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NECESSITY OF PARAMETER RANDOMIZATION IN
QUANTUM CONTRACT SIGNING

Hana Almoner Louka

Abstract. We present a proof that randomization is necessary in quantum contract signing
protocol of Paunković, Bauda and Mateus. We prove that for any fixed value of the protocol
parameter α, for large N the probability of cheating can be as high as 25%, where N is the
number of messages exchanged between the parties, and thus without randomization the protocol
is not fair.

1. Introduction

In this section we give background and short review of the content of the paper.
A contract is a written or spoken agreement between two or more parties that

specifies the obligations and duties of the signed parties.
Traditionally, signing a contract is done by the transacting parties who need

to be present at the same place and the same time. Each party signs a copy of the
contract and exchange signed papers, therefore every party gets a copy of the signed
contract. In case the parties are not at the same place the parties can communicate
using technical means, like e-mail, internet, etc.

Signing contract between two parties (Alice and Bob) using technical means
posses new challenges, e.g. Bob may be cheating: Bob could get a copy of the
contract with Alice’s signature on it without signing the contract himself, which is
an unfair situation.

Contract signing protocols, first formally introduced in [3], cannot be fair with-
out involving a trusted third party, shortly: “TTP” (usually referred as Trent), as
shown in [4].

Quantum information theory is based on Quantum mechanics, and the basic
concept is that of a qubit. A qubit is a vector from a two dimensional Hilbert space.
Quantum signing protocols are considered in this context.
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A quantum contract signing protocol was proposed by Paunković, Bouda and
Mateus in [7]. It is based on concepts from quantum information theory (see for
instance [6]). In this protocol, in initialization phase Trent produces N qubits each
with corresponding classical data about the qubits received by the other party. In
the next phase, the exchange phase Trent is not involved except in the case of
interrupted exchange or when there is a proof of cheating. Such contract signing
protocols are called optimistic, see [1]. Other than that, process consists of Alice
and Bob making measurements of their choice on their qubits and exchanging the
measurement results with each other. In the final phase, called the binding phase
Trent will decide if the contract is valid based on the results of measurements of
Alice and Bob. This resolves possible disputes: for instance, if Alice is honest, she
can accept or reject contract as she wishes, and if Bob is a cheater Trent’s judgment
will be hugely in favour of an honest Alice.

In the Paunković-Bauda-Mateus protocol (see [7]), a parameter α is chosen
according to some probability distribution. This parameter is a threshold, used by
Trent to determine if the contract is binding or not, as explained in more detail
in the next section. In the protocol from [7], this parameter is chosen randomly,
in what we call a randomization. In other words, instead of using just one value
of α, Trent’s choice of α is not determined in advance. In the paper [7] a uniform
distribution on the interval [0.9, 0.99] was considered for choosing α, but any other
probability distribution on the interval (0.5, 1) can be considered. One may compare
different probability distributions to see which are best suited for the purpose of
quantum contract signing. However, in this paper we consider the question if this
randomization can be skipped in the protocol. We show that the randomization is
necessary for protocol to be fair, and that we cannot rely on a single value of the
parameter α.

2. Protocol without randomization

Denote by {|0〉, |1〉} the standard basis of a qubit, i.e. two dimensional Hilbert
space.

Let
|−〉 =

1√
2
(|0〉 − |1〉) and |+〉 =

1√
2
(|0〉+ |1〉).

We will call the states {|−〉, |+〉} the “reject basis”, and {|0〉, |1〉} the “accept basis”.
Define

Â = 1 · |1〉 〈1|+ 0 · |0〉 〈0|
(reject observable)

R̂ = 1 · |+〉 〈+|+ 0 · |−〉 〈−|
(accept observable)

Steps of Paunković-Bauda-Mateus protocol of contract signing between Alice and
Bob are as follows:

1. In the initialization phase, Trent chooses at random N qubits from the
set {|−〉, |+〉, |1〉, |0〉} and sends them to Alice, and other N to Bob. In addition,
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Trent lets Alice know the states of qubits sent to Bob, and analogously for Bob.
Therefore, Alice has N qubits, but does not know their states, whilst Bob knows
the states of qubits sent to her, and vice versa.

2. In the exchange phase, Trent is not involved. If Alice wants to reject the
contract, she will measure her first qubit in the reject basis (i.e. measure observable
R̂ on her first qubit), end send result to Bob. If she wants to accept contract, she
will measure Â instead and Bob will do the same, sending the result to Alice. The
process continues until all N qubits are measured.

Note that almost half of the qubits sent to each Alice and Bob are in accept,
and half in reject basis. Thus, Alice can note what the Bob is measuring and
vice versa, by comparing the results sent to them on the qubits prepared in the
states from the corresponding measurement observable/basis, when there should
be a perfect agreement with the classical information sent by Trent. Thus, if Alice
and Bob are honest and want to accept the contract, they will note this and do
not need to invoke Trent (i.e. the protocol is viable). But, if Alice or Bob note
that there is evidence of cheating, they have an option to stop communication, and
proceed to binding. In this case, they will have an option to try to accept the
contract, by measuring all the remaining qubits in the accept basis, or reject the
contract, by measuring all the remaining qubits in the reject basis. After that they
send all of their results to Trent, together with information about which Â, or R̂
they measured.

3. In the binding phase, Trent makes the final decision if the contract is
binding: accepted/valid, or rejected/void. In order to do that, Trent will get results
of the measurement on all of their qubits by Alice and Bob. Then Trent chooses
α randomly according to some probability distribution, so that it is between 0.5
and 1. Let NB

R , NB
A and NA

R , NA
A denote the number of of Bob’s and Alice’s qubits

prepared in Reject (Accept) basis. The contract is binding to Alice and Bob, if
Bob presents at least αNB

A accept results and Alice presents less than αNA
R reject

results, or vice versa. If there is proof that Bob cheated, only Alice’s results will
count, and similarly if Alice cheated, only Bob’s results will count. In all other
cases, contract is declared invalid.

Paunković, Bouda and Mateus have shown that protocol is viable1 and proba-
bilistically fair2, and the probability for a dishonest client to successfully cheat can
be made arbitrarily small, i.e. as N goes to infinity, the probability of success at
cheating goes to zero. Fair probabilistic contract signing (see [2] and [8]) protocols
rely on concept of probabilistic fairness, which requires that, in case Trent is called
upon, no agent has a significant (probabilistically) advantage over the other.

We will consider the case of fixed α and show that in this case, probability of
cheating does not go to zero. We base our considerations on equations from [7],
and will use them in our proof.

1Viable protocol is one where, if both parties behave honestly, they will both get each other’s
commitments.

2Fair protocol means that either both parties get each others’ commitment or none gets.
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Throughout this paper, in all formulas, where a non-integer parameter appears
in binomial coefficients, we may understand its value when integer part is computed
and omit it for brevity (in particular, we take integer part of m in formula (4)).
The next equations are taken from [7].

The probability of cheating is given by (see formula (12) from [7]):
Pch(m; α) = PR(m; α)(1− PR(m; α)) (1)

for a given m between 0 and N , and α ∈ (0.5, 1), where PR(m; α), the expected
probability to reject the contract is

PR(m; α) =
N∑

NR=0

q(NR)P1(m;α, NR). (2)

Here q(NR) is the probability to have exactly NR states from the reject basis:

q(NR) = 2−N

(
N

NR

)
,

N∑

NR=0

q(NR) =
N∑

NR=0

2−N

(
N

NR

)
= 1

and P1(m;α,NR) is the probability to (be able to) reject the contract:

P1(m; α, NR) =
m′∑

n=n′
P2(n; m,NR)P3(n; α, NR). (3)

Here

n′ =
{

m−N + NR, if m ≥ N −NR

0, otherwise,
m′ =

{
NR, if m ≥ NR

m, ; otherwise,

P2(n; m,NR) =
(

m

n

)(
N −m

NR − n

)(
N

NR

)−1

, (4)

P3(n; α, NR) = 2−n
T∑

i=0

(
n

i

)
, (5)

T =
{

n, if n < (1− α)NR

(1− α)NR, otherwise.
Note that these values are of various probabilities, and between 0 and 1.

Example 1. Consider the case α = 0.7, N = 3, m = 1, and let us show how
one computes Pch(m; α). For that, we need to find PR(m;α).

PR(m;α) =
N∑

NR=0

q(NR)P1(m; α, NR)

= q(0)P1(1; 0.7, 0) + q(1)P1(1; 0.7, 1) + q(2)P1(1; 0.7, 2) + q(3)P1(1; 0.7, 3),

where q(0) = 2−3

(
3
0

)
=

3
(3− 0)!× 3!

= 0.125, q(1) = 2−3

(
3
1

)
=

3
(3− 1)!× 3!

=

0.375, q(2) = 2−3

(
3
2

)
=

3
(3− 2)!× 3!

= 0.375, q(3) = 2−3

(
3
3

)
=

3
(3− 3)!× 3!

=

0.125. We have P1(m;α,NR) =
∑m′

n=n′ P2(n;m, NR)P3(n; α,NR).
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Here. for NR = 0 we have n′ = 0, m′ = 0, for NR = 3 we have n′ = 1, m′ = 1
and in all other cases n′ = 0, m′ = 1. Then

P1(1; 0.7, 0) = P2(0; 1, 0)P3(0; 0.7, 0) = 1,

P1(1; 0.7, 1) = P2(0; 1, 1)P3(0; 0.7, 1) + P2(1; 1, 1)P3(1; 0.7, 1) = 0.833333,

P1(1; 0.7, 2) = P2(0; 1, 2)P3(0; 0.7, 2) + P2(1; 1, 2)P3(1; 0.7, 2) = 0.666667,

P1(1; 0.7, 3) = P2(1; 1, 3)P3(1; 0.7, 3) = 0.5.

So, we have

PR(m;α) =
N∑

NR=0

q(NR)P1(m; α, NR)

= 0.125× 1 + 0.375× 0.833333 + 0.375× 0.666667 + 0.125× 0.5 = 0.75
and

Pch(m;α) = PR(m; α)(1− PR(m; α)) = 0.75(1− 0.75) = 0.1875.

We now proceed to our main result:

Theorem 1. For any fixed α ∈ (0.5, 1) and ε < 0.25, maximum over all m
between 0 and N of Pch(m; α) will be greater than ε if N is large enough. Moreover,
Pch(2(1− α)N ; α) tends to 1/4 as N goes to infinity.

Proof. We will set m = 2(1 − α)N in equation (1), or integer part of that
(we shall omit the integer part according to our notation convention, for brevity).
Subsequently the probability to cheat is given by:

Pch(2(1− α)N ; α) = PR(2(1− α)N ;α)(1− PR(2(1− α)N ; α)) (1′)
We will show that PR(2(1 − α)N ;α) tends to 1/2 as N goes to infinity, and this
will prove our result, as the maximum of the function x(1 − x) is 1/4, achieved
at x = 1/2. For convenience of the estimates, we will introduce a number c, and
assume N À c2, and prove that the limit is 1/2 when both c and N tend to infinity;
we may think of this limit as a repeated limit of PR, limc→∞ limN→∞ PR, or of its
estimates (which may in fact depend on c).

The expected probability to reject the contract, PR(2(1− α)N ; α), is:

PR(2(1− α)N ; α) =
∑

N
2 −c

√
N<NR< N

2 +c
√

N

q(NR)P1(2(1− α)N ; α, NR)

+

N
2 −c

√
N∑

NR=0

q(NR)P1(2(1− α)N ;α,NR)

+
N∑

NR≥N
2 +c

√
N

q(NR)P1(2(1− α)N ;α,NR). (2′)

Here, 0 ≤ PR(2(1−α)N ; α) ≤ 1, q(NR) is the probability to have exactly NR states

from the reject basis: q(NR) = 2−N

(
N

NR

)
,

N∑

NR=0

q(NR) =
N∑

NR=0

2−N

(
N

NR

)
= 1.
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We can use Hoeffding’s inequality (see [5]) for binomial distribution3 to esti-
mate the last two sums:

N
2 −c

√
N∑

NR=0

q(NR)P1(2(1− α)N ; α,NR) ≤
N
2 −c

√
N∑

NR=0

q(NR),

N
2 −c

√
N∑

NR=0

q(NR) = 2−N

N( 1
2− c√

N
)∑

NR=0

(
N

NR

)
≤ e−2 c2

N N = e−2c2
,

N∑

NR≥N
2 +c

√
N

q(NR)P1(2(1− α)N ; α,NR) ≤
N∑

NR≥N
2 +c

√
N

q(NR),

N∑

NR≥N
2 +c

√
N

q(NR) = 1−
( N

2 +c
√

N∑

NR=0

q(NR)
)
,

N
2 +c

√
N∑

NR=0

q(NR) = 2−N

N
2 +c

√
N∑

NR=0

(
N

NR

)
= 2−N

N( 1
2+ c√

N
)∑

NR=0

(
N

NR

)
≥ 1− e−2c2

.

Thus,

N∑

NR≥N
2 +c

√
N

q(NR) = 1−
( N

2 +c
√

N∑

NR=0

q(NR)
)
≥ 1− (1− e−2c2

) = e−2c2
.

Then,
N
2 −c

√
N∑

NR=0

q(NR)P1(2(1− α)N ; α, NR) +
N∑

NR≥N
2 +c

√
N

q(NR)P1(2(1− α)N ;α,NR)

≤ 2e−2c2
.

So, we can rewrite PR(2(1 − α)N ; α) using the last inequality to get, as c goes to
infinity:

PR(2(1− α)N ;α) =
∑

N
2 −c

√
N<NR< N

2 +c
√

N

q(NR)P1(2(1− α)N ;α, NR) + o(1).

Note that in the formula (3), for our chosen value of m = 2(1 − α)N , value m/2
will be between n′ and m′, when N

2 − c
√

N < NR < N
2 + c

√
N , for fixed c if N is

large enough.
Note also that if m

2 − 3c
√

N < n < m
2 + 3c

√
N , we can substitute

√
N with√

m
2(1−α) to obtain m

2 − q
√

m < n < m
2 + q

√
m , where q = 3c/

√
2(1− α), and the

3 2−n
n(1/2−ε)∑

i=0

(n

i

)
≤ e−2ε2n, 2−n

n(1/2+ε)∑
i=0

(n

i

)
≥ 1− e−2ε2n
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whole interval will be between n′ and m′ for fixed c if N is large enough, so

P1(m;α,NR) =
∑

m
2 −q

√
m<n< m

2 +q
√

m

P2(n; m,NR)P3(n; α, NR)

+

m
2 −q

√
m∑

n=n′
P2(n; m,NR)P3(n; α, NR)

+
m′∑

n≥m
2 +q

√
m

P2(n;m,NR)P3(n;α,NR). (3′)

We will again prove that the last two sums are o(1), assuming |NR−N/2| < c
√

(N).
Recall that

P2(n; m,NR) =
(

m

n

)(
N −m

NR − n

)(
N

NR

)−1

. (4′)

Hence,
∑m

n=0 P2(n;m, NR) = 1, as a probability distribution, corresponding to
probabilities that among the NR uniformly chosen different natural numbers from
1 to N there are exactly n no larger than m. Also P3 is between 0 and 1, so we
will estimate tails of the distribution P2.

We will use the following version of normal approximation to the binomial
distribution (see for instance [9]):

(
k

k/2− l

)
1

2k+1
=

e−2l2/k

√
2πk

+ O(
1

k3/2
).

Note that in the last two sums of (3′), |n − m/2| ≥ 3c
√

N , and moreover, since
other values of NR are part of o(1) terms in (2′), N

2 − c
√

N < NR < N
2 + c

√
N .

From this, it follows that
(

m

n

)(
N

NR

)−1

≤
(

m

m/2

)(
N

N/2− c
√

N

)−1

= (2m/
√

m)/(2N (e−2c2
/
√

N))(1 + O(
1
N

))

= 2m−N (e2c2

√
N

m
))(1 + O(

1
N

))

= 2m−Ne2c2
/
√

2(1− α)(1 + O(
1
N

)).

Using this, we get

m′∑

n= m
2 +q

√
m

P2(n;m,NR)P3(n;α,NR) ≤
m′∑

n= m
2 +q

√
m

P2(n; m,NR)

≤ e2c2
/
√

2(1− α)(1 + O(
1
N

)) · 2−(N−m)
m′∑

n= m
2 +3c

√
N

(
N −m

NR − n

)
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≤ e2c2
/
√

2(1− α)(1 + O(
1
N

)) · 2−(N−m)

N−m
2 −2c

√
N∑

k=0

(
N −m

k

)

≤ e2c2
/
√

2(1− α)(1 + O(
1
N

)) · e−8c2 N
N−m

≤ e−6c2
/
√

2(1− α)(1 + O(
1
N

)) = o(1),

as c goes to infinity, where we applied the Hoeffding’s inequality to get the last line.
Similarly, we get
m
2 −q

√
m∑

n=n′
P2(n; m,NR)P3(n; α, NR) ≤

m
2 −q

√
m∑

n=n′
P2(n; m,NR)

≤ e2c2
/
√

2(1− α)(1 + O(
1
N

)) · 2−(N−m)

m
2 −3c

√
N∑

n=n′

(
N −m

NR − n

)

≤ e2c2
/
√

2(1− α)(1 + O(
1
N

)) · 2−(N−m)
N−m∑

k≥N−m
2 +2c

√
N

(
N −m

k

)

≤ e2c2
/
√

2(1− α)(1 + O(
1
N

)) · e−8c2 N
N−m

≤ e−6c2
/
√

2(1− α)(1 + O(
1
N

)) = o(1).

Moreover, from these calculations we see that, when |NR −N/2| < c
√

(N),∑
m
2 −q

√
m<n< m

2 +q
√

m

P2(n; m,NR) = 1 + o(1).

Note that
(
m
n

)
=

(
m

m−n

)
,

(
N−m
NR−n

)
=

(
N−m

(N−NR)−(m−n)

)
and

(
N

NR

)
=

(
N

N−NR

)
from

symmetry of binomial coefficients, so

P2(n;m,NR) = P2((m− n); m,N −NR).

Similarly, q(NR) = q(N −NR).
We want to show that P3(n;α,NR) + P3((m− n); α, N − NR) = 1 + o(1),

for fixed c but as N goes to infinity, under restrictions on NR and n, namely,
N
2 − c

√
N < NR < N

2 + c
√

N and m
2 − q

√
m < n < m

2 + q
√

m, as we only consider
first sums in (2′) and (3′). Such pairing will then help us prove that limit of PR is
indeed 1/2.

We will again use the normal approximation to binomial distribution, i.e. as
N goes to infinity (c, on which restrictions depend, is fixed), we have:

P3(n; m,NR) = 2−n
T1∑

i=0

(
n

i

)
=

1
2
(
1 + erf(y1)

)
+ o(1),

P3((m− n); m, (N −NR)) = 2−(m−n)
T2∑

i=0

(
m− n

i

)
=

1
2
(
1 + erf(y2)

)
+ o(1)
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where, under our restrictions on NR and n, T1 = (1−α)NR, T2 = (1−α)(N−NR),
with the corresponding values

y1 =
T1
n − 1

2
1

2
√

n

√
2

and y2 =
T2

m−n − 1
2

1
2
√

m−n

√
2
.

Thus, to prove P3(n;α, NR)+P3(m− n; α, N−NR) = 1+o(1) it is enough to show
y1 + y2 = o(1) as N goes to infinity, as the function erf is odd and smooth with
bounded derivative in R.

y1 + y2 =
( T1

n − 1
2

1
2
√

n

√
2

)
+

( T2
m−n − 1

2

1
2
√

m−n

√
2

)

=
(T1

n
− 1

2

)√
2
√

n +
( T2

m− n
− 1

2

)√
2
√

m− n.

Set n = m
2 + k, −q

√
m < k < q

√
m and NR = N

2 + A, −c
√

N < A < c
√

N . After
some algebraic manipulations, we get

y1 + y2 =
√

2
( (1− α)(N

2 + A)− 1
2 ((1− α)N + k)√

(1− α)N + k

+
(1− α)(N

2 −A)− 1
2 ((1− α)N − k)√

(1− α)N − k

)

=
√

2
( (1− α)A− k√

(1− α)N + k
+
−(1− α)A + k√

(1− α)N − k

)

=
√

2((1− α)A− k)
( 1√

(1− α)N + k
− 1√

(1− α)N − k

)

=
√

2((1− α)A− k)
(√

(1− α)N − k −
√

(1− α)N + k√
(1− α)2N2 − k2

)

=
√

2((1− α)A− k)
(√

(1− α)N(
√

1− k
(1−α)N −

√
1 + k

(1−α)N )
√

(1− α)2N2 − k2

)
.

Using Taylor series expansion for
√

1− k
(1−α)N and

√
1 + k

(1−α)N we get

y1 + y2 =
√

2
√

(1− α)N((1− α)A− k)

×
((

1− 1
2

k
(1−α)N + O( k2

N2 )
)− (

1 + 1
2

k
(1−α)N + O( k2

N2 )
)

√
(1− α)2N2 − k2

)

=
√

2
√

(1− α)N((1− α)A− k)
( −k

(1−α)N (1 + o(1))
√

(1− α)2N2 − k2

)
.

Using that both A and k are O(
√

N), we finally get y1 + y2 = O(1/
√

N) = o(1).
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So in this case we have P3(n; α, NR)+P3((m− n); α,N −NR) = 1+ o(1), and
for fixed c, convergence is uniform on the interval of restriction for NR and n, as
N goes to infinity.

Using our pairing, and considering the first, main sum of (2′), and of (3′), we see
that indeed PR is 1/2+o(1) as both c and N tend to infinity. Namely, if we expand
the main part of the sum in (2′) and (3′), and double the whole sum, and then
rearrange the terms so that corresponding pairs with (n,m, NR) and (m−n,m,N−
NR) come together, we end up with a sum of the form

∑
q(NR)P2(n,m,NR)(1 +

o(1)), which sums to 1 + o(1) since both q in NR and P2 in n are probability
distributions.

Thus, as we have seen, the randomization is necessary in order for protocol
to be fair. If the protocol does not use randomization, but relies on a single val-
ue of parameter α, then there is possibility for parties to cheat with significant
probability.
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