sigma\left(E_{1}\left(h_{2}\right)\right)=X$.

Proof. (a) Recall that $C_{\varphi_{3}}$ is bounded if and only if $h_{3} \in L^{\infty}(\Sigma)$, and in this case, $\left\|C_{\varphi_{3}}\right\|=\left\|h_{3}\right\|_{\infty}^{1 / 2}$. Let $A \in \Sigma$. By using of conditional expectation operator and change of variables formula we have

$$
\begin{aligned}
\int_{A} h_{3} d \mu & =\int_{\varphi_{1}^{-1}(A)} d \mu \circ \varphi_{2}^{-1}=\int_{\varphi_{1}^{-1}(A)} E_{1}\left(h_{2}\right) d \mu \\
& =\int_{A} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1} d \mu \circ \varphi_{1}^{-1}=\int_{A} h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1} d \mu .
\end{aligned}
$$

It follows that $h_{3}=h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}$. Note that $C_{\varphi_{2}}$ is not necessarily bounded.
(b) Let $f \in L^{2}(\Sigma)$. It is easy to check that $\left\|C_{\varphi_{i}} f\right\|_{2}=\left\|M_{\sqrt{h_{i}}} f\right\|_{2}$. So $\mathcal{N}\left(C_{\varphi_{i}}\right)=$ $\mathcal{N}\left(M_{h_{i}}\right)=L^{2}\left(A, \Sigma_{A}, \mu_{\Sigma_{A}}\right)$, where $A=X \backslash \sigma\left(h_{i}\right):=\left(\sigma\left(h_{i}\right)\right)^{c}$ and $\Sigma_{A}=\{B \cap A:$ $B \in \Sigma\}$. Thus, $C_{\varphi_{i}}$ is injective if and only if $\sigma\left(h_{i}\right)=X$. Now, let $A=\{x \in X$: $\left.E_{1}\left(h_{2}\right)=0\right\}$. Then $A=\varphi_{1}^{-1}(B)$, for some $B \in \Sigma$. If $\mu(A)>0$, then $\mu(B)>0$ because $\mu \circ \varphi_{1}^{-1} \ll \mu$. Hence

$$
\int_{B} h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1} d \mu=\int_{A} E_{1}\left(h_{2}\right) d \mu=0,
$$

and so $h_{1}=0$ or $E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}=0$ on B. Therefore, $h_{1}>0$ and $E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}>$ 0 implies that $E_{1}\left(h_{2}\right)>0$. Now, let $E_{1}\left(h_{2}\right)>0$. Since $E_{1}\left(h_{2}\right)$ is a $\varphi_{1}^{-1}(\Sigma)-$ measurable, then there exists a unique $g \in L^{0}(\Sigma)$, with $\sigma(g) \subseteq \sigma\left(h_{1}\right)$, such that $E_{1}\left(h_{2}\right)=g \circ \varphi_{1}$ (see [[]Lemma 2]ca). It follows that $0<\int_{X} g \circ \varphi_{1} d \mu=\int_{X} h_{1} g d \mu$, and so $E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}=g>0$ on $\sigma\left(h_{1}\right)$. We conclude that $\sigma\left(h_{3}\right)=X$ if and only if $\sigma\left(h_{1}\right)=\sigma\left(E_{1}\left(h_{2}\right)\right)=X$.

Lemma 2.2. Let $C_{\varphi_{i}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$ and $\varphi_{3}=\varphi_{1} \circ \varphi_{2}$. Then the following assertions hold.
(a) $h_{3} \circ \varphi_{3}=\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\right) \circ \varphi_{2}$.
(b) $C_{\varphi_{3}}^{*}(f)=h_{1} E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1}^{-1}$.
(c) $C_{\varphi_{3}}^{*} C_{\varphi_{3}}(f)=\left(h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right) f$.
(d) $C_{\varphi_{3}} C_{\varphi_{3}}^{*}(f)=\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\left(E_{2} f\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2}$.
(e) $C_{\varphi_{3}}^{*} C_{\varphi_{3}} C_{\varphi_{3}}(f)=\left(h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right) f \circ \varphi_{3}$.
(f) $C_{\varphi_{3}} C_{\varphi_{3}}^{*} C_{\varphi_{3}}(f)=\left(\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\right) \circ \varphi_{2}\right) f \circ \varphi_{3}$.

Proof. Part (a) follows from Proposition 2.1(a). To prove (b), let $f \in L^{2}(\Sigma)$. Then

$$
C_{\varphi_{3}}^{*}(f)=C_{\varphi_{1}}^{*}\left(C_{\varphi_{2}}^{*}(f)\right)=C_{\varphi_{1}}^{*}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right)=h_{1} E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1}^{-1} .
$$

The remainder of the proof is left to the reader.
Let $[T, S]=T S-S T$ for T and S in $\mathcal{B}(\mathcal{H})$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $\left[T, T^{*}\right]=0$, quasinormal if $\left[T, T^{*} T\right]=0$ and hyponormal if $\left[T, T^{*}\right] \geq 0$.

Lemma 2.3. Let $C_{\varphi} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$. Then the following assertions hold.
(a) C_{φ} is normal if and only if $\varphi^{-1}(\Sigma)=\Sigma$ and $h=h \circ \varphi$ [22].
(b) C_{φ} is quasinormal if and only if $h=h \circ \varphi$ [22].
(c) C_{φ} is hyponormal if and only if $h>0$ and $(h \circ \varphi) E^{\varphi^{-1}(\Sigma)}\left(\frac{1}{h}\right) \leq 1[12]$.

Lemma 2.4. Let $1 \leq i, j \leq 3, C_{\varphi_{i}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$ and $\varphi_{3}=\varphi_{1} \circ \varphi_{2}$. Then $\sigma\left(E_{i}\left(h_{j}\right) \circ \varphi_{j}\right)=X$ and for each $f \in L^{2}(\Sigma)$,

$$
E_{3}(f)=\frac{E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2}}{E_{1}\left(h_{2}\right) \circ \varphi_{2}}
$$

Proof. It is easy to see that $\sigma\left(E_{i}\left(h_{j}\right) \circ \varphi_{j}\right)=\varphi_{j}^{-1} \sigma\left(E_{i}\left(h_{j}\right)\right) \supseteq \varphi_{j}^{-1} \sigma\left(h_{j}\right)=$ $\sigma\left(h_{j} \circ \varphi_{j}\right)=X$. Now, from $C_{\varphi_{3}} C_{\varphi_{3}}^{*}=M_{h_{3} \circ \varphi_{3}} E_{3}$ and Lemma 2.2(c) we obtain

$$
E_{3}(f)=\frac{\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2}}{h_{3} \circ \varphi_{3}}
$$

But, by Lemma 2.2(a) we get that

$$
\frac{h_{1} \circ \varphi_{3}}{h_{3} \circ \varphi_{3}}=\frac{\chi_{\left(E_{1}\left(h_{2}\right) \circ \varphi_{2}\right)}}{E_{1}\left(h_{2}\right) \circ \varphi_{2}}=\frac{1}{E_{1}\left(h_{2}\right) \circ \varphi_{2}} .
$$

This completes the proof.
Assertion (a) of the following proposition is known (see [16]). However for completeness, we provide a new proof.

Proposition 2.5. Let $C_{\varphi_{i}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$ with $h_{1} \circ \varphi_{2}=h_{1}$ and $h_{2} \circ \varphi_{1}=h_{2}$.
(a) If $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ are normal (quasinormal), then $C_{\varphi_{3}}$ is a normal (quasinormal) operator.
(b) If $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ are hyponormal and $E_{2}\left(h_{2}\right) \circ \varphi_{2}^{-1}$ is a $\varphi_{1}^{-1}(\Sigma)$-measurable function, then $C_{\varphi_{3}}$ is a hyponormal operator.

Proof. (a) Let $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ are normal operators. Obviously $\varphi_{3}^{-1}(\Sigma)=\Sigma$. By hypotheses we get that

$$
\begin{gathered}
h_{1} \circ \varphi_{3}=\left(h_{1} \circ \varphi_{1}\right) \circ \varphi_{2}=h_{1} \circ \varphi_{2}=h_{1}, \\
E_{1}\left(h_{2}\right) \circ \varphi_{2}=h_{2} \circ \varphi_{2}=h_{2}=E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1} .
\end{gathered}
$$

Now, by Lemma 2.2(a), we get that

$$
h_{3} \circ \varphi_{3}=\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\right) \circ \varphi_{2}=h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}=h_{3} .
$$

(b) By hypotheses we have

$$
\begin{gathered}
\left(h_{i} \circ \varphi_{i}\right) E_{i}\left(\frac{1}{h_{i}}\right) \leq 1, \quad h_{i}>0 \quad(i=1,2), \\
E_{2}\left(h_{1}\right)=h_{1}=E_{2}\left(h_{1}\right) \circ \varphi_{2}^{-1}, \quad E_{1}\left(h_{2}\right)=h_{2}=E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}, \\
E_{2}\left(\frac{1}{h_{2}}\right) \circ \varphi_{2}^{-1}=\frac{1}{E_{2}\left(h_{2}\right) \circ \varphi_{2}^{-1}} \in L^{0}\left(\varphi_{1}^{-1}(\Sigma)\right),
\end{gathered}
$$

and by Proposition 2.1(b), $\sigma\left(h_{3}\right)=X$ because $\sigma\left(h_{1}\right)=X$ and $\sigma\left(E_{1}\left(h_{2}\right)\right) \supseteq \sigma\left(h_{2}\right)=$ X. Then we have

$$
\begin{aligned}
\left(h_{3}\right. & \left.\circ \varphi_{3}\right) E_{3}\left(\frac{1}{h_{3}}\right)=\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2} E_{2}\left(\frac{1}{h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}}\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2} \\
& =\left(h_{1} \circ \varphi_{3}\right)\left(h_{2} \circ \varphi_{2}\right) E_{1}\left(\frac{1}{E_{2}\left(h_{1}\right) \circ \varphi_{2}^{-1}} E_{2}\left(\frac{1}{E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}}\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2} \\
& =\left(h_{1} \circ \varphi_{3}\right)\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(\frac{1}{h_{2}}\right) E_{1}\left(\frac{1}{h_{1}}\right) \circ \varphi_{2} \\
& =\left\{\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(\frac{1}{h_{2}}\right)\right\}\left\{\left(h_{1} \circ \varphi_{1}\right) E_{1}\left(\frac{1}{h_{1}}\right)\right\} \circ \varphi_{2} \leq 1 .
\end{aligned}
$$

In [6], Douglas proved that when $A, B \in \mathcal{B}(\mathcal{H})$, then $A A^{*} \leq \lambda B B^{*}$ for some $\lambda \geq 0$; if and only if $A=B C$ for some $C \in \mathcal{B}(\mathcal{H})$.

Proposition 2.6. Let $C_{\varphi_{i}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$. Then $h_{3} \leq \lambda_{1} h_{1}$ and $h_{3} \circ \varphi_{3} \leq$ $\lambda_{2}\left(h_{2} \circ \varphi_{2}\right)$ for some $\lambda_{i} \geq 0$.

Proof. Since $C_{\varphi_{3}}=C_{\varphi_{2}} \circ C_{\varphi_{1}}$, by Douglas' theorem, there exists $\lambda_{i} \geq 0$ such that $C_{\varphi_{3}}^{*} C_{\varphi_{3}} \leq \lambda_{1} C_{\varphi_{1}}^{*} C_{\varphi_{1}}$ and $C_{\varphi_{3}} C_{\varphi_{3}}^{*} \leq \lambda_{2} C_{\varphi_{2}} C_{\varphi_{2}}^{*}$. Then for each $f, g \in L^{2}(\Sigma)$ we have $\left\langle h_{3} f, f\right\rangle \leq\left\langle\lambda_{1} h_{1} f, f\right\rangle$ and $\left\langle h_{3} \circ \varphi_{3} E_{3}(g), g\right\rangle \leq\left\langle\lambda_{2}\left(h_{2} \circ \varphi_{2}\right) E_{2}(g), g\right\rangle$. For $A \in \Sigma$, take $f=\chi_{A}$ and $g=\chi_{\varphi_{3}^{-1}(A)}$. Since $E_{3}(g)=g=E_{2}(g)$, we get that $\int_{A} h_{3} d \mu \leq$ $\int_{A} \lambda_{1} h_{1} d \mu$ and $\int_{\varphi_{3}^{-1}(A)}\left(h_{3} \circ \varphi_{3}\right) d \mu \leq \int_{\varphi_{3}^{-1}(A)} \lambda_{2}\left(h_{2} \circ \varphi_{2}\right) d \mu$. This completes the proof.

Write $X=\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cup B$, where $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint atoms and B, being disjoint from each A_{n}, is non-atomic (see [23]). In [4], Chan proved that M_{u} is compact on $L^{2}(\Sigma)$ if and only if for any $\varepsilon>0$, the set $\{x \in X:|u(x)| \geq \varepsilon\}$ consists of finitely many atoms. In the following, we give a sufficient condition for the product of a composition operator $C_{\varphi_{1}}$ with the adjoint of a composition operator $C_{\varphi_{2}}^{*}$ on $L^{2}(\Sigma)$ to be compact. The order of the product gives rise to two different cases (see [5] and [21]).

Proposition 2.7. Let $C_{\varphi_{i}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$ for $i=1,2$. Then the following assertions hold.
(a) If for each $\varepsilon>0$, the set $\left\{x \in X: h_{2}\left(\varphi_{1}(x)\right) \geq \varepsilon\right\}$ consists of finitely many atoms, then $C_{\varphi_{1}} C_{\varphi_{2}}^{*}$ is compact.
(b) If for each $\varepsilon>0$, the set $\left\{x \in X: h_{1}(x)\left(E_{1}\left(h_{2} \circ \varphi_{2}\right) \circ \varphi_{1}^{-1}\right)(x) \geq \varepsilon\right\}$ consists of finitely many atoms, then $C_{\varphi_{2}}^{*} C_{\varphi_{1}}$ is compact.

Proof. For $f \in L^{2}(\Sigma)$ it is seen that

$$
\begin{aligned}
& C_{\varphi_{1}} C_{\varphi_{2}}^{*}(f)=h_{2} \circ \varphi_{1}\left(E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1} \\
& C_{\varphi_{2}}^{*} C_{\varphi_{1}}(f)=h_{2} E_{2}\left(f \circ \varphi_{1}\right) \circ \varphi_{2}^{-1} .
\end{aligned}
$$

Using change of variable formula and inequality $\left|E_{2}(f)\right|^{2} \leq E_{2}\left(|f|^{2}\right)$, we obtain

$$
\left\|C_{\varphi_{1}} C_{\varphi_{2}}^{*}(f)\right\|^{2}=\int_{X} h_{2}^{2} \circ \varphi_{1}\left|E_{2}(f) \circ \varphi_{2}^{-1}\right|^{2} \circ \varphi_{1} d \mu=\int_{X} h_{1} h_{2}^{2}\left|E_{2}(f) \circ \varphi_{2}^{-1}\right|^{2} d \mu
$$

$$
\begin{aligned}
& =\int_{X} h_{1} h_{2}\left|E_{2}(f)\right|^{2} \circ \varphi_{2}^{-1} d \mu \circ \varphi_{2}^{-1}=\int_{X}\left(h_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right)\left|E_{2}(f)\right|^{2} d \mu \\
& \leq \int_{X}\left(h_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(|f|^{2}\right) d \mu=\| M_{\sqrt{\left(h_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right)} f \|^{2}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\|C_{\varphi_{2}}^{*} C_{\varphi_{1}}(f)\right\|^{2} & =\int_{X} h_{2}^{2}\left|E_{2}\left(f \circ \varphi_{1}\right) \circ \varphi_{2}^{-1}\right|^{2} d \mu=\int_{X} h_{2}\left|E_{2}\left(f \circ \varphi_{1}\right)\right|^{2} \circ \varphi_{2}^{-1} d \mu \circ \varphi_{2}^{-1} \\
& =\int_{X}\left(h_{2} \circ \varphi_{2}\right)\left|E_{2}\left(f \circ \varphi_{1}\right)\right|^{2} d \mu \leq \int_{X}\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(|f|^{2} \circ \varphi_{1}\right) d \mu \\
& =\int_{X}\left(h_{2} \circ \varphi_{2}\right)|f|^{2} \circ \varphi_{1} d \mu=\int_{X} h_{1} E_{1}\left(h_{2} \circ \varphi_{2}\right) \circ \varphi_{1}^{-1}|f|^{2} d \mu \\
& =\| M_{\sqrt{h_{1} E_{1}\left(h_{2} \circ \varphi_{2}\right) \circ \varphi_{1}^{-1}} f \|^{2} .}
\end{aligned}
$$

Now, the desired conclusions follows from the compactness criteria for multiplication operators.

Proposition 2.8. Let $C_{\varphi_{i}} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$ for $i=1,2$. Then the following assertions hold.
(a) If h_{3} is bounded away from zero on $\sigma\left(h_{3}\right)$ and $\sigma\left(E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right)=X$, then $\mathcal{R}\left(C_{\varphi_{1}}\right)$ is closed.
(b) Let $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ have closed range. If $\sigma\left(h_{2}\right)=X$ or $\sigma\left(h_{2}\right)^{c}=A_{i_{1}} \cup \cdots \cup$ $A_{i_{k}}$, then $C_{\varphi_{3}}$ has closed range.

Proof. (a) Let $f \in L^{2}(\Sigma)$. Then $\left\|M_{\sqrt{h_{3}}} f\right\|_{2} \leq\left\|C_{\varphi_{2}}\right\|\left\|M_{\sqrt{h_{1}}} f\right\|_{2}$. Recall that for $u \in L^{\infty}(\Sigma), \mathcal{R}\left(M_{u}\right)$ is closed in $L^{2}(\Sigma)$ if and only if u is bounded away from zero on $\sigma(u)$ [18]. Thus there exists $\lambda \geq 0$ such that $\lambda\|f\|_{2} \leq\left\|M_{\sqrt{h_{1}}} f\right\|_{2}$ for each $f \in L^{2}\left(\sigma\left(h_{3}\right)\right)$. Since $\sigma\left(E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right)=X$, then $\sigma\left(h_{1}\right)=\sigma\left(h_{3}\right)$, and so $\mathcal{R}\left(C_{\varphi_{1}}\right)$ is closed
(b) It is a classical fact that $C_{\varphi_{3}}$ has closed range if and only if $\mathcal{N}\left(C_{\varphi_{2}}\right)+$ $L^{2}\left(\varphi_{1}^{-1}(\Sigma)\right)$ is closed (see [15, Corollary 1]. Now, by assumptions, $\mathcal{N}\left(C_{\varphi_{2}}\right)=\{0\}$ or $\mathcal{N}\left(C_{\varphi_{2}}\right)$ is a finite dimensional subspace of $L^{2}(\Sigma)$, and hence $C_{\varphi_{3}}$ has closed range.

3. Complex symmetric, semi-Kato type and polar decomposition of composition operators

A conjugation on a Hilbert space \mathcal{H} is an anti-linear operator $S: \mathcal{H} \rightarrow \mathcal{H}$ which satisfies $\langle S x, S y\rangle=\langle y, x\rangle$ for all $x, y \in \mathcal{H}$ and $S^{2}=I$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be complex symmetric if there exists a conjugation S on \mathcal{H} such that $T=S T^{*} S$. The class of complex symmetric operators is unexpectedly large. We refer the reader to $[7,10]$ for more details, including historical comments and references.

Theorem 3.1. Let $\varphi^{2}=i d$, the identity transformation, and let $0<h \in$ $L^{\infty}\left(\varphi^{-1}(\Sigma)\right)$. Then the operator C_{φ} is complex symmetric.

Proof. Put $E=E^{\varphi^{-1}(\Sigma)}$ and define $S(f):=\frac{\bar{f} \circ \varphi}{\sqrt{h \circ \varphi}}$. Then for each $f \in L^{2}(\Sigma)$ we have

$$
S C_{\varphi}^{*} S(f)=S\left(h E(S(f)) \varphi^{-1}\right)=\frac{(h \circ \varphi) E(S(\bar{f}))}{\sqrt{h \circ \varphi}}=\sqrt{h \circ \varphi} S(\bar{f})=C_{\varphi}(f)
$$

and

$$
\langle S(f), S(g)\rangle=\int_{X} \frac{(\bar{f} \circ \varphi)(g \circ \varphi)}{h \circ \varphi} d \mu=\int_{X} \frac{h \bar{f} g}{h} d \mu=\langle g, f\rangle
$$

It follows that C_{φ} is a complex symmetric operator if and only if

$$
S^{2}(f)=\frac{f \circ \varphi^{2}}{\sqrt{(h \circ \varphi)\left(h \circ \varphi^{2}\right)}}=f, \quad f \in L^{2}(\Sigma)
$$

Since by hypotheses $\varphi^{2}=i d$ and $E(h)=h$, then

$$
1=\frac{d \mu \circ \varphi^{-2}}{d \mu}=h E(h) \circ \varphi^{-1}=h\left(h \circ \varphi^{-1}\right)
$$

Thus, $\left(h \circ \varphi^{2}\right)(h \circ \varphi)=1$ and so $S^{2}=I$.
Corollary 3.2. Let φ be a measure preserving transformation, i.e., $\mu\left(\varphi^{-1}(A)\right)=\mu(A)$ for all $A \in \Sigma$. Then C_{φ} is a complex symmetric operator on $L^{2}(\Sigma)$ if and only if $C_{\varphi}^{2}=I$, the identity operator.

In [11], the authors obtain some necessary conditions for C_{φ} and C_{φ}^{*} acting on H^{2} for which $C_{\varphi}^{*} C_{\varphi}$ and $C_{\varphi}+C_{\varphi}^{*}$ commute. They prove that if φ is an automorphism of the open unit disk \mathbb{D}, then $\left[C_{\varphi}^{*} C_{\varphi}, C_{\varphi}+C_{\varphi}^{*}\right]=0$ if and only if C_{φ} is normal. In the following we obtain a similar result for $C_{\varphi} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$.

Proposition 3.3. Let $C_{\varphi} \in \mathcal{B}\left(L^{2}(\Sigma)\right)$. If C_{φ} is quasinormal, then $\left[C_{\varphi}^{*} C_{\varphi}, C_{\varphi}+C_{\varphi}^{*}\right]=0$.

Proof. Let $f \in L^{2}(\Sigma)$. Since $h=h \circ \varphi$, then we have

$$
\begin{aligned}
\left(C_{\varphi}+C_{\varphi}^{*}\right) & \left(C_{\varphi}^{*} C_{\varphi}(f)\right)=(h \circ \varphi)(f \circ \varphi)+h E(h f) \circ \varphi^{-1} \\
& =h(f \circ \varphi)+h E((h \circ \varphi) f) \circ \varphi^{-1}=h(f \circ \varphi)+h^{2} E(f) \circ \varphi^{-1} \\
& =C_{\varphi}^{*} C_{\varphi}\left(C_{\varphi}+C_{\varphi}^{*}\right)(f)
\end{aligned}
$$

and so $\left[C_{\varphi}^{*} C_{\varphi}, C_{\varphi}+C_{\varphi}^{*}\right](f)=0$.
Definition 3.4. We say that $A \in \mathcal{B}(\mathcal{H})$ is an operator of semi-Kato type, if the null space of A is contained in $\cap_{n=1}^{\infty} \overline{\mathcal{R}\left(A^{n}\right)}$.

Recall that $A \in \mathcal{B}(\mathcal{H})$ is said to be Kato if $\mathcal{R}(A)$ is closed and $\mathcal{N}(A) \subseteq$ $\bigcap_{n=1}^{\infty} \mathcal{R}\left(A^{n}\right)$. Any bounded operator that is either onto or bounded below is Kato (see [14]). The set of all semi-Kato and Kato type operators will be denoted by $\mathcal{S} \mathcal{K}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ respectively. Obviously, $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{S} \mathcal{K}(\mathcal{H})$. Also, if $A \in \mathcal{S K}(\mathcal{H})$ and for each $n \in \mathbb{N}$, A^{n} has closed range, then $A \in \mathcal{K}(\mathcal{H})$.

Theorem 3.5. For $i=1,2,3$, put $\Sigma_{\infty}^{i}=\bigcap_{n=1}^{\infty} \varphi_{i}^{-n}(\Sigma)$ and let $C_{\varphi_{i}} \in$ $\mathcal{B}\left(L^{2}(\Sigma)\right)$. Then the following assertions hold.
(a) If $C_{\varphi_{i}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$ if and only if $\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c} \subseteq \Sigma_{\infty}^{i}$.
(b) $C_{\varphi_{i}} \in \mathcal{K}\left(L^{2}(\Sigma)\right)$ if and only if, for each $n \in \mathbb{N}$, $h_{i, n}$ is bounded away from zero on $\sigma\left(h_{i, n}\right)$ and $\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c} \subseteq \Sigma_{\infty}^{i}$.
(c) If $C_{\varphi_{i}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right), \sigma\left(E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right)=\sigma\left(E_{1}\left(h_{2}\right)\right)$ and $\Sigma_{\infty}^{1} \cup \Sigma_{\infty}^{2} \subseteq \Sigma_{\infty}^{3}$, then $C_{\varphi_{3}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$.
(d) If $C_{\varphi_{3}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$ and $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$, then $C_{\varphi_{1}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$.

Proof. (a) Note that $C_{\varphi_{i}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$, if $\mathcal{N}\left(C_{\varphi_{i}}\right) \subseteq \bigcap_{n=1}^{\infty} \overline{\mathcal{R}\left(C_{\varphi_{i}^{n}}\right)}$. Since $\overline{\mathcal{R}\left(C_{\varphi_{i}^{n}}\right)}=L^{2}\left(\varphi_{i}^{-n}(\Sigma)\right)$ and $\mathcal{N}\left(C_{\varphi_{i}}\right)=L^{2}\left(\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c}\right)$, it follows that if $C_{\varphi_{i}} \in$ $\mathcal{S K}\left(L^{2}(\Sigma)\right)$ then $L^{2}\left(\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c}\right) \subseteq \bigcap_{n=1}^{\infty} L^{2}\left(\varphi_{i}^{-n}(\Sigma)\right)=L^{2}\left(\bigcap_{n=1}^{\infty} \varphi_{i}^{-n}(\Sigma)\right)=$ $L^{2}\left(\Sigma_{\infty}^{i}\right)$, and so $\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c} \subseteq \Sigma_{\infty}^{i}$. Conversely, if $\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c} \subseteq \Sigma_{\infty}^{i}$ then $\mathcal{N}\left(C_{\varphi_{i}}\right)=L^{2}\left(\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c}\right) \subseteq L^{2}\left(\Sigma_{\infty}^{i}\right)=\bigcap_{n=1}^{\infty} L^{2}\left(\varphi_{i}^{-n}(\Sigma)\right)=\bigcap_{n=1}^{\infty} \overline{\mathcal{R}\left(C_{\varphi_{i}}^{n}\right)}$.
(b) Let $C_{\varphi_{i}} \in \mathcal{K}\left(L^{2}(\Sigma)\right)$. Then for each $n \in \mathbb{N}, \mathcal{R}\left(C_{\varphi_{i}}^{n}\right)$ is closed and so $h_{i, n}:=d \mu \circ \varphi_{i}^{-n} / d \mu$ is bounded away from zero on $\sigma\left(h_{i, n}\right)$. Also, we have $L^{2}(\Sigma \cap$ $\left.\left(\sigma\left(h_{i}\right)\right)^{c}\right)=\mathcal{N}\left(C_{\varphi_{i}}\right) \subseteq \bigcap_{n=1}^{\infty} \overline{\mathcal{R}\left(C_{\varphi_{i}}^{n}\right)}=L^{2}\left(\Sigma_{\infty}^{i}\right)$. On the other hand, if for each $n \in \mathbb{N}, h_{i, n}$ is bounded away from zero on its support and $\Sigma \cap\left(\sigma\left(h_{i}\right)\right)^{c} \subseteq \Sigma_{\infty}^{i}$, then $\overline{\mathcal{R}\left(C_{\varphi_{i}}^{n}\right)}=\mathcal{R}\left(C_{\varphi_{i}}^{n}\right)$ and $\mathcal{N}\left(C_{\varphi_{i}}\right) \subseteq \bigcap_{n=1}^{\infty} \mathcal{R}\left(C_{\varphi_{i}}^{n}\right)$.
(c) For $i=1,2$, let $C_{\varphi_{i}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$ and $\sigma\left(E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right)=\sigma\left(E_{1}\left(h_{2}\right)\right)$. Then we have $\left(\sigma\left(h_{3}\right)\right)^{c} \cap \Sigma=\left\{\sigma\left(h_{1}\right) \cap \sigma\left(E_{1}\left(h_{2}\right)\right)\right\}^{c} \cap \Sigma \subseteq\left\{\left(\sigma\left(h_{1}\right)\right)^{c} \cup\left(\sigma\left(h_{2}\right)\right)^{c}\right\} \cap \Sigma \subseteq$ $\Sigma_{\infty}^{1} \cup \Sigma_{\infty}^{2} \subseteq \Sigma_{\infty}^{3}$. hence by (a), $C_{\varphi_{3}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$. Note that $\Sigma_{\infty}^{3} \subseteq \Sigma_{\infty}^{1} \cup \Sigma_{\infty}^{2}$, because, in general, $\Sigma_{\infty}^{3} \subseteq \Sigma_{\infty}^{2}$.
(d) If $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$, then $\Sigma_{\infty}^{3} \subseteq \Sigma_{\infty}^{1}$. Hence if $C_{\varphi_{3}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$ and $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$, then $C_{\varphi_{1}} \in \mathcal{S K}\left(L^{2}(\Sigma)\right)$ because $\sigma\left(h_{3}\right) \subseteq \sigma\left(h_{1}\right)$. .

We recall that every operator $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into $T=U|T|$ with a partial isometry U, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. U is determined uniquely by the kernel condition $\mathcal{N}(U)=\mathcal{N}(|T|)$, then this decomposition is called the polar decomposition. Notice that the parts of the polar decomposition $V,|W|$ for $W=$ $M_{u} \circ C_{\varphi}$ are given by

$$
V=M_{\frac{\chi_{\sigma(J \circ \varphi)}}{\sqrt{J \circ \varphi}}} W, \quad|W|=M_{\sqrt{J}}
$$

where $J=h E^{\varphi^{-1}(\Sigma)}\left(|u|^{2}\right) \circ \varphi^{-1}$ (see [3]). Hence by Proposition 2.1(a) the parts of the polar decomposition $C_{\varphi_{3}}=U_{\varphi_{3}}\left|C_{\varphi_{3}}\right|$ are given by

$$
\begin{aligned}
\left|C_{\varphi_{3}}\right|(f) & =\sqrt{h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}} f \\
U_{\varphi_{3}}(f) & =\frac{f \circ \varphi_{3}}{\sqrt{\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\right) \circ \varphi_{2}}}
\end{aligned}
$$

Since $h_{3} \circ \varphi_{3}>0$, then $\mathcal{N}\left(U_{\varphi_{3}}\right)=\mathcal{N}\left(C_{\varphi_{3}}\right)=L^{2}\left(\left(\sigma\left(h_{3}\right)\right)^{c}\right)=\mathcal{N}\left(\left|C_{\varphi_{3}}\right|\right)$. It is easy to see that $U_{\varphi_{3}} U_{\varphi_{3}}^{*} U_{\varphi_{3}}=U_{\varphi_{3}}$, and so $U_{\varphi_{3}}$ is a partial isometry. Also, the second
part of $C_{\varphi_{3}}^{*}=U_{\varphi_{3}}\left|C_{\varphi_{3}}^{*}\right|$ is given by

$$
\left|C_{\varphi_{3}}^{*}\right|(f)=\sqrt{\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\right) \circ \varphi_{2}} E_{3}(f)
$$

Recall that the Aluthge transform of $T=U|T| \in \mathcal{B}(\mathcal{H})$ is the operator \tilde{T} given by $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. For $0<r \leq 1$, put $T_{r}:=|T|^{r} U|T|^{1-r}$ (see [1]). Then $T_{\frac{1}{2}}=\tilde{T}$. Now, take $T=C_{\varphi_{3}}$. Then we have

$$
T_{r} f=|T|^{r} U\left(h_{3}^{\frac{1-r}{2}} f\right)=|T|^{r}\left(\left(\frac{1}{h_{3} \circ \varphi_{3}}\right)^{\frac{r}{2}} f \circ \varphi_{3}\right)=\left(\frac{h_{3}}{h_{3} \circ \varphi_{3}}\right)^{\frac{r}{2}} f \circ \varphi_{3}
$$

Put $\omega_{r}:=\left(\frac{h_{3}}{h_{3} \circ \varphi_{3}}\right)^{r / 2}$. Then $T_{r} f=\omega_{r} . f \circ \varphi_{3}$ is a weighted composition operator. The parts of the polar decomposition $V_{r},\left|T_{r}\right|$ for T_{r} are given by

$$
\begin{aligned}
\left|T_{r}\right|(f) & =\sqrt{h_{3} E_{3}\left(\omega_{r}^{2}\right) \circ \varphi_{3}^{-1}} f \\
V_{r} f & =\frac{\chi_{\sigma\left(E_{3}\left(\omega_{r}^{2}\right)\right) T_{r} f}^{\sqrt{\left(h_{3} \circ \varphi_{3}\right) E_{3}\left(\omega_{r}^{2}\right)}}}{} .
\end{aligned}
$$

Example 3.6. Let $X=\mathbb{N}, \Sigma=2^{\mathbb{N}}$ and let μ be the counting measure. Define

$$
\varphi_{1}(n)= \begin{cases}1, & n=1,2 \\ n-1, & n \geq 3\end{cases}
$$

and $\varphi_{2}(n)=n+1$. Then

$$
\begin{gathered}
h_{1}(n)=\mu\left(\varphi_{1}^{-1}(n)\right)=\left\{\begin{array}{ll}
2, & n=1 \\
1, & n \geq 2 ;
\end{array} \quad h_{2}(n)=\mu\left(\varphi_{2}^{-1}(n)\right)= \begin{cases}0, & n=1 \\
1, & n \geq 2 ;\end{cases} \right. \\
E_{1}\left(h_{2}\right)(n)=\left\{\begin{array}{ll}
\frac{1}{2}, & n=1,2 \\
1, & n \geq 3 ;
\end{array} h_{3}(n)=\sum_{k \in \varphi_{1}^{-1}(n)} h_{2}(k)=1 .\right.
\end{gathered}
$$

It follows that the injectivity condition for $C_{\varphi_{2}}$ in Proposition 2.1 is not necessary. Moreover, since φ_{3} is the identity function, by Corollary $3.2, C_{\varphi_{3}}$ is a complex symmetric operator but neither $C_{\varphi_{1}}$ nor $C_{\varphi_{2}}$ is a complex symmetric operator.

Example 3.7. (a) Let $X=[0,1], d \mu=d x$ and Σ be the Lebesgue sets. Define the non-singular transformations $\varphi_{i}: X \rightarrow X$ by

$$
\varphi_{1}(x)=\left\{\begin{array}{ll}
2 x, & x \in\left[0, \frac{1}{2}\right] \\
2 x-1, & x \in\left(\frac{1}{2}, 1\right],
\end{array} \quad f_{2}(x)= \begin{cases}1-2 x, & x \in\left[0, \frac{1}{2}\right] \\
2 x-1, & x \in\left(\frac{1}{2}, 1\right]\end{cases}\right.
$$

Then

$$
\varphi_{3}(x)= \begin{cases}1-4 x, & x \in\left[0, \frac{1}{4}\right) \\ 2-4 x, & x \in\left[\frac{1}{4}, \frac{1}{2}\right) \\ 4 x-2, & x \in\left[\frac{1}{2}, \frac{3}{4}\right) \\ 4 x-3, & x \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

and so $h_{1}(x)=h_{2}(x)=h_{3}(x)=1$. Moreover, we can obtain from direct computations that

$$
\begin{aligned}
& E_{1}(f)(x)=\frac{1}{2}\left\{f(x)+f\left(\frac{1+2 x}{2}\right)\right\} \chi_{\left[0, \frac{1}{2}\right]}+\frac{1}{2}\left\{f\left(\frac{2 x-1}{2}\right)+f(x)\right\} \chi_{\left(\frac{1}{2}, 1\right]} \\
& E_{2}(f)(x)=\frac{1}{2}\{f(x)+f(1-x)\}
\end{aligned}
$$

and

$$
\left|C_{\varphi_{3}}^{*}\right|(f)=E_{3}(f)(x)=\frac{1}{2} \begin{cases}f\left(\frac{1-4 x}{2}\right)+f(1-2 x), & x \in\left[0, \frac{1}{4}\right) \\ f(1-2 x)+f\left(\frac{3-4 x}{2}\right), & x \in\left[\frac{1}{4}, \frac{1}{2}\right) \\ f(2 x-1)+f\left(\frac{4 x-1}{2}\right), & x \in\left[\frac{1}{2}, \frac{3}{4}\right) \\ f\left(\frac{4 x-3}{2}\right)+f(2 x-1), & x \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

for all $f \in L^{2}(\Sigma)$. Note that for each $i=1,2,3$ and $0<r \leq 1,\left(C_{\varphi_{i}}\right)_{r}=C_{\varphi_{i}}=\widetilde{C_{\varphi_{i}}}$. Furthermore, $C_{\varphi_{i}}$ is injective, quasinormal and has closed range but not normal operator.
(b) Let $X=\mathbb{N}, \Sigma=2^{\mathbb{N}}$ and let $\mu(\{n\})=m_{n}$, where $w:=\left\{m_{n}\right\}_{n} \subset(0, \infty)$. Let $f=\left\{f_{n}\right\} \in l^{2}(w)$. Then for $i=1,2$ we have

$$
\begin{gathered}
h_{i}(k)=\frac{1}{m_{k}} \int_{\{k\}} h_{i} d \mu=\frac{1}{m_{k}} \int_{\varphi_{i}^{-1}(\{k\})} d \mu=\frac{1}{m_{k}} \sum_{j \in \varphi_{i}^{-1}(\{k\})} m_{j}, \\
\left(h_{i} E_{i}(f) \circ \varphi_{i}^{-1}\right)(k)=\frac{1}{m_{k}} \int_{\varphi_{i}^{-1}(\{k\})} E_{i}(f) d \mu=\frac{1}{m_{k}} \sum_{j \in \varphi_{i}^{-1}(\{k\})} f_{j} m_{j} .
\end{gathered}
$$

Now, by these computations we obtain

$$
h_{3}(k)=\frac{1}{m_{k}} \sum_{j \in \varphi_{1}^{-1}(\{k\})} h_{2}(j) m_{j}=\frac{1}{m_{k}} \sum_{j \in \varphi_{1}^{-1}(\{k\})} \sum_{l \in \varphi_{2}^{-1}(\{j\})} m_{l} .
$$

Acknowledgement. The authors are grateful to the referee for the careful reading and valuable comments that helped to strengthen the results in this paper.

REFERENCES

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equ. Operator Theory 13 (1990), 307-315.
[2] J. T. Campbell, J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32 (1990), 87-94.
[3] J. T. Campbell, W. E. Hornor, Localising and seminormal composition operators on L^{2}, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 301-316.
[4] J. T. Chan, A note on compact weighted composition operators on $L^{p}(\mu)$, Acta Sci. Math. (Szeged) 56 (1992), 165-168.
[5] J. H. Clifford, T. Le, A. Wiggins, Invertible composition operators: the product of a composition operator with the adjoint of a composition operator, Complex Anal. Oper. Theory 8 (2014), 1699-1706.
[6] R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[7] S. R. Garcia, M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315.
[8] D. Harrington, R. Whitley, Seminormal composition operators, J. Operator Theory 11 (1984), 125-135.
[9] T. Hoover, A. Lambert, J. Quinn, The Markov process determined by a weighted composition operator, Studia Math. LXXII (1982), 225-235.
[10] S. Jung, Y. Kim, E. Ko, J. E. Lee, Complex symmetric weighted composition operators on $H^{2}(\mathbb{D})$, J. Funct. Anal. 267 (2014), 323-351.
[11] S. Jung, Y. Kim, E. Ko, Composition operators for which $C_{\phi}^{*} C_{\phi}$ and $C_{\phi}+C_{\phi}^{*}$ commute, Complex Var. Elliptic Equ. 59 (2014), 1608-1625.
[12] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18 (1986), 395400.
[13] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 111-118.
[14] V. Müller, Spectral Theory of Linear Operators, Operator Theory Advances and Applications, Vol. 139, Birkhäuser Verlag, Basel-Boston-New York, 2003.
[15] G. Nikaido, Remarks on the lower bound of linear operators, Proc. Japan Acad. 56 (1980), 321-323.
[16] S. Panayappan, D. Senthilkumar, K. Thirugnanasambandam, A note on powers of phyponormal and product of quasinormal composition operators, Int. J. Math. Anal. (Ruse) 3 (2009), 49-54.
[17] M. M. Rao, Conditional Measures and Applications, Marcel Dekker, New York, 1993.
[18] R. K. Singh, Ashok Kumar, Multiplication operators and composition operators with closed ranges, Bull. Austral. Math. Soc. 16 (1977), 247-252.
[19] R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam 1993.
[20] G. Tian, Y. Cao, Y. Ji, J. Li, On a factorization of operators as a product of an essentially unitary operator and a strongly irreducible operator, J. Math. Anal. Appl. 429 (2015), 1-15.
[21] M. F. Wang, P. D. Liu, Compactness of product operators on the Bergman space, Acta Math. Sin. (Engl. Ser.) 21 (2005), 723-732.
[22] R. Whitley, Normal and quasinormal composition operators, Proc. Amer. Math. Soc. 70 (1978), 114-118.
[23] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.
(received 07.10.2015; in revised form 28.04.2016; available online 01.11.2016)
Faculty of Mathematical Sciences, University of Tabriz, P.O.Box: 5166615648, Tabriz, Iran
E-mail: mjabbar@tabrizu.ac.ir, s_karimi89@yahoo.com

[^0]: 2010 Mathematics Subject Classification: 47B20, 47B38
 Keywords and phrases: Kato operator; conditional expectation; composition operator; multiplication operator; polar decomposition; closed range.

