ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BAIRE INDEX FUNCTIONS

Atok Zulijanto

Abstract

Chaatit, Mascioni, and Rosenthal defined finite Baire index for a bounded real-valued function f on a separable metric space, denoted by $i(f)$, and proved that for any bounded functions f and g of finite Baire index, $i(h) \leq i(f)+i(g)$, where h is any of the functions $f+g, f g, f \vee g, f \wedge g$. In this paper, we prove that the result is optimal in the following sense : for each $n, k<\omega$, there exist functions f, g such that $i(f)=n, i(g)=k$, and $i(h)=i(f)+i(g)$.

1. Introduction

A real-valued function f defined on a separable metric space X is called a difference of bounded semicontinuous functions if there exist bounded lower semicontinuous functions u and v on X such that $f=u-v$. The class of all such functions is denoted by $D B S C(X)$. Some authors have studied this class and some of its subclasses (see, e.g. $[1,3])$. Chaatit, Mascioni, and Rosenthal [1] defined finite Baire index for functions belonging to $D B S C(X)$, whose definition we now recall.

Let X be a separable metric space. For a given bounded function $f: X \rightarrow \mathbb{R}$, the upper semicontinuous envelope $\mathcal{U} f$ of f is defined by

$$
\mathcal{U} f(x)=\varlimsup_{y \rightarrow x} f(y)=\inf \left\{\sup _{y \in U} f(y): U \text { is a neighborhood of } x\right\}
$$

for all $x \in X$. The lower oscillation osc f of f is defined by

$$
\underline{\operatorname{osc}} f(x)=\varlimsup_{y \rightarrow x}|f(y)-f(x)|
$$

for all $x \in X$. Finally, the oscillation osc f of f is defined by osc $f=\mathcal{U} \underline{\operatorname{osc}} f$. Next, for any $\varepsilon>0$, let $o_{0}(f, \varepsilon)=X$. If $o_{j}(f, \varepsilon)$ has been defined for some $j \geq 0$, let $o s_{j+1}(f, \varepsilon)=\left\{x \in L:\left.\operatorname{osc} f\right|_{L}(x) \geq \varepsilon\right\}$, where $L=o s_{j}(f, \varepsilon)$. A bounded function

[^0]$f: X \rightarrow \mathbb{R}$ is said to be of finite Baire index if there is an $n<\omega$ such that $o s_{n}(f, \varepsilon)=\emptyset$ for all $\varepsilon>0$. Then the finite Baire index of f is defined by
$$
i(f)=\max _{\varepsilon>0} i(f, \varepsilon)
$$
where $i(f, \varepsilon)=\sup \left\{n: \operatorname{os}_{n}(f, \varepsilon) \neq \emptyset\right\}$.
Clearly, if $f \in D B S C(X)$ then f is a Baire-1 function, that is, the pointwise limit of a sequence of continuous functions. Based on the Baire Characterization Theorem, Kechris and Louveau [4] defined the oscillation index of real-valued Baire-1 functions. The study on oscillation index of real-valued Baire-1 functions was continued by several authors (see, e.g., $[3,5,6]$). We recall here the definition of oscillation index. Let \mathcal{C} denote the collection of all closed subsets of a Polish space X. Now, let $\varepsilon>0$ and a function $f: X \rightarrow \mathbb{R}$ be given. For any $H \in \mathcal{C}$, let $\mathcal{D}^{0}(f, \varepsilon, H)=H$ and $\mathcal{D}^{1}(f, \varepsilon, H)$ be the set of all $x \in H$ such that for every open set U containing x, there are two points x_{1} and x_{2} in $U \cap H$ with $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \geq \varepsilon$. For all $\alpha<\omega_{1}\left(\omega_{1}\right.$ is the first uncountable ordinal number), set
$$
\mathcal{D}^{\alpha+1}(f, \varepsilon, H)=\mathcal{D}^{1}\left(f, \varepsilon, \mathcal{D}^{\alpha}(f, \varepsilon, H)\right)
$$

If α is a countable limit ordinal, let

$$
\mathcal{D}^{\alpha}(f, \varepsilon, H)=\bigcap_{\alpha^{\prime}<\alpha} \mathcal{D}^{\alpha^{\prime}}(f, \varepsilon, H)
$$

The ε-oscillation index of f on H is defined by

$$
\beta_{H}(f, \varepsilon)=\left\{\begin{array}{l}
\text { the smallest ordinal } \alpha<\omega_{1} \text { such that } \mathcal{D}^{\alpha}(f, \varepsilon, H)=\emptyset \\
\text { if such an } \alpha \text { exists, } \\
\omega_{1}, \quad \text { otherwise }
\end{array}\right.
$$

The oscillation index of f on the set H is defined by $\beta_{H}(f)=\sup \left\{\beta_{H}(f, \varepsilon): \varepsilon>0\right\}$. We shall write $\beta(f, \varepsilon)$ and $\beta(f)$ for $\beta_{X}(f, \varepsilon)$ and $\beta_{X}(f)$ respectively.

In fact, a function f is of finite Baire index if and only if $\beta(f)<\infty$ and then $\beta(f)=i(f)+1$. Chaatit, Mascioni, and Rosenthal proved in [1] that if f and g are real-valued bounded functions of finite Baire index and h is any of the functions $f+g, f g, f \vee g, f \wedge g$, then $i(h) \leq i(f)+i(g)$. In this paper, we prove that the estimate $i(h) \leq i(f)+i(g)$ in [1, Theorem 1.3] is optimal in the following sense : For any $n, k<\omega$, there exist bounded real-valued functions f and g such that $i(f)=n$, $i(g)=k$, and $i(h)=i(f)+i(g)$. We process the proof by constructing functions on ordinal spaces $\left[1, \omega^{n+k}\right]$ and then we extend the construction to any compact metric space K such that $K^{(n+k)} \neq \emptyset$, where $K^{(\alpha)}$ is the $\alpha^{\text {th }}$ Cantor-Bendixson derivative of K. Note that for any function f on $K, \mathcal{D}^{\alpha}(f, \varepsilon, K) \subseteq K^{(\alpha)}$, for any $\alpha<\omega_{1}$.

2. Results

Before we construct functions on ordinal spaces to show that Theorem 1.3 in [1] is optimal, we prove the following fact that we will use later.

Lemma 2.1. Let X, Y be Polish spaces and $\varepsilon>0$ be given. If $\theta: X \rightarrow Y$ is a homeomorphism and $\rho: Y \rightarrow \mathbb{R}$, then $\mathcal{D}^{\alpha}(\rho, \varepsilon, Y)=\theta\left(\mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)\right)$ for all $\alpha<\omega_{1}$.

Proof. We prove the lemma by induction on α. The statement in the lemma is true whenever $\alpha=0$ since θ is surjective. By the injectivity of θ, the lemma is also true if α is a limit ordinal.

Suppose that the statement in the lemma is true for some $\alpha<\omega_{1}$. Let $y \in$ $\mathcal{D}^{\alpha+1}(\rho, \varepsilon, Y)$. Since θ is bijective, there is a unique $x \in X$ such that $y=\theta(x)$. Let U be a neighborhood of x. Since θ is a homeomorphism, $\theta(U)$ is open in Y. Therefore, there exist $y_{1}, y_{2} \in \theta(U) \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)$ such that $\left|\rho\left(y_{1}\right)-\rho\left(y_{2}\right)\right| \geq \varepsilon$. Let $x_{1}=\theta^{-1}\left(y_{1}\right)$ and $x_{2}=\theta^{-1}\left(y_{2}\right)$, then $x_{1}, x_{2} \in \theta^{-1}\left(\theta(U) \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)\right)$. Since

$$
\theta^{-1}\left(\theta(U) \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)\right)=\theta^{-1}(\theta(U)) \cap \theta^{-1}\left(\theta\left(\mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)\right)\right.
$$

by the inductive hypothesis

$$
=U \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)
$$

we have $x_{1}, x_{2} \in U \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)$. And also,

$$
\left|(\rho \circ \theta)\left(x_{1}\right)-(\rho \circ \theta)\left(x_{2}\right)\right|=\left|\rho\left(y_{1}\right)-\rho\left(y_{2}\right)\right| \geq \varepsilon .
$$

Therefore, $x \in \mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X)$, which implies that $y=\theta(x) \in \theta\left(\mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X)\right)$.
Conversely, let $y \in \theta\left(\mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X)\right)$. Then there exists $x \in \mathcal{D}^{\alpha+1}(\rho \circ \theta, \varepsilon, X)$ such that $\theta(x)=y$. Let V be any neighborhood of y. Since $\theta^{-1}(V)$ is open in X and $x \in \theta^{-1}(V)$, there exist $x_{1}, x_{2} \in \theta^{-1}(V) \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)$ such that

$$
\left|(\rho \circ \theta)\left(x_{1}\right)-(\rho \circ \theta)\left(x_{2}\right)\right| \geq \varepsilon .
$$

Let $y_{1}=\theta\left(x_{1}\right)$ and $y_{2}=\theta\left(x_{2}\right)$, then $y_{1}, y_{2} \in \theta\left(\theta^{-1}(V) \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)\right)$. By the inductive hypothesis,

$$
\theta\left(\theta^{-1}(V) \cap \mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)\right)=\theta\left(\theta^{-1}(V)\right) \cap \theta\left(\mathcal{D}^{\alpha}(\rho \circ \theta, \varepsilon, X)\right)=V \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)
$$

Therefore, $y_{1}, y_{2} \in V \cap \mathcal{D}^{\alpha}(\rho, \varepsilon, Y)$ and

$$
\left|\rho\left(y_{1}\right)-\rho\left(y_{2}\right)\right|=\left|\rho\left(\theta\left(x_{1}\right)\right)-\rho\left(\theta\left(x_{2}\right)\right)\right| \geq \varepsilon .
$$

Thus, $y \in \mathcal{D}^{\alpha+1}(\rho, \varepsilon, Y)$.
Besides the lemma above, we will use the following useful lemma that can be found in [5].

Lemma 2.2 ([5], Lemma 2.1). Let U be a clopen subset of X and $f: X \rightarrow \mathbb{R}$ is Baire-1. Then for any $\varepsilon>0$ and $\alpha<\omega_{1}$, we have $\mathcal{D}^{\alpha}(f, \varepsilon, X) \cap U=\mathcal{D}^{\alpha}(f, \varepsilon, U)$.

Now we are ready to give the construction. For any $m \in \mathbb{N}$, denote the clopen ordinal interval $\left[1, \omega^{m}\right]$ by I_{m}. Note that for any nonzero countable ordinal α can be uniquely written in the Cantor normal form

$$
\alpha=\omega^{r_{1}} \cdot j_{1}+\omega^{r_{2}} \cdot j_{2}+\ldots+\omega^{r_{\ell}} \cdot j_{\ell}
$$

where $m \geq r_{1}>\ldots>r_{\ell} \geq 0$ and $\ell, j_{1}, \ldots, j_{\ell} \in \mathbb{N}$ (see, e.g., [7]). In the sequel we use the following function. Let a, b be any real numbers such that $a \neq b$ and $m \in \mathbb{N}$.

We define $\varphi_{a, b, m}: I_{m} \rightarrow\{a, b\}$ by

$$
\varphi_{a, b, m}\left(\omega^{r_{1}} \cdot j_{1}+\omega^{r_{2}} \cdot j_{2}+\ldots+\omega^{r_{\ell}} \cdot j_{\ell}\right)= \begin{cases}a & \text { if } j_{\ell} \text { is odd } \\ b & \text { if } j_{\ell} \text { is even }\end{cases}
$$

where $m \geq r_{1}>\ldots>r_{\ell} \geq 0$ and $\ell, j_{1}, \ldots, j_{\ell} \in \mathbb{N}$. The following lemma is related to the function $\varphi_{a, b, m}$.

Lemma 2.3. For sufficiently small $\varepsilon>0$, if we let $\varphi=\varphi_{a, b, m}$, then $\mathcal{D}^{m}\left(\varphi, \varepsilon, I_{m}\right)=$ $\left\{\omega^{m}\right\}$ and $\varphi\left(\omega^{m}\right)=a$.
Proof. Take any $0<\varepsilon<|a-b|$. We prove the lemma by induction on m. Clearly, the assertion is true for $m=1$ since ω is the only limit ordinal in $[1, \omega]$. Suppose that the assertion is true for some $m \in \mathbb{N}$. If $\varphi=\varphi_{a, b, m+1}$, it is clear that $\varphi\left(\omega^{m+1}\right)=a$. For each $k<\omega$, let $L_{k}=\left[\omega^{m} \cdot k+1, \omega^{m} \cdot(k+1)\right]$. Clearly, $\theta: I_{m} \rightarrow L_{k}$ defined by $\theta(\xi)=\omega^{m} \cdot k+\xi$ is a homeomorphism. Therefore, by Lemma 2.1 and Lemma 2.2 we have

$$
\begin{aligned}
\mathcal{D}^{m}\left(\varphi, \varepsilon, I_{m+1}\right) \cap L_{k} & =\mathcal{D}^{m}\left(\left.\varphi\right|_{L_{k}}, \varepsilon, L_{k}\right)=\theta\left(\mathcal{D}^{m}\left(\left.\varphi\right|_{L_{k}} \circ \theta, \varepsilon, I_{m}\right)\right) \\
& =\theta\left(\mathcal{D}^{m}\left(\varphi_{a, b, m}, \varepsilon, I_{m}\right)\right)=\theta\left(\left\{\omega^{m}\right\}\right)=\left\{\omega^{m} \cdot(k+1)\right\}
\end{aligned}
$$

Thus $\left\{\omega^{m} \cdot k: 0<k<\omega\right\} \subseteq \mathcal{D}^{m}\left(\varphi, \varepsilon, I_{m+1}\right)$.
Recall that $\mathcal{D}^{m}\left(\varphi, \varepsilon, I_{m+1}\right) \subseteq \mathcal{D}^{j}\left(\varphi, \varepsilon, I_{m+1}\right)$ for all $j<m$. Let $j \leq m$ and take any neighborhood U of ω^{m+1}. Then there exists an even $k<\omega$ such that $\omega^{m} \cdot k \in U \cap \mathcal{D}^{j}\left(\varphi, \varepsilon, I_{m+1}\right)$ and $\left|\varphi\left(\omega^{m+1}\right)-\varphi\left(\omega^{m} \cdot k\right)\right|=|a-b| \geq \varepsilon$. Thus $\omega^{m+1} \in$ $\mathcal{D}^{m+1}\left(\varphi, \varepsilon, I_{m+1}\right)$, and therefore $\mathcal{D}^{m}\left(\varphi, \varepsilon, I_{m+1}\right)=\left\{\omega^{m} \cdot k: 0<k<\omega\right\} \cup\left\{\omega^{m+1}\right\}$. Since $\left(\mathcal{D}^{m}\left(\varphi, \varepsilon, I_{m+1}\right)\right)^{\prime}=\left\{\omega^{m+1}\right\}$, then it follows that $\mathcal{D}^{m+1}\left(\varphi, \varepsilon, I_{m+1}\right)=\left\{\omega^{m+1}\right\}$.

The ordinal interval $I_{n+k}=\left[1, \omega^{n+k}\right], n, k \in \mathbb{N}$, can be written as a disjoint union

$$
\bigcup_{0 \leq \alpha<\omega^{k}}\left[\omega^{n} \cdot \alpha+1, \omega^{n} \cdot(\alpha+1)\right] \cup\left\{\omega^{n} \cdot \xi: \xi \leq \omega^{k}, \xi \text { is a limit ordinal }\right\} \text {. }
$$

We use the function $\varphi_{a, b, m}$ to prove the following lemma.
Lemma 2.4. Let $n \in \mathbb{N}$ be fixed and $a, b \in \mathbb{R}$ with $a \neq b$. If for any $k \in \mathbb{N}$ we define $g_{k}: I_{n+k} \rightarrow\{a, b\}$ by

$$
g_{k}(\tau)= \begin{cases}\varphi(\alpha+1) & \text { if } \tau=\omega^{n} \cdot \alpha+\xi, \quad \xi \in\left[1, \omega^{n}\right], 0 \leq \alpha<\omega^{k} \\ \varphi(\xi) & \text { if } \tau=\omega^{n} \cdot \xi, \xi \leq \omega^{k} \quad \text { is a limit ordinal },\end{cases}
$$

where $\varphi=\varphi_{a, b, k}: I_{k} \rightarrow\{a, b\}$, then $\mathcal{D}^{k}\left(g_{k}, \varepsilon, I_{n+k}\right)=\left\{\omega^{n+k}\right\}$ for any sufficiently small $\varepsilon>0$.

Proof. Take any $0<\varepsilon<|b-a|$. We prove the lemma by induction on k. First we prove for $k=1$. Take any neighborhood U of ω^{n+1}, then there is an odd number $\ell<\omega$ such that $\omega^{n} \cdot \ell+1 \in U$, therefore

$$
\left|g_{1}\left(\omega^{n} \cdot \ell+1\right)-g_{1}\left(\omega^{n+1}\right)\right|=|\varphi(\ell+1)-\varphi(\omega)|=|b-a| \geq \varepsilon .
$$

Thus $\omega^{n+1} \in \mathcal{D}^{1}\left(g_{1}, \varepsilon, I_{n+1}\right)$. Furthermore, for all $\tau<\omega^{n+1}$ can be written as $\tau=\omega^{n} \cdot \ell+\xi$, where $\ell<\omega$ and $1 \leq \xi \leq \omega^{n}$. Therefore $g_{1}(\tau)=\varphi(\ell+1)$ and since $[1, \omega)^{\prime}=\emptyset$, it follows that $\mathcal{D}^{1}\left(g_{1}, \varepsilon, I_{n+1}\right)=\left\{\omega^{n+1}\right\}$.

Now we assume that $\mathcal{D}^{k}\left(g_{k}, \varepsilon, I_{n+k}\right)=\left\{\omega^{n+k}\right\}$ and we will prove that $\mathcal{D}^{k+1}\left(g_{k+1}, \varepsilon\right.$, $\left.I_{n+k+1}\right)=\left\{\omega^{n+k+1}\right\}$. For each $j<\omega$, let $L_{j}:=\left[\omega^{n+k} \cdot j+1, \omega^{n+k} \cdot(j+1)\right]$ and $g^{j}=\left.g_{k+1}\right|_{L_{j}}$. Let $\theta: I_{n+k} \rightarrow L_{j}$ be defined by $\theta(\xi)=\omega^{n+k} \cdot j+\xi$, clearly that θ is a homeomorphism and $g_{k}=g^{j} \circ \theta$. Therefore, by Lemma 2.1 and Lemma 2.2 we have

$$
\begin{aligned}
\mathcal{D}^{k}\left(g_{k+1}, \varepsilon, I_{n+k+1}\right) \cap L_{j} & =\mathcal{D}^{k}\left(g^{j}, \varepsilon, L_{j}\right)=\theta\left(\mathcal{D}^{k}\left(g^{j} \circ \theta, \varepsilon, I_{n+k}\right)\right) \\
& =\theta\left(\mathcal{D}^{k}\left(g_{k}, \varepsilon, I_{n+k}\right)\right)=\theta\left(\left\{\omega^{n+k}\right\}\right)=\left\{\omega^{n+k} \cdot(j+1)\right\}
\end{aligned}
$$

Thus, $\left\{\omega^{n+k} \cdot j: 0<j<\omega\right\} \subseteq \mathcal{D}^{k}\left(g_{k+1}, \varepsilon, I_{n+k+1}\right) \subseteq \mathcal{D}^{\ell}\left(g_{k+1}, \varepsilon, I_{n+k+1}\right)$, for all $\ell<k$. Since $g_{k+1}\left(\omega^{n+k+1}\right)=\varphi\left(\omega^{k+1}\right)=a$ and there exists an even $j<\omega$ which implies $g_{k+1}\left(\omega^{n+k} \cdot j\right)=\varphi(j)=b$, it follows that $\omega^{n+k+1} \in \mathcal{D}^{k+1}\left(g_{k+1}, \varepsilon, I_{n+k+1}\right)$. Since $\left\{\omega^{n+k} \cdot j: 0<j<\omega\right\}^{\prime}=\emptyset$, we obtain $\mathcal{D}^{k+1}\left(g_{k+1}, \varepsilon, I_{n+k+1}\right)=\left\{\omega^{n+k+1}\right\}$. The proof is completed.

Theorem 2.5 below shows that Theorem 1.3 in [1] is optimal.
Theorem 2.5. For any $n, k \in \mathbb{N}$, there exist $f, g: I_{n+k} \rightarrow \mathbb{R}$ such that $i(f)=n$, $i(g)=k$, and $i(h)=n+k$, where h is any of the functions $f+g, f g, f \vee g, f \wedge g$.

Proof. Let $a, b \in \mathbb{R}$ with $a \neq b, n \in \mathbb{N}$, and $\varphi=\varphi_{a, b, n}: I_{n} \rightarrow\{a, b\}$. Define $f: I_{n+k} \rightarrow\{a, b\}$ by

$$
f(\tau)= \begin{cases}\varphi(\xi) & \text { if } \tau=\omega^{n} \cdot \alpha+\xi, \quad \xi \in\left[1, \omega^{n}\right], 0 \leq \alpha<\omega^{k} \\ a & \text { if } \tau=\omega^{n} \cdot \xi, \xi \leq \omega^{k} \quad \text { is a limit ordinal. }\end{cases}
$$

We are to prove that $i(f)=n$. Take any $0<\varepsilon<|b-a|$. For any $\alpha<\omega^{k}$, let $L_{\alpha}=\left[\omega^{n} \cdot \alpha+1, \omega^{n} \cdot(\alpha+1)\right]$ and $f_{\alpha}=\left.f\right|_{L_{\alpha}}$. Let $\theta: I_{n} \rightarrow L_{\alpha}$ be defined by $\theta(\xi)=\omega^{n} \cdot \alpha+\xi$. Then it is clear that θ is a homeomorphism from I_{n} to L_{α}. Also, by the definition of f, clearly $f_{\alpha} \circ \theta=\varphi$.

Since $\theta: I_{n} \rightarrow L_{\alpha}$ is a homeomorphism, then by Lemma 2.1 and Lemma 2.2 we have

$$
\begin{aligned}
\mathcal{D}^{n}\left(f, \varepsilon, I_{n+k}\right) \cap L_{\alpha} & =\mathcal{D}^{n}\left(f_{\alpha}, \varepsilon, L_{\alpha}\right)=\theta\left(\mathcal{D}^{n}\left(f_{\alpha} \circ \theta, \varepsilon, I_{n}\right)\right) \\
& =\theta\left(\mathcal{D}^{n}\left(\varphi, \varepsilon, I_{n}\right)\right)=\theta\left(\left\{\omega^{n}\right\}\right)=\left\{\omega^{n} \cdot(\alpha+1)\right\}
\end{aligned}
$$

and $f_{\alpha}\left(\omega^{n} \cdot(\alpha+1)\right)=\left(\varphi \circ \theta^{-1}\right)\left(\omega^{n} \cdot(\alpha+1)\right)=\varphi\left(\omega^{n}\right)=a$. It follows that

$$
\mathcal{D}^{n}\left(f, \varepsilon, I_{n+k}\right) \cap\left(\bigcup_{0 \leq \alpha<\omega^{k}} L_{\alpha}\right)=\bigcup_{0 \leq \alpha<\omega^{k}}\left(\mathcal{D}^{n}\left(f_{\alpha}, \varepsilon, L_{\alpha}\right)\right)=\bigcup_{0 \leq \alpha<\omega^{k}}\left\{\omega^{n} \cdot(\alpha+1)\right\}
$$

Therefore

$$
\begin{aligned}
\mathcal{D}^{n}\left(f, \varepsilon, I_{n+k}\right) & \subseteq\left(\bigcup_{0 \leq \alpha<\omega^{k}}\left\{\omega^{n} \cdot(\alpha+1)\right\}\right) \cup\left\{\omega^{n} \cdot \xi: \xi \in I_{k}, \xi \text { is a limit ordinal }\right\} \\
& =\left\{\omega^{n} \cdot \alpha: \alpha \in I_{k}\right\}
\end{aligned}
$$

Since $f\left(\omega^{n} \cdot \alpha\right)=a$ for all $\alpha \in I_{k}$, then $\mathcal{D}^{n+1}\left(f, \varepsilon, I_{n+k}\right)=\emptyset$. This implies that $\beta(f)=\sup _{\varepsilon>0} \beta(f, \varepsilon)=n+1$, and therefore $i(f)=n$.

Now, let $c, d \in \mathbb{R}$ with $c \neq d$ and denote $\psi=\varphi_{c, d, k}: I_{k} \rightarrow\{c, d\}$. Define

$$
\begin{aligned}
& g: I_{n+k} \rightarrow\{c, d\} \text { by } \\
& \qquad g(\tau)= \begin{cases}\psi(\alpha+1) & \text { if } \tau=\omega^{n} \cdot \alpha+\xi, \quad \xi \in\left[1, \omega^{n}\right], 0 \leq \alpha<\omega^{k} \\
\psi(\xi) & \text { if } \tau=\omega^{n} \cdot \xi, \xi \leq \omega^{k} \quad \text { is a limit ordinal. }\end{cases}
\end{aligned}
$$

Then, by Lemma 2.4, $\mathcal{D}^{k}\left(g, \varepsilon, I_{n+k}\right)=\left\{\omega^{n+k}\right\}$ which implies that $i(g)=\beta(g)-1=$ $\sup _{\varepsilon>0} \beta(g, \varepsilon)-1=k$.

Let $h=f+g$ and choose the numbers a, b, c, d such that $a+c \neq b+d$. Take any sufficiently small $\varepsilon>0$. For each $0 \leq \alpha<\omega^{k}$, let $L_{\alpha}=\left[\omega^{n} \cdot \alpha+1, \omega^{n} \cdot(\alpha+1)\right]$ and $h_{\alpha}=\left.h\right|_{L_{\alpha}}$. For each $\alpha<\omega^{k}$ and $\tau=\omega^{n} \cdot \alpha+\xi \in L_{\alpha}$ we have $h_{\alpha}(\tau)=\varphi(\xi)+\psi(\alpha+1)$. Therefore, $h_{\alpha} \circ \theta=\varphi+\psi(\alpha+1)$. Since $\theta: I_{n} \rightarrow L_{\alpha}$ is a homeomorphism, then by Lemma 2.1 and Lemma 2.2, for each $\alpha<\omega^{k}$ we have

$$
\begin{aligned}
\mathcal{D}^{n}\left(h, \varepsilon, I_{n+k}\right) \cap L_{\alpha} & =\mathcal{D}^{n}\left(h_{\alpha}, \varepsilon, L_{\alpha}\right)=\theta\left(\mathcal{D}^{n}\left(h_{\alpha} \circ \theta, \varepsilon, I_{n}\right)\right) \\
& =\theta\left(\mathcal{D}^{n}\left(\varphi+\psi(\alpha+1), \varepsilon, I_{n}\right)\right)=\theta\left(\left\{\omega^{n}\right\}\right)=\left\{\omega^{n} \cdot(\alpha+1)\right\}
\end{aligned}
$$

and $h\left(\omega^{n} \cdot(\alpha+1)\right)=\left(h_{\alpha} \circ \theta\right)\left(\theta^{-1}\left(\omega^{n} \cdot(\alpha+1)\right)=a+\psi(\alpha+1)\right.$.
Take any limit ordinal $\xi \leq \omega^{k}$. Then $h\left(\omega^{n} \cdot \xi\right)=a+\psi(\xi)$. For any neighborhood U of $\omega^{n} \cdot \xi$, there exists $\alpha<\xi$ such that $\omega^{n} \cdot \alpha \in U \cap \mathcal{D}^{\ell}\left(h, \varepsilon, I_{n+k}\right)$ for all $\ell<n$ and $h\left(\omega^{n} \cdot \alpha\right) \neq a+\psi(\xi)$. It follows that $\omega^{n} \cdot \xi \in \mathcal{D}^{n}\left(h, \varepsilon, I_{n+k}\right)$. Thus we obtain that $\mathcal{D}^{n}\left(h, \varepsilon, I_{n+k}\right)=\left\{\omega^{n} \cdot \alpha: 1 \leq \alpha \leq \omega^{k}\right\}$ and $h\left(\omega^{n} \cdot \alpha\right)=a+\psi(\alpha)$ for each $1 \leq \alpha \leq \omega^{k}$. Let $q:\left[1, \omega^{k}\right] \rightarrow\left\{\omega^{n} \cdot \alpha: 1 \leq \alpha \leq \omega^{k}\right\}$ be defined by $q(\alpha)=\omega^{n} \cdot \alpha$. Then q is bijective and continuous (see, e.g., [7]). Since $\left[1, \omega^{k}\right]$ is compact and $\left\{\omega^{n} \cdot \alpha: 1 \leq \alpha \leq \omega^{k}\right\}$ is Haussdorf, then q is a homeomorphism (see, e.g., [2]). It can be observed that $h \circ q=\varphi_{a+c, a+d, k}$. Therefore, by Lemma 2.1,
$\mathcal{D}^{n+k}\left(h, \varepsilon, I_{n+k}\right)=\mathcal{D}^{k}\left(h, \varepsilon, \mathcal{D}^{n}\left(h, \varepsilon, I_{n+k}\right)\right)=q\left(\mathcal{D}^{k}\left(h \circ q, \varepsilon, I_{k}\right)\right)=q\left(\left\{\omega^{k}\right\}\right)=\left\{\omega^{n+k}\right\}$. It implies that $\mathcal{D}^{n+k+1}\left(h, \varepsilon, I_{n+k}\right)=\emptyset$, and therefore $i(h)=\beta(h)-1=n+k$.

Similarly, we can prove for $h=f g, h=f \wedge g$, and $h=f \vee g$ by choosing the appropriate numbers a, b, c, and d. We may choose a, b, c, d such that $a c \neq b d, a<b$ and $c<d$, and $a>b$ and $c>d$ for $h=f g, h=f \wedge g$, and $h=f \vee g$, respectively.

Furthermore, the result in Theorem 2.5 may be extended to any compact metric space K such that $K^{(n+k)} \neq \emptyset$. For this, we use the following lemma.

Lemma 2.6 ([5], Lemma 6.8.). Let K be a compact metric space. If $K^{(\alpha)} \neq \emptyset$ for some $0<\alpha<\omega_{1}$, then there is a subspace $L \subseteq K$ such that L is homeomorphic to $\left[0, \omega^{\alpha}\right]$.

Theorem 2.7. Let K be any compact metric space such that $K^{(n+k)} \neq \emptyset$. Then there exist $f, g: K \rightarrow \mathbb{R}$ such that $i(h)=i(f)+i(g)$, where h is any of the functions $f+g$, $f g, f \wedge g, f \vee g$.

Proof. By Lemma 2.6, there exists $L \subseteq K$ such that L is homeomorphic to I_{n+k}, suppose that $\theta: L \rightarrow I_{n+k}$ is the homeomorphism. By Theorem 2.5, there exist $\tilde{f}, \tilde{g}: I_{n+k} \rightarrow \mathbb{R}$ such that $i(\tilde{h})=i(\tilde{f})+i(\tilde{g})$, where \tilde{h} is any of the functions $\tilde{f}+\tilde{g}$, $\tilde{f} \tilde{g}, \tilde{f} \wedge \tilde{g}, \tilde{f} \vee \tilde{g}$.

Define $f, g: L \rightarrow \mathbb{R}$ by $f=\tilde{f} \circ \theta$ and $g=\tilde{g} \circ \theta$. Let ψ be any of the functions \tilde{f}, \tilde{g}, \tilde{h}. Then by Lemma 2.1, we have $\mathcal{D}^{j}(\psi \circ \theta, \varepsilon, L)=\theta^{-1}\left(\mathcal{D}^{j}\left(\psi, \varepsilon, I_{n+k}\right)\right), j \leq n+k$. It
follows that $i(h)=i(f)+i(g)$ on L, where h is any of the functions $f+g, f g, f \wedge g$, $f \vee g$. Furthermore, by Theorem 3.6 of [5], f, g, and h can be extended onto K with preservation of the finite index i.

Acknowledgement. The author would like to thank the referee(s) for valuable suggestions which lead to the improvement of this paper.

References

[1] F. Chaatit, T. Mascioni, H. Rosenthal, On functions of finite Baire index, J. Funct. Anal. 142 (1996), 277-295.
[2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[3] R. Haydon, E. Odell, H. P. Rosenthal, On certain classes of Baire-1 Functions with Applications to Banach space theory, in : Functional Analysis, Lecture Notes in Math., 1470, 1-35, Springer, New York, 1991.
[4] A. S. Kechris, A. Louveau, A classification of Baire Class 1 functions, Trans. Amer. Math. Soc. 318 (1990), 209-236.
[5] D. H. Leung, W. K. Tang, Functions of Baire class one, Fund. Math. 179 (2003), 225-247.
[6] D. H. Leung, W. K. Tang, Extension of functions with small oscillation, Fund. Math. 192 (2006), 183-193.
[7] Z. Semadeni, Banach spaces of continuous functions, Vol. 1, Polish Sci. Publ., Warsawa, 1971.
(received 31.10.2016; in revised form 05.05.2017; available online 13.06.2017)
Department of Mathematics, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
E-mail: atokzulijanto@ugm.ac.id

[^0]: 2010 Mathematics Subject Classification: 26A21, 54C30, 03E15
 Keywords and phrases: Finite Baire index; oscillation index; Baire-1 functions.

