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ARITHMETIC PROPERTIES OF 3-REGULAR BI-PARTITIONS
WITH DESIGNATED SUMMANDS

M. S. Mahadeva Naika and S. Shivaprasada Nayaka

Abstract. Recently Andrews, Lewis and Lovejoy introduced the partition functions
PD(n) defined by the number of partitions of n with designated summands and they found
several modulo 3 and 4. In this paper, we find several congruences modulo 3 and 4 for
PBD3(n), which represent the number of 3-regular bi-partitions of n with designated sum-
mands. For example, for each n ≥ 1 and α ≥ 0 PBD3(4 · 3α+2n + 10 · 3α+1) ≡ 0
(mod 3).

1. Introduction

In 2002 Andrews, Lewis and Lovejoy [1] introduced a new class of partitions, parti-
tions with designated summands which are constructed by taking ordinary partitions
and tagging exactly one part among parts with equal size. With a convention that
PD(n) = 0, for example there are 15 partitions of 5 with designated summands:

5′, 4′ + 1′, 3′ + 2′, 3′ + 1′ + 1, 3′ + 1 + 1′, 2′ + 2 + 1′, 2 + 2′ + 1′,
2′ + 1′ + 1 + 1, 2′ + 1 + 1′ + 1, 2′ + 1 + 1 + 1′, 1′ + 1 + 1 + 1 + 1,

1 + 1′ + 1 + 1 + 1, 1 + 1 + 1′ + 1 + 1, 1 + 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1 + 1′.
The authors [1] derived the following generating function of PD(n).

∞∑
n=0

PD(n)qn =
f6

f1f2f3
.

Throughout the paper, we use the standard q-series notation, and fk is defined as

fk := (qk; qk)∞ = lim
n→∞

n∏
l=1

(1− qlk).

For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined as

f (a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2. (2)
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Using Jacobi’s triple product identity [4, Entry 19, p. 35], (2) becomes

f (a, b) = (−a, ab)∞ (−b, ab)∞ (ab, ab)∞ .

The most important special cases of f (a, b) are

ψ (q) := f
(
q, q3

)
=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f22
f1

and f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = f1.

The concept of partitions with designated summands goes back to MacMahon [9].
He considered partitions with designated summands and with exactly ` different sizes
(see also Andrews and Rose [2]).

Andrews et al. [1] and N. D. Baruah and K. K. Ojah [3] have also studied PDO(n),
the number of partitions of n with designated summands in which all parts are odd
and the generating function is given by

∞∑
n=0

PDO(n)qn =
f4f

2
6

f1f3f12
.

Thus PDO(5) = 8 are

5′, 3′ + 1′ + 1, 3′ + 1 + 1′, 1′ + 1 + 1 + 1 + 1, 1 + 1′ + 1 + 1 + 1,
1 + 1 + 1′ + 1 + 1, 1 + 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1 + 1′.

Chen, Ji, Jin and Shen [5] have established Ramanujan type identity for the parti-
tion function PD(3n+2) which implies the congruence of Andrews et al. [1] and they
also gave a combinatorial interpretation of the congruence for PD(3n + 2) by intro-
ducing a rank for partitions with designated summands. Recently Xia [14] extended
the work of deriving congruence properties of PD(n) by employing the generating
functions of PD(3n) and PD(3n+ 2) due to Chen et al. [5].

Mahadeva Naika et al. [10] have studied PD3(n), the number of partitions of n
with designated summands whose parts are not divisible by 3 and the generating
function is given by

∞∑
n=0

PD3(n)qn =
f26 f9
f1f2f18

.

In [11] Mahadeva Naika et al. have established many congruences for PD2(n), the
number of bipartitions of n with designated summands and the generating function
is given by

∞∑
n=0

PD2(n)qn =
f26

f21 f
2
2 f

2
3

.

Mahadeva Naika et al. [12] have derived PD2,3(n), the number of partitions of n
with designated summands in which parts are not multiples of 2 or 3 and generating
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function is given by
∞∑
n=0

PD2,3(n)qn =
f4f

2
6 f9f36

f1f212f
2
18

.

Motivated by the above work, in this paper, we study PBD3(n), the number of
3-regular bi-partitions of n with designated summands and the generating function is
given by

∞∑
n=0

PBD3(n)qn =
f46 f

2
9

f21 f
2
2 f

2
18

. (3)

To be precise by a bipartition with designated summands we mean a pair of partitions
(µ, κ) where in partitions µ and κ are partitions with designated summands. Thus
PBD3(4) = 35 are

(4′, ∅), (2′+2, ∅), (2+2′, ∅), (2′+1′+1, ∅), (2′+1+1′, ∅), (1′+1+1+1, ∅),
(1+1′+1+1, ∅), (1+1+1′+1, ∅), (1+1+1+1′, ∅), (2′, 2′), (2′, 1′+1), (2′, 1+1′),
(1′, 1′ + 1 + 1), (1′, 1 + 1′ + 1), (1′, 1 + 1 + 1′), (1′ + 1, 1′ + 1), (1′ + 1, 1 + 1′),
(1 + 1′, 1′ + 1), (1 + 1′, 1 + 1′), (2′ + 1′, 1′), (1′, 2′ + 1′), (1′ + 1, 2′), (1 + 1′, 2′),
(1′ + 1 + 1, 1′), (1 + 1′ + 1, 1′), (1 + 1 + 1′, 1′), (∅, 4′), (∅, 2′ + 2), (∅, 2 + 2′),
(∅, 2′+1′+1), (∅, 2′+1+1′), (∅, 1′+1+1+1), (∅, 1+1′+1+1), (∅, 1+1+1′+1),
(∅, 1 + 1 + 1 + 1′).
In Section 3, we prove the following theorems.

Theorem 1.1. For n ≥ 0 we have
∞∑
n=0

PBD3(2n)qn =
f23 f

6
6

f61 f
2
18

+ q
f42 f

6
3 f

2
18

f81 f
2
6 f

2
9

, (4)

∞∑
n=0

PBD3(2n+ 1)qn = 2
f22 f

4
3 f

2
6

f71 f9
. (5)

Theorem 1.2. For each nonnegative integer n and α ≥ 0, we have

PBD3

(
4× 3α+2n+ 10× 3α+1

)
≡ 0 (mod 3), (6)

PBD3

(
8× 3α+2n+ 8× 3α+2

)
≡ 0 (mod 3), (7)

PBD3

(
2α+3n

)
≡ 2αPBD3(4n) (mod 3), (8)

∞∑
n=1

PBD3(4n+ 2)qn ≡ ψ(q)ψ(q3) (mod 3), (9)

∞∑
n=1

PBD3(8n+ 4)qn ≡ 2ψ(q)ψ(q3) (mod 3). (10)

Theorem 1.3. Let p be a prime with

(
−3

p

)
= −1. Then for any nonnegative inte-

ger α,
∞∑
n=1

PBD3

(
4p2αn+ 2p2α

)
qn ≡ ψ(q)ψ(q3) (mod 3), (11)
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and for n ≥ 0, 1 ≤ j ≤ p− 1,

PBD3

(
4p2α+1(pn+ j) + 2p2α+2

)
≡ 0 (mod 3). (12)

Theorem 1.4. Let p be a prime with

(
−3

p

)
= −1. Then for any nonnegative inte-

ger α,
∞∑
n=1

PBD3

(
8p2αn+ 4p2α

)
qn ≡ 2ψ(q)ψ(q3) (mod 3), (13)

and for n ≥ 0, 1 ≤ j ≤ p− 1,

PBD3

(
8p2α+1(pn+ j) + 4p2α+2

)
≡ 0 (mod 3). (14)

Theorem 1.5. For each n ≥ 0

PBD3(12n+ 7) ≡ 0 (mod 4), (15)

PBD3(12n+ 11) ≡ 0 (mod 4), (16)

PBD3(24n+ 17) ≡ 0 (mod 4), (17)

PBD3(36n+ 27) ≡ 0 (mod 4), (18)

PBD3(72n+ 39) ≡ 0 (mod 4), (19)

PBD3(72n+ 57) ≡ 0 (mod 4), (20)

PBD3(216n+ 153) ≡ 0 (mod 4), (21)∑∞

n=0
PBD3(72n+ 3) ≡ 2f1 (mod 4), (22)∑∞

n=0
PBD3(72n+ 15) ≡ 2f1f4 (mod 4). (23)

Theorem 1.6. For any prime p ≥ 5, α ≥ 0 and n ≥ 0, we have
∞∑
n=0

PBD3

(
72p2αn+ 3p3α

)
qn ≡ 2f1 (mod 4). (24)

Theorem 1.7. For any prime p ≥ 5, α ≥ 0, n ≥ 0 and l = 1, 2, ...p− 1, we have
∞∑
n=0

PBD3

(
72p2α(pn+ l) + 3p3α

)
≡ 0 (mod 4). (25)

Theorem 1.8. If p ≥ 5 is a prime such that

(
−4

p

)
= −1. Then for all integers

α ≥ 0,
∞∑
n=0

PBD3

(
72p2αn+ 15p2α

)
qn ≡ 2f1f4 (mod 4). (26)

Theorem 1.9. Let p ≥ 5 be prime and

(
−4

p

)
= −1. Then for all integers n ≥ 0

and α ≥ 1,

PBD3

(
72p2αn+ p2α−1(15p+ 72j)

)
≡ 0 (mod 4), (27)

where j = 1, 2, . . . , p− 1.
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Theorem 1.10. For each n ≥ 0

PBD3(18n+ 15) ≡ 0 (mod 6), (28)

PBD3(18n+ 3) ≡ 4f1f3 (mod 6). (29)

Theorem 1.11. If p ≥ 5 is a prime such that

(
−3

p

)
= −1. Then for all integers

α ≥ 0,
∞∑
n=0

PBD3

(
18p2αn+ 3p2α

)
qn ≡ 4f1f3 (mod 6). (30)

Theorem 1.12. Let p ≥ 5 be prime and

(
−3

p

)
= −1. Then for all integers n ≥ 0

and α ≥ 1,

PBD3

(
18p2αn+ p2α−1(3p+ 18j)

)
≡ 0 (mod 6), (31)

where j = 1, 2, . . . , p− 1.

2. Preliminaries

We list a few dissection formulas to prove our main results.

Lemma 2.1. [4, Corollory, p. 49] We have

ψ(q) = f(q3, q6) + qψ(q9) (32)

Lemma 2.2. The following 2-dissections hold:

f33
f1

=
f34 f

2
6

f22 f12
+ q

f312
f4
, (33)

f1
f33

=
f2f

2
4 f

2
12

f76
− q f

3
2 f

6
12

f24 f
9
6

. (34)

Hirschhorn, Garvan and Borwein [7] proved equation (33). Replacing q by −q in
(33), we obtain (34).

Lemma 2.3. The following 2-dissections hold:

1

f1f3
=

f28 f
5
12

f22 f4f
4
6 f

2
24

+ q
f54 f

2
24

f42 f
2
6 f

2
8 f12

, (35)

f1f3 =
f2f

2
8 f

4
12

f24 f6f
2
24

− q f
4
4 f6f

2
24

f2f28 f
2
12

. (36)

Equation (35) was proved by Baruah and Ojah [3]. Replacing q by −q in (35) and

using the fact that (−q;−q)∞ =
f32
f1f4

, we get (36).
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Lemma 2.4. The following 3-dissection holds:

f1f2 =
f6f

4
9

f3f218
− qf9f18 − 2q2

f3f
4
18

f6f29
. (37)

One can see this identity in [8].

Lemma 2.5. The following 2-dissections hold:

f9
f1

=
f312f18
f22 f6f36

+ q
f24 f6f36
f32 f12

(38)

and
f1
f9

=
f2f

3
12

f4f6f218
− q f4f6f

2
36

f12f318
. (39)

Lemma 2.5 was proved by Xia and Yao [13]. Replacing q by −q in (38) and using

the relation (−q;−q)∞ =
f32
f1f4

, we obtain (39).

Lemma 2.6. [6, Theorem 2.1] For any odd prime p,

ψ(q) =

p−3
2∑

m=0

q
m2+m

2 f

(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1
8 ψ(qp

2

). (40)

Furthermore, m
2+m
2 6≡ p2−1

8 (mod p) for 0 ≤ m ≤ p−3
2 .

Lemma 2.7. [6, Theorem 2.2] For any prime p ≥ 5,

f1 =

p−1
2∑

k=− p−1
2

k 6=(±p−1)/6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2 .

Furthermore, for −(p − 1)/2 ≤ k ≤ (p − 1)/2 and k 6= (±p − 1)/6, 3k2+k
2 6≡ p2−1

24
(mod p).

3. Proofs of main results

3.1 Proof of Theorems 1.1 and 1.2

Substituting (38) into (3), we find that
∞∑
n=0

PBD3(n)qn =
f46

f22 f
2
18

(
f612f

2
18

f42 f
2
6 f

2
36

+ 2q
f24 f

2
12f18
f52

+ q2
f44 f

2
6 f

2
36

f62 f
2
12

)
=
f26 f

6
12

f62 f
2
36

+ 2q
f24 f

4
6 f

2
12

f72 f18
+ q2

f44 f
6
6 f

2
36

f82 f
2
12f

2
18

.

Extracting the terms involving q2n and q2n+1 from the above equation, we obtain (4)
and (5).



198 Arithmetic properties of 3-regular bi-partitions

By the binomial theorem, it is easy to see that for positive integers k and m,

fm2k ≡ f2mk (mod 2), (41)

fm3k ≡ f3mk (mod 3) (42)

and f2m2k ≡ f4mk (mod 4). (43)

Invoking (42) in (4), we find
∞∑
n=0

PBD3(2n)qn ≡ 1 + q
f1f

6
6

f22 f
3
3

(mod 3),

which implies that

∞∑
n=1

PBD3(2n)qn ≡ q f1f
6
6

f22 f
3
3

(mod 3). (44)

Employing (34) into (44), we have
∞∑
n=1

PBD3(2n)qn ≡ q f
2
4 f

2
12

f2f6
− q2 f2f

6
12

f24 f
3
6

(mod 3). (45)

Extracting the terms containing q2n+1, dividing throughout by q and then replacing

q2 by q from (45) and using the fact that ψ(q) =
f22
f1

, we get (9).

Substituting (32) into (9), we obtain
∞∑
n=1

PBD3(4n+ 2)qn ≡ f(q3, q6)ψ(q3) + qψ(q3)ψ(q9) (mod 3), (46)

implying

∞∑
n=1

PBD3(12n+ 6)qn ≡ ψ(q)ψ(q3) (mod 3). (47)

From equations (9) and (47), we get

PBD3(12n+ 6) ≡ PBD3(4n+ 2) (mod 3). (48)

By using mathematical induction on α in (48), we have

PBD3

(
4× 3α+1n+ 2× 3α+1

)
≡ PBD3(4n+ 2) (mod 3). (49)

Extracting the terms containing q3n+2 from (46) we obtain

PBD3(12n+ 10) ≡ 0 (mod 3). (50)

Using (50) in (49), we find (6).

Extracting the terms containing q2n and replacing q2 by q from (45), we get
∞∑
n=1

PBD3(4n)qn ≡ 2q
f1f

6
6

f22 f
3
3

(mod 3). (51)

Employing (34) into (51), we obtain
∞∑
n=1

PBD3(4n)qn ≡ 2q
f24 f

2
12

f2f6
− 2q2

f2f
6
12

f44 f
3
6

(mod 3). (52)

Congruence (10) is obtained by extracting the terms containing q2n+1 from (52) and
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using the fact that ψ(q) =
f22
f1

.

Substituting (32) into (10), we have
∞∑
n=1

PBD3(8n+ 4)qn ≡ 2f(q3, q6)ψ(q3) + 2qψ(q3)ψ(q9) (mod 3).

Extracting the terms containing q3n+1 and q3n+2 from the above equation, we obtain
∞∑
n=1

PBD3(24n+ 12)qn ≡ 2ψ(q)ψ(q3) (mod 3) (53)

and PBD3(24n+ 20) ≡ 0 (mod 3). (54)

In view of the congruences (10) and (53), we get

PBD3(24n+ 12) ≡ PBD3(8n+ 4) (mod 3). (55)

Utilizing (55) and by mathematical induction on α, we arrive at

PBD3

(
8× 3α+1n+ 8× 3α+1

)
≡ PBD3(8n+ 4) (mod 3). (56)

Using (54) in (56), we obtain (7).

Extracting the terms containing q2n and replacing q2 by q from (52), we have
∞∑
n=1

PBD3(8n)qn ≡ q f1f
6
6

f42 f
3
3

(mod 3). (57)

In view of the congruences (57) and (51), we obtain

PBD3(8n) ≡ 2 · PBD3(4n) (mod 3). (58)

Utilizing (58) and by mathematical induction on α, we arrive at (8).

3.2 Proof of Theorem 1.3

Equation (9) is the α = 0 case of (11). If we assume that (11) holds for some α ≥ 0,
then, substituting (40) in (11),

∞∑
n=1

PBD3

(
4p2αn+ 2p2α

)
qn

≡

( p−3
2∑

m=0

q
m2+m

2 f

(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1
8 ψ(qp

2

)

)
(59)

×

( p−3
2∑

m=0

q3
m2+m

2 f

(
q3

p2+(2m+1)p
2 , q3

p2−(2m+1)p
2

)
+ q3

p2−1
8 ψ(q3p

2

)

)
(mod 3).

For any odd prime p, and 0 ≤ m1,m2 ≤ (p− 3)/2, consider the congruence

m2
1 +m1

2
+ 3

m2
2 +m2

2
≡ 4p2 − 4

8
(mod p),

which implies that (2m1 + 1)2 + 3(2m2 + 1)2 ≡ 0 (mod p). (60)
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Since
(
−3
p

)
= −1, the only solution of the congruence (60) is m1 = m2 =

p− 1

2
.

Therefore, equating the coefficients of qpn+
4p2−4

8 from both sides of (59), dividing

throughout by q
4p2−4

8 and then replacing qp by q, we obtain
∞∑
n=1

PBD3

(
4p2α

(
pn+

4p2 − 4

8

)
+ 2p2α

)
qn ≡ ψ(qp)ψ(q3p) (mod 3). (61)

Equating the coefficients of qpn on both sides of (61) and then replacing qp by q, we
obtain

∞∑
n=1

PBD3

(
4p2α+2n+ 2p2α+2

)
qn ≡ ψ(q)ψ(q3) (mod 3),

which is the α+1 case of (11). Extracting the terms involving qpn+j for 1 ≤ j ≤ p−1
in (61), we get (12).

3.3 Proof of Theorem 1.4

Equation (10) is the α = 0 case of (13). If we assume that (13) holds for some α ≥ 0,
then, substituting (40) in (13),

∞∑
n=1

PBD3

(
8p2αn+ 4p2α

)
qn

≡ 2

( p−3
2∑

m=0

q
m2+m

2 f

(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1
8 ψ(qp

2

)

)
(62)

×

( p−3
2∑

m=0

q3
m2+m

2 f

(
q3

p2+(2m+1)p
2 , q3

p2−(2m+1)p
2

)
+ q3

p2−1
8 ψ(q3p

2

)

)
(mod 3).

For any odd prime p, and 0 ≤ m1,m2 ≤ (p− 3)/2, consider the congruence

m2
1 +m1

2
+ 3

m2
2 +m2

2
≡ 4p2 − 4

8
(mod p),

which implies that (2m1 + 1)2 + 3(2m2 + 1)2 ≡ 0 (mod p). (63)

Since
(
−3
p

)
= −1, the only solution of the congruence (63) is m1 = m2 =

p− 1

2
.

Therefore, equating the coefficients of qpn+
4p2−4

8 from both sides of (62), dividing

throughout by q
4p2−4

8 and then replacing qp by q, we obtain
∞∑
n=1

PBD3

(
8p2α

(
pn+

4p2 − 4

8

)
+ 4p2α

)
qn ≡ 2ψ(qp)ψ(q3p) (mod 3). (64)

Equating the coefficients of qpn on both sides of (64) and then replacing qp by q, we
obtain

∞∑
n=1

PBD3

(
8p2α+2n+ 4p2α+2

)
qn ≡ 2ψ(q)ψ(q3) (mod 3),
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which is the α+1 case of (13). Extracting the terms involving qpn+j for 1 ≤ j ≤ p−1
in (64), we arrive at (14).

3.4 Proof of Theorem 1.5

Invoking (43) in (5), we find
∞∑
n=0

PBD3(2n+ 1)qn ≡ 2
f1f

4
6

f22 f9
(mod 8). (65)

Employing (39) into (65), we obtain
∞∑
n=0

PBD3(2n+ 1)qn ≡ 2
f36 f

3
12

f2f4f218
− 2q

f4f
5
6 f

2
36

f22 f12f
3
18

(mod 8). (66)

Extracting the terms containing q2n+1, dividing throughout by q and then replacing
q2 by q from the above equation, we get

∞∑
n=0

PBD3(4n+ 3)qn ≡ 6
f2f

5
3 f

2
18

f21 f6f
3
9

(mod 8), (67)

but 6
f2f

5
3 f

2
18

f21 f6f
3
9

≡ 6
f2f

5
3 f9

f21 f6
(mod 8). (68)

Invoking (41) in (68), we get
∞∑
n=0

PBD3(4n+ 3)qn ≡ 2f3f6f9 (mod 4). (69)

Congruences (15) and (16) follow by extracting the terms containing q3n+1 and q3n+2

from (69).
Extracting the terms containing q3n and replacing q3 by q from (69). we obtain

∞∑
n=0

PBD3(12n+ 3)qn ≡ 2f1f2f3 (mod 4). (70)

Substituting (37) into (70), we find
∞∑
n=0

PBD3(12n+ 3)qn ≡ 2
f6f

4
9

f218
− 2qf3f9f18 (mod 4). (71)

Congruence (18) is obtained by extracting the terms containing q3n+2 from (71).
Extracting the terms containing q3n and replacing q3 by q from the above equation

we arrive at
∞∑
n=0

PBD3(36n+ 3)qn ≡ 2
f2f

4
3

f26
(mod 4). (72)

Using (41) in (72), we obtain
∞∑
n=0

PBD3(36n+ 3)qn ≡ 2f2 (mod 4). (73)

Congruences (19) and (22) follow by extracting the terms containing q2n and q2n+1
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from (73).
Extracting the terms containing q3n+1, dividing throughout by q and then replac-

ing q3 by q from (71), we obtain
∞∑
n=0

PBD3(36n+ 15)qn ≡ 2f1f3f6 (mod 4). (74)

Employing (36) into (74), we find
∞∑
n=0

PBD3(36n+ 15)qn ≡ 2
f2f

2
8 f

4
12

f24 f
2
24

− 2q
f44 f

2
6 f

2
24

f2f28 f
2
12

(mod 4). (75)

Extracting the terms containing q2n and then replacing q2 by q from (75), we obtain
∞∑
n=0

PBD3(72n+ 15)qn ≡ 2
f1f

2
4 f

4
6

f22 f
2
12

(mod 4). (76)

Using (41) in (76) we arrive at (23).

Extracting the terms containing q2n and replacing q2 by q from (66), we get
∞∑
n=0

PBD3(4n+ 1)qn ≡ 2
f33 f

3
6

f1f2f29
(mod 8). (77)

Using (41) in (77), we have
∞∑
n=0

PBD3(4n+ 1)qn ≡ 2
f33 f

3
6

f1f2f18
(mod 4). (78)

Substituting (33) into (78), we arrive at
∞∑
n=0

PBD3(4n+ 1)qn ≡ 2
f34 f

5
6

f32 f12f18
+ 2q

f36 f
3
12

f2f4f18
(mod 4). (79)

Extracting the terms containing q2n and replacing q2 by q from (79), we obtain
∞∑
n=0

PBD3(8n+ 1)qn ≡ 2
f32 f

5
3

f31 f6f9
(mod 4),

but
f32 f

5
3

f31 f6f9
≡ f22 f3f6

f1f9
(mod 2).

This yields

∞∑
n=0

PBD3(8n+ 1)qn ≡ 2
f22 f3f6
f1f9

(mod 4). (80)

Using Jacobi’s triple product identity and ψ(q) =
f2
2

f1
in (32), we arrive at

f22
f1

=
f6f

2
9

f3f18
+ q

f218
f9
. (81)

Employing (81) into (80), we get
∞∑
n=0

PBD3(8n+ 1)qn ≡ 2
f26 f9
f18

+ 2q
f3f6f

2
18

f29
(mod 4). (82)
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Congruence (17) is obtained by extracting the terms containing q3n+2 from the above
equation.

Extracting the terms containing q3n+1, dividing throughout by q and then replac-
ing q3 by q from (82), we obtain

∞∑
n=0

PBD3(24n+ 9)qn ≡ 2
f1f2f

2
6

f23
(mod 4). (83)

Using (41) in (83), we have
∞∑
n=0

PBD3(24n+ 9)qn ≡ 2f1f2f6 (mod 4). (84)

Substituting (37) into (84), we obtain
∞∑
n=0

PBD3(24n+ 9)qn ≡ 2
f26 f

4
9

f3f218
− 2qf6f9f18 (mod 4). (85)

Congruence (20) follows from (85) and extracting the terms containing q3n and re-
placing q3 by q from the above equation. we find

∞∑
n=0

PBD3(72n+ 9)qn ≡ 2
f22 f

4
3

f1f26
(mod 4). (86)

Using (41) in (86), we get
∞∑
n=0

PBD3(72n+ 9)qn ≡ 2
f22
f1
≡ 2ψ(q) (mod 4). (87)

Substituting (32) into (87) and extracting the terms containing q3n+2, we arrive
at (21).

3.5 Proof of Theorem 1.6

Employing Lemma (2.7) into (22), it can be see that
∞∑
n=0

PBD3

(
72

(
pn+

p2 − 1

24

)
+ 3

)
qn ≡ 2fp (mod 4), (88)

which implies that
∞∑
n=0

PBD3

(
72p2n+ 3p3

)
qn ≡ 2f1 (mod 4).

Therefore, PBD3

(
72p2n+ 3p3

)
≡ PBD3(72n+ 3) (mod 4).

Using the above relation and by induction on α, we arrive at (24).

3.6 Proof of Theorem 1.7

Combining (88) with Theorem (1.6), we derive that for α ≥ 0,
∞∑
n=0

PBD3

(
72p2α+1n+ 3p3α

)
≡ 2fp (mod 4).
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Therefore, it follows that
∞∑
n=0

PBD3

(
72p2α+1(pn+ l) + 3p3α

)
≡ 0 (mod 4).

where l = 1, 2, ..., p− 1, and we obtain (25).

3.7 Proof of Theorem 1.8

For a prime p ≥ 5 and −(p− 1)/2 ≤ k,m ≤ (p− 1)/2, consider

3k2 + k

2
+ 4× 3m2 +m

2
≡ 5p2 − 5

24
(mod p).

This is equivalent to (6k+ 1)2 + 4(6m+ 1)2 ≡ 0 (mod p). Since
(
−4
p

)
= −1, the only

solution of the above congruence is k = m = (±p−1)/6. Therefore, from Lemma 2.7,
∞∑
n=0

PBD3

(
72

(
p2n+ 5× p2 − 1

24

)
+ 15

)
qn ≡ 2f1f4 (mod 4). (89)

Using (23), (89), and induction on α, we get (26).

3.8 Proof of Theorem 1.9

From Lemma 2.7 and Theorem 1.8, for each α ≥ 0,
∞∑
n=0

PBD3

(
72

(
p2n+ 5× p2 − 1

24

)
+ 15

)
qn ≡ 2f1f4 (mod 4).

That is,
∞∑
n=0

PBD3

(
72p2α+1n+ 15p2α+2

)
qn ≡ 2fpf4p (mod 4). (90)

Since there are no terms on the right of (90) where the powers of q are congruent to
1, 2, . . . , p− 1 modulo p,

PBD3

(
72p2α+1(pn+ j) + 15p2α+2

)
≡ 0 (mod 4),

for j = 1, 2, . . . , p−1. Therefore, for j = 1, 2, . . . , p−1 and α ≥ 1, we arrive at (27).

3.9 Proof of Theorem 1.10

By the binomial theorem, it is easy to see that for positive integers k and m,

f3m3k ≡ f9mk (mod 9), (91)

Invoking (91) in (5), we have
∞∑
n=0

PBD3(2n+ 1)qn ≡ 2
f21 f

2
2 f3f

2
6

f9
(mod 18). (92)
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Employing (37) into (92) and extracting the terms containing q3n+1, dividing through-
out by q and then replacing q3 by q from (92), we obtain

∞∑
n=0

PBD3(6n+ 3)qn ≡ 14
f32 f

4
3

f6
+ 8q

f31 f
8
6

f53
(mod 18). (93)

Invoking (42) in (93), we see that
∞∑
n=0

PBD3(6n+ 3)qn ≡ 4f43 + 4q
f86
f43

(mod 6). (94)

Congruence (28) follows by extracting the terms containing q3n+2 from the above
equation.

Extracting the terms containing q3n and replacing q3 by q from (94), we arrive at
∞∑
n=0

PBD3(18n+ 3)qn ≡ 4f41 (mod 6),

which implies

∞∑
n=0

PBD3(18n+ 3)qn ≡ 4f1f
3
1 (mod 6). (95)

Invoking (42) in (95) we get (29).

3.10 Proof of Theorem 1.11

For a prime p ≥ 5 and −(p− 1)/2 ≤ k,m ≤ (p− 1)/2, consider

3k2 + k

2
+ 3× 3m2 +m

2
≡ 4p2 − 4

24
(mod p).

This is equivalent to (6k + 1)2 + 3(6m+ 1)2 ≡ 0 (mod p).

Since
(
−3
p

)
= −1, the only solution of the above congruence is k = m = (±p−1)/6.

Therefore, from Lemma 2.7,
∞∑
n=0

PBD3

(
18

(
p2n+ 4× p2 − 1

24

)
+ 3

)
qn ≡ 4f1f3 (mod 6). (96)

Using (29), (96), and induction on α, we arrive at (30).

3.11 Proof of Theorem 1.12

From Lemma 2.7 and Theorem 1.11, for each α ≥ 0,
∞∑
n=0

PBD3

(
18

(
p2n+ 4× p2 − 1

24

)
+ 3

)
qn ≡ 4f1f3 (mod 6).

That is,

∞∑
n=0

PBD3

(
18p2α+1n+ 3p2α+2

)
qn ≡ 4fpf3p (mod 6). (97)

Since there are no terms on the right of (97) where the powers of q are congruent to
1, 2, . . . , p− 1 modulo p,

PBD3

(
18p2α+1(pn+ j) + 3p2α+2

)
≡ 0 (mod 6),
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for j = 1, 2, . . . , p−1. Therefore, for j = 1, 2, . . . , p−1 and α ≥ 1, we obtain (31).
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