MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 69, 3 (2017), 207–213 September 2017

research paper оригинални научни рад

ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BAIRE INDEX FUNCTIONS

Atok Zulijanto

Abstract. Chaatit, Mascioni, and Rosenthal defined finite Baire index for a bounded real-valued function f on a separable metric space, denoted by i(f), and proved that for any bounded functions f and g of finite Baire index, $i(h) \leq i(f) + i(g)$, where h is any of the functions f + g, fg, $f \vee g$, $f \wedge g$. In this paper, we prove that the result is optimal in the following sense : for each $n, k < \omega$, there exist functions f, g such that i(f) = n, i(g) = k, and i(h) = i(f) + i(g).

1. Introduction

A real-valued function f defined on a separable metric space X is called a difference of bounded semicontinuous functions if there exist bounded lower semicontinuous functions u and v on X such that f = u - v. The class of all such functions is denoted by DBSC(X). Some authors have studied this class and some of its subclasses (see, e.g. [1,3]). Chaatit, Mascioni, and Rosenthal [1] defined finite Baire index for functions belonging to DBSC(X), whose definition we now recall.

Let X be a separable metric space. For a given bounded function $f: X \to \mathbb{R}$, the upper semicontinuous envelope $\mathcal{U}f$ of f is defined by

$$\mathcal{U}f(x) = \overline{\lim}_{y \to x} f(y) = \inf\{\sup_{y \in U} f(y) : U \text{ is a neighborhood of } x\}$$

for all $x \in X$. The lower oscillation $\underline{\operatorname{osc}} f$ of f is defined by

 $\underline{\operatorname{osc}} f(x) = \overline{\lim}_{y \to x} |f(y) - f(x)|$

for all $x \in X$. Finally, the oscillation $\operatorname{osc} f$ of f is defined by $\operatorname{osc} f = \mathcal{U} \underline{\operatorname{osc}} f$. Next, for any $\varepsilon > 0$, let $\operatorname{os}_0(f, \varepsilon) = X$. If $\operatorname{os}_j(f, \varepsilon)$ has been defined for some $j \ge 0$, let $\operatorname{os}_{j+1}(f, \varepsilon) = \{x \in L : \operatorname{osc} f|_L(x) \ge \varepsilon\}$, where $L = \operatorname{os}_j(f, \varepsilon)$. A bounded function

 $^{2010\} Mathematics\ Subject\ Classification:\ 26A21,\ 54C30,\ 03E15$

Keywords and phrases: Finite Baire index; oscillation index; Baire-1 functions.

On optimality of the index

 $f: X \to \mathbb{R}$ is said to be of finite Baire index if there is an $n < \omega$ such that $os_n(f, \varepsilon) = \emptyset$ for all $\varepsilon > 0$. Then the finite Baire index of f is defined by

$$i(f) = \max_{\varepsilon > 0} i(f, \varepsilon),$$

where $i(f,\varepsilon) = \sup\{n : os_n(f,\varepsilon) \neq \emptyset\}.$

Clearly, if $f \in DBSC(X)$ then f is a Baire-1 function, that is, the pointwise limit of a sequence of continuous functions. Based on the Baire Characterization Theorem, Kechris and Louveau [4] defined the oscillation index of real-valued Baire-1 functions. The study on oscillation index of real-valued Baire-1 functions was continued by several authors (see, e.g., [3,5,6]). We recall here the definition of oscillation index. Let C denote the collection of all closed subsets of a Polish space X. Now, let $\varepsilon > 0$ and a function $f : X \to \mathbb{R}$ be given. For any $H \in C$, let $\mathcal{D}^0(f, \varepsilon, H) = H$ and $\mathcal{D}^1(f, \varepsilon, H)$ be the set of all $x \in H$ such that for every open set U containing x, there are two points x_1 and x_2 in $U \cap H$ with $|f(x_1) - f(x_2)| \ge \varepsilon$. For all $\alpha < \omega_1$ (ω_1 is the first uncountable ordinal number), set

$$\mathcal{P}^{\alpha+1}(f,\varepsilon,H) = \mathcal{D}^1(f,\varepsilon,\mathcal{D}^{\alpha}(f,\varepsilon,H)).$$

If α is a countable limit ordinal, let

$$\mathcal{D}^{\alpha}(f,\varepsilon,H) = \bigcap_{\alpha' < \alpha} \mathcal{D}^{\alpha'}(f,\varepsilon,H).$$

The ε -oscillation index of f on H is defined by

 \mathcal{D}

$$\beta_H(f,\varepsilon) = \begin{cases} \text{the smallest ordinal } \alpha < \omega_1 \text{ such that } \mathcal{D}^{\alpha}(f,\varepsilon,H) = \emptyset \\ \text{if such an } \alpha \text{ exists,} \\ \omega_1, \text{ otherwise.} \end{cases}$$

The oscillation index of f on the set H is defined by $\beta_H(f) = \sup\{\beta_H(f,\varepsilon) : \varepsilon > 0\}$. We shall write $\beta(f,\varepsilon)$ and $\beta(f)$ for $\beta_X(f,\varepsilon)$ and $\beta_X(f)$ respectively.

In fact, a function f is of finite Baire index if and only if $\beta(f) < \infty$ and then $\beta(f) = i(f) + 1$. Chaatit, Mascioni, and Rosenthal proved in [1] that if f and g are real-valued bounded functions of finite Baire index and h is any of the functions f + g, $fg, f \lor g, f \land g$, then $i(h) \le i(f) + i(g)$. In this paper, we prove that the estimate $i(h) \le i(f) + i(g)$ in [1, Theorem 1.3] is optimal in the following sense : For any $n, k < \omega$, there exist bounded real-valued functions f and g such that i(f) = n, i(g) = k, and i(h) = i(f) + i(g). We process the proof by constructing functions on ordinal spaces $[1, \omega^{n+k}]$ and then we extend the construction to any compact metric space K such that $K^{(n+k)} \neq \emptyset$, where $K^{(\alpha)}$ is the α^{th} Cantor-Bendixson derivative of K. Note that for any function f on K, $\mathcal{D}^{\alpha}(f, \varepsilon, K) \subseteq K^{(\alpha)}$, for any $\alpha < \omega_1$.

2. Results

Before we construct functions on ordinal spaces to show that Theorem 1.3 in [1] is optimal, we prove the following fact that we will use later.

A. Zulijanto

LEMMA 2.1. Let X, Y be Polish spaces and $\varepsilon > 0$ be given. If $\theta : X \to Y$ is a homeomorphism and $\rho : Y \to \mathbb{R}$, then $\mathcal{D}^{\alpha}(\rho, \varepsilon, Y) = \theta(\mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X))$ for all $\alpha < \omega_1$.

Proof. We prove the lemma by induction on α . The statement in the lemma is true whenever $\alpha = 0$ since θ is surjective. By the injectivity of θ , the lemma is also true if α is a limit ordinal.

Suppose that the statement in the lemma is true for some $\alpha < \omega_1$. Let $y \in \mathcal{D}^{\alpha+1}(\rho,\varepsilon,Y)$. Since θ is bijective, there is a unique $x \in X$ such that $y = \theta(x)$. Let U be a neighborhood of x. Since θ is a homeomorphism, $\theta(U)$ is open in Y. Therefore, there exist $y_1, y_2 \in \theta(U) \cap \mathcal{D}^{\alpha}(\rho,\varepsilon,Y)$ such that $|\rho(y_1) - \rho(y_2)| \ge \varepsilon$. Let $x_1 = \theta^{-1}(y_1)$ and $x_2 = \theta^{-1}(y_2)$, then $x_1, x_2 \in \theta^{-1}(\theta(U) \cap \mathcal{D}^{\alpha}(\rho,\varepsilon,Y))$. Since

$$\theta^{-1}(\theta(U) \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)) = \theta^{-1}(\theta(U)) \cap \theta^{-1}(\theta(\mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)))$$

by the inductive hypothesis

$$= U \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X),$$

we have $x_1, x_2 \in U \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)$. And also,

 $|(\rho \circ \theta)(x_1) - (\rho \circ \theta)(x_2)| = |\rho(y_1) - \rho(y_2)| \ge \varepsilon.$

Therefore, $x \in \mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X)$, which implies that $y = \theta(x) \in \theta(\mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X))$.

Conversely, let $y \in \theta(\mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X))$. Then there exists $x \in \mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X)$ such that $\theta(x) = y$. Let V be any neighborhood of y. Since $\theta^{-1}(V)$ is open in X and $x \in \theta^{-1}(V)$, there exist $x_1, x_2 \in \theta^{-1}(V) \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)$ such that

$$|(\rho \circ \theta)(x_1) - (\rho \circ \theta)(x_2)| \ge \varepsilon$$

Let $y_1 = \theta(x_1)$ and $y_2 = \theta(x_2)$, then $y_1, y_2 \in \theta(\theta^{-1}(V) \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X))$. By the inductive hypothesis,

 $\theta(\theta^{-1}(V) \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)) = \theta(\theta^{-1}(V)) \cap \theta(\mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)) = V \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y).$ Therefore, $y_1, y_2 \in V \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)$ and

$$|\rho(y_1) - \rho(y_2)| = |\rho(\theta(x_1)) - \rho(\theta(x_2))| \ge \varepsilon.$$

Thus, $y \in \mathcal{D}^{\alpha+1}(\rho, \varepsilon, Y)$.

Besides the lemma above, we will use the following useful lemma that can be found in [5].

LEMMA 2.2 ([5], Lemma 2.1). Let U be a clopen subset of X and $f: X \to \mathbb{R}$ is Baire-1. Then for any $\varepsilon > 0$ and $\alpha < \omega_1$, we have $\mathcal{D}^{\alpha}(f, \varepsilon, X) \cap U = \mathcal{D}^{\alpha}(f, \varepsilon, U)$.

Now we are ready to give the construction. For any $m \in \mathbb{N}$, denote the clopen ordinal interval $[1, \omega^m]$ by I_m . Note that for any nonzero countable ordinal α can be uniquely written in the Cantor normal form

$$\alpha = \omega^{r_1} \cdot j_1 + \omega^{r_2} \cdot j_2 + \ldots + \omega^{r_\ell} \cdot j_\ell$$

where $m \ge r_1 > \ldots > r_\ell \ge 0$ and $\ell, j_1, \ldots, j_\ell \in \mathbb{N}$ (see, e.g., [7]). In the sequel we use the following function. Let a, b be any real numbers such that $a \ne b$ and $m \in \mathbb{N}$.

209

On optimality of the index

We define $\varphi_{a,b,m}: I_m \to \{a,b\}$ by

$$\varphi_{a,b,m}(\omega^{r_1} \cdot j_1 + \omega^{r_2} \cdot j_2 + \ldots + \omega^{r_\ell} \cdot j_\ell) = \begin{cases} a & \text{if } j_\ell \text{ is odd} \\ b & \text{if } j_\ell \text{ is even} \end{cases}$$

where $m \ge r_1 > \ldots > r_\ell \ge 0$ and $\ell, j_1, \ldots, j_\ell \in \mathbb{N}$. The following lemma is related to the function $\varphi_{a,b,m}$.

LEMMA 2.3. For sufficiently small $\varepsilon > 0$, if we let $\varphi = \varphi_{a,b,m}$, then $\mathcal{D}^m(\varphi, \varepsilon, I_m) = \{\omega^m\}$ and $\varphi(\omega^m) = a$.

Proof. Take any $0 < \varepsilon < |a - b|$. We prove the lemma by induction on m. Clearly, the assertion is true for m = 1 since ω is the only limit ordinal in $[1, \omega]$. Suppose that the assertion is true for some $m \in \mathbb{N}$. If $\varphi = \varphi_{a,b,m+1}$, it is clear that $\varphi(\omega^{m+1}) = a$. For each $k < \omega$, let $L_k = [\omega^m \cdot k + 1, \omega^m \cdot (k+1)]$. Clearly, $\theta : I_m \to L_k$ defined by $\theta(\xi) = \omega^m \cdot k + \xi$ is a homeomorphism. Therefore, by Lemma 2.1 and Lemma 2.2 we have

$$\mathcal{D}^{m}(\varphi,\varepsilon,I_{m+1})\cap L_{k} = \mathcal{D}^{m}(\varphi|_{L_{k}},\varepsilon,L_{k}) = \theta(\mathcal{D}^{m}(\varphi|_{L_{k}}\circ\theta,\varepsilon,I_{m}))$$
$$= \theta(\mathcal{D}^{m}(\varphi_{a,b,m},\varepsilon,I_{m})) = \theta(\{\omega^{m}\}) = \{\omega^{m}\cdot(k+1)\}.$$

Thus $\{\omega^m \cdot k : 0 < k < \omega\} \subseteq \mathcal{D}^m(\varphi, \varepsilon, I_{m+1}).$

Recall that $\mathcal{D}^{m}(\varphi,\varepsilon,I_{m+1}) \subseteq \mathcal{D}^{j}(\varphi,\varepsilon,I_{m+1})$ for all j < m. Let $j \leq m$ and take any neighborhood U of ω^{m+1} . Then there exists an even $k < \omega$ such that $\omega^{m} \cdot k \in U \cap \mathcal{D}^{j}(\varphi,\varepsilon,I_{m+1})$ and $|\varphi(\omega^{m+1}) - \varphi(\omega^{m} \cdot k)| = |a-b| \geq \varepsilon$. Thus $\omega^{m+1} \in \mathcal{D}^{m+1}(\varphi,\varepsilon,I_{m+1})$, and therefore $\mathcal{D}^{m}(\varphi,\varepsilon,I_{m+1}) = \{\omega^{m} \cdot k : 0 < k < \omega\} \cup \{\omega^{m+1}\}$. Since $(\mathcal{D}^{m}(\varphi,\varepsilon,I_{m+1}))' = \{\omega^{m+1}\}$, then it follows that $\mathcal{D}^{m+1}(\varphi,\varepsilon,I_{m+1}) = \{\omega^{m+1}\}$.

The ordinal interval $I_{n+k} = [1, \omega^{n+k}], n, k \in \mathbb{N}$, can be written as a disjoint union

$$\bigcup_{0 \le \alpha < \omega^k} [\omega^n \cdot \alpha + 1, \omega^n \cdot (\alpha + 1)] \cup \{\omega^n \cdot \xi : \xi \le \omega^k, \xi \text{ is a limit ordinal}\}$$

We use the function $\varphi_{a,b,m}$ to prove the following lemma.

LEMMA 2.4. Let $n \in \mathbb{N}$ be fixed and $a, b \in \mathbb{R}$ with $a \neq b$. If for any $k \in \mathbb{N}$ we define $g_k : I_{n+k} \to \{a, b\}$ by

$$g_k(\tau) = \begin{cases} \varphi(\alpha+1) & \text{if } \tau = \omega^n \cdot \alpha + \xi, \ \xi \in [1,\omega^n], \ 0 \le \alpha < \omega^k \\ \varphi(\xi) & \text{if } \tau = \omega^n \cdot \xi, \ \xi \le \omega^k & \text{is a limit ordinal,} \end{cases}$$

where $\varphi = \varphi_{a,b,k} : I_k \to \{a,b\}$, then $\mathcal{D}^k(g_k,\varepsilon,I_{n+k}) = \{\omega^{n+k}\}$ for any sufficiently small $\varepsilon > 0$.

Proof. Take any $0 < \varepsilon < |b-a|$. We prove the lemma by induction on k. First we prove for k = 1. Take any neighborhood U of ω^{n+1} , then there is an odd number $\ell < \omega$ such that $\omega^n \cdot \ell + 1 \in U$, therefore

$$|g_1(\omega^n \cdot \ell + 1) - g_1(\omega^{n+1})| = |\varphi(\ell + 1) - \varphi(\omega)| = |b - a| \ge \varepsilon.$$

Thus $\omega^{n+1} \in \mathcal{D}^1(g_1, \varepsilon, I_{n+1})$. Furthermore, for all $\tau < \omega^{n+1}$ can be written as $\tau = \omega^n \cdot \ell + \xi$, where $\ell < \omega$ and $1 \le \xi \le \omega^n$. Therefore $g_1(\tau) = \varphi(\ell + 1)$ and since $[1, \omega)' = \emptyset$, it follows that $\mathcal{D}^1(g_1, \varepsilon, I_{n+1}) = \{\omega^{n+1}\}$.

A. Zulijanto

Now we assume that $\mathcal{D}^k(g_k, \varepsilon, I_{n+k}) = \{\omega^{n+k}\}$ and we will prove that $\mathcal{D}^{k+1}(g_{k+1}, \varepsilon, I_{n+k+1}) = \{\omega^{n+k+1}\}$. For each $j < \omega$, let $L_j := [\omega^{n+k} \cdot j + 1, \omega^{n+k} \cdot (j+1)]$ and $g^j = g_{k+1}|_{L_j}$. Let $\theta : I_{n+k} \to L_j$ be defined by $\theta(\xi) = \omega^{n+k} \cdot j + \xi$, clearly that θ is a homeomorphism and $g_k = g^j \circ \theta$. Therefore, by Lemma 2.1 and Lemma 2.2 we have

$$\mathcal{D}^{k}(g_{k+1},\varepsilon,I_{n+k+1})\cap L_{j} = \mathcal{D}^{k}(g^{j},\varepsilon,L_{j}) = \theta(\mathcal{D}^{k}(g^{j}\circ\theta,\varepsilon,I_{n+k}))$$
$$= \theta(\mathcal{D}^{k}(g_{k},\varepsilon,I_{n+k})) = \theta(\{\omega^{n+k}\}) = \{\omega^{n+k}\cdot(j+1)\}.$$

Thus, $\{\omega^{n+k} \cdot j : 0 < j < \omega\} \subseteq \mathcal{D}^k(g_{k+1}, \varepsilon, I_{n+k+1}) \subseteq \mathcal{D}^\ell(g_{k+1}, \varepsilon, I_{n+k+1})$, for all $\ell < k$. Since $g_{k+1}(\omega^{n+k+1}) = \varphi(\omega^{k+1}) = a$ and there exists an even $j < \omega$ which implies $g_{k+1}(\omega^{n+k} \cdot j) = \varphi(j) = b$, it follows that $\omega^{n+k+1} \in \mathcal{D}^{k+1}(g_{k+1}, \varepsilon, I_{n+k+1})$. Since $\{\omega^{n+k} \cdot j : 0 < j < \omega\}' = \emptyset$, we obtain $\mathcal{D}^{k+1}(g_{k+1}, \varepsilon, I_{n+k+1}) = \{\omega^{n+k+1}\}$. The proof is completed.

Theorem 2.5 below shows that Theorem 1.3 in [1] is optimal.

THEOREM 2.5. For any $n, k \in \mathbb{N}$, there exist $f, g : I_{n+k} \to \mathbb{R}$ such that i(f) = n, i(g) = k, and i(h) = n + k, where h is any of the functions $f + g, fg, f \lor g, f \land g$.

Proof. Let $a, b \in \mathbb{R}$ with $a \neq b, n \in \mathbb{N}$, and $\varphi = \varphi_{a,b,n} : I_n \to \{a, b\}$. Define $f: I_{n+k} \to \{a, b\}$ by

$$f(\tau) = \begin{cases} \varphi(\xi) & \text{if } \tau = \omega^n \cdot \alpha + \xi, \quad \xi \in [1, \omega^n], \ 0 \le \alpha < \omega^k \\ a & \text{if } \tau = \omega^n \cdot \xi, \ \xi \le \omega^k & \text{is a limit ordinal.} \end{cases}$$

We are to prove that i(f) = n. Take any $0 < \varepsilon < |b - a|$. For any $\alpha < \omega^k$, let $L_{\alpha} = [\omega^n \cdot \alpha + 1, \omega^n \cdot (\alpha + 1)]$ and $f_{\alpha} = f|_{L_{\alpha}}$. Let $\theta : I_n \to L_{\alpha}$ be defined by $\theta(\xi) = \omega^n \cdot \alpha + \xi$. Then it is clear that θ is a homeomorphism from I_n to L_{α} . Also, by the definition of f, clearly $f_{\alpha} \circ \theta = \varphi$.

Since $\theta: I_n \to L_\alpha$ is a homeomorphism, then by Lemma 2.1 and Lemma 2.2 we have

$$\mathcal{D}^{n}(f,\varepsilon,I_{n+k}) \cap L_{\alpha} = \mathcal{D}^{n}(f_{\alpha},\varepsilon,L_{\alpha}) = \theta(\mathcal{D}^{n}(f_{\alpha}\circ\theta,\varepsilon,I_{n}))$$
$$= \theta(\mathcal{D}^{n}(\varphi,\varepsilon,I_{n})) = \theta(\{\omega^{n}\}) = \{\omega^{n}\cdot(\alpha+1)\},$$
$$(\omega^{n},(\alpha+1)) = (\alpha\circ\theta^{-1})(\omega^{n},(\alpha+1)) = (\alpha(\omega^{n})) = \alpha$$
 It follows that

and $f_{\alpha}(\omega^n \cdot (\alpha + 1)) = (\varphi \circ \theta^{-1})(\omega^n \cdot (\alpha + 1)) = \varphi(\omega^n) = a$. It follows that

$$\mathcal{D}^{n}(f,\varepsilon,I_{n+k})\cap\left(\bigcup_{0\leq\alpha<\omega^{k}}L_{\alpha}\right)=\bigcup_{0\leq\alpha<\omega^{k}}\left(\mathcal{D}^{n}(f_{\alpha},\varepsilon,L_{\alpha})\right)=\bigcup_{0\leq\alpha<\omega^{k}}\{\omega^{n}\cdot(\alpha+1)\}.$$

Therefore

$$\mathcal{D}^{n}(f,\varepsilon,I_{n+k}) \subseteq \left(\bigcup_{0 \le \alpha < \omega^{k}} \{\omega^{n} \cdot (\alpha+1)\}\right) \cup \{\omega^{n} \cdot \xi : \xi \in I_{k}, \xi \text{ is a limit ordinal}\}$$
$$= \{\omega^{n} \cdot \alpha : \alpha \in I_{k}\}.$$

Since $f(\omega^n \cdot \alpha) = a$ for all $\alpha \in I_k$, then $\mathcal{D}^{n+1}(f, \varepsilon, I_{n+k}) = \emptyset$. This implies that $\beta(f) = \sup_{\varepsilon > 0} \beta(f, \varepsilon) = n + 1$, and therefore i(f) = n.

Now, let $c, d \in \mathbb{R}$ with $c \neq d$ and denote $\psi = \varphi_{c,d,k} : I_k \to \{c,d\}$. Define

On optimality of the index

 $g: I_{n+k} \to \{c, d\}$ by

$$g(\tau) = \begin{cases} \psi(\alpha+1) & \text{if } \tau = \omega^n \cdot \alpha + \xi, \quad \xi \in [1,\omega^n], \quad 0 \le \alpha < \omega^k \\ \psi(\xi) & \text{if } \tau = \omega^n \cdot \xi, \quad \xi \le \omega^k \quad \text{is a limit ordinal.} \end{cases}$$

Then, by Lemma 2.4, $\mathcal{D}^k(g,\varepsilon,I_{n+k}) = \{\omega^{n+k}\}$ which implies that $i(g) = \beta(g) - 1 = \sup_{\varepsilon > 0} \beta(g,\varepsilon) - 1 = k$.

Let h = f + g and choose the numbers a, b, c, d such that $a + c \neq b + d$. Take any sufficiently small $\varepsilon > 0$. For each $0 \le \alpha < \omega^k$, let $L_{\alpha} = [\omega^n \cdot \alpha + 1, \omega^n \cdot (\alpha + 1)]$ and $h_{\alpha} = h|_{L_{\alpha}}$. For each $\alpha < \omega^k$ and $\tau = \omega^n \cdot \alpha + \xi \in L_{\alpha}$ we have $h_{\alpha}(\tau) = \varphi(\xi) + \psi(\alpha + 1)$. Therefore, $h_{\alpha} \circ \theta = \varphi + \psi(\alpha + 1)$. Since $\theta : I_n \to L_{\alpha}$ is a homeomorphism, then by Lemma 2.1 and Lemma 2.2, for each $\alpha < \omega^k$ we have

$$\begin{split} \mathcal{D}^n(h,\varepsilon,I_{n+k}) \cap L_\alpha &= \mathcal{D}^n(h_\alpha,\varepsilon,L_\alpha) = \theta(\mathcal{D}^n(h_\alpha\circ\theta,\varepsilon,I_n)) \\ &= \theta\left(\mathcal{D}^n(\varphi + \psi(\alpha+1),\varepsilon,I_n)\right) = \theta(\{\omega^n\}) = \{\omega^n \cdot (\alpha+1)\} \\ \text{and } h(\omega^n \cdot (\alpha+1)) &= (h_\alpha\circ\theta)(\theta^{-1}(\omega^n \cdot (\alpha+1)) = a + \psi(\alpha+1). \end{split}$$

and $h(\omega^n \cdot (\alpha + 1)) = (h_\alpha \circ \theta)(\theta^{-1}(\omega^n \cdot (\alpha + 1)) = a + \psi(\alpha + 1).$ Take any limit ordinal $\xi \leq \omega^k$. Then $h(\omega^n \cdot \xi) = a + \psi(\xi)$. For any neighborhood U of $\omega^n \cdot \xi$, there exists $\alpha < \xi$ such that $\omega^n \cdot \alpha \in U \cap \mathcal{D}^{\ell}(h, \varepsilon, I_{n+k})$ for all $\ell < n$ and $h(\omega^n \cdot \alpha) \neq a + \psi(\xi)$. It follows that $\omega^n \cdot \xi \in \mathcal{D}^n(h, \varepsilon, I_{n+k})$. Thus we obtain that $\mathcal{D}^n(h, \varepsilon, I_{n+k}) = \{\omega^n \cdot \alpha : 1 \leq \alpha \leq \omega^k\}$ and $h(\omega^n \cdot \alpha) = a + \psi(\alpha)$ for each $1 \leq \alpha \leq \omega^k$. Let $q : [1, \omega^k] \to \{\omega^n \cdot \alpha : 1 \leq \alpha \leq \omega^k\}$ be defined by $q(\alpha) = \omega^n \cdot \alpha$. Then q is bijective and continuous (see, e.g., [7]). Since $[1, \omega^k]$ is compact and $\{\omega^n \cdot \alpha : 1 \leq \alpha \leq \omega^k\}$ is Haussdorf, then q is a homeomorphism (see, e.g., [2]). It can be observed that $h \circ q = \varphi_{a+c,a+d,k}$. Therefore, by Lemma 2.1,

 $\mathcal{D}^{n+k}(h,\varepsilon,I_{n+k}) = \mathcal{D}^k(h,\varepsilon,\mathcal{D}^n(h,\varepsilon,I_{n+k})) = q\left(\mathcal{D}^k(h\circ q,\varepsilon,I_k)\right) = q(\{\omega^k\}) = \{\omega^{n+k}\}.$ It implies that $\mathcal{D}^{n+k+1}(h,\varepsilon,I_{n+k}) = \emptyset$, and therefore $i(h) = \beta(h) - 1 = n + k$.

Similarly, we can prove for h = fg, $h = f \land g$, and $h = f \lor g$ by choosing the appropriate numbers a, b, c, and d. We may choose a, b, c, d such that $ac \neq bd$, a < b and c < d, and a > b and c > d for h = fg, $h = f \land g$, and $h = f \lor g$, respectively. \Box

Furthermore, the result in Theorem 2.5 may be extended to any compact metric space K such that $K^{(n+k)} \neq \emptyset$. For this, we use the following lemma.

LEMMA 2.6 ([5], Lemma 6.8.). Let K be a compact metric space. If $K^{(\alpha)} \neq \emptyset$ for some $0 < \alpha < \omega_1$, then there is a subspace $L \subseteq K$ such that L is homeomorphic to $[0, \omega^{\alpha}]$.

THEOREM 2.7. Let K be any compact metric space such that $K^{(n+k)} \neq \emptyset$. Then there exist $f, g: K \to \mathbb{R}$ such that i(h) = i(f) + i(g), where h is any of the functions f + g, $fg, f \land g, f \lor g$.

Proof. By Lemma 2.6, there exists $L \subseteq K$ such that L is homeomorphic to I_{n+k} , suppose that $\theta : L \to I_{n+k}$ is the homeomorphism. By Theorem 2.5, there exist $\tilde{f}, \tilde{g} : I_{n+k} \to \mathbb{R}$ such that $i(\tilde{h}) = i(\tilde{f}) + i(\tilde{g})$, where \tilde{h} is any of the functions $\tilde{f} + \tilde{g}$, $\tilde{f}\tilde{g}, \tilde{f} \wedge \tilde{g}, \tilde{f} \vee \tilde{g}$.

Define $f, g: L \to \mathbb{R}$ by $f = \tilde{f} \circ \theta$ and $g = \tilde{g} \circ \theta$. Let ψ be any of the functions $\tilde{f}, \tilde{g}, \tilde{h}$. Then by Lemma 2.1, we have $\mathcal{D}^j(\psi \circ \theta, \varepsilon, L) = \theta^{-1}(\mathcal{D}^j(\psi, \varepsilon, I_{n+k})), j \leq n+k$. It

A. Zulijanto

follows that i(h) = i(f) + i(g) on L, where h is any of the functions f + g, fg, $f \wedge g$, $f \vee g$. Furthermore, by Theorem 3.6 of [5], f, g, and h can be extended onto K with preservation of the finite index i.

ACKNOWLEDGEMENT. The author would like to thank the referee(s) for valuable suggestions which lead to the improvement of this paper.

References

- F. Chaatit, T. Mascioni, H. Rosenthal, On functions of finite Baire index, J. Funct. Anal. 142 (1996), 277–295.
- [2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [3] R. Haydon, E. Odell, H. P. Rosenthal, On certain classes of Baire-1 Functions with Applications to Banach space theory, in : Functional Analysis, Lecture Notes in Math., 1470, 1-35, Springer, New York, 1991.
- [4] A. S. Kechris, A. Louveau, A classification of Baire Class 1 functions, Trans. Amer. Math. Soc. 318 (1990), 209–236.
- [5] D. H. Leung, W. K. Tang, Functions of Baire class one, Fund. Math. 179 (2003), 225–247.
- [6] D. H. Leung, W. K. Tang, Extension of functions with small oscillation, Fund. Math. 192 (2006), 183–193.
- [7] Z. Semadeni, Banach spaces of continuous functions, Vol. 1, Polish Sci. Publ., Warsawa, 1971.

(received 31.10.2016; in revised form 05.05.2017; available online 13.06.2017)

Department of Mathematics, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

E-mail: atokzulijanto@ugm.ac.id