
MATEMATIČKI VESNIK
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ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT,
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Abstract. Chaatit, Mascioni, and Rosenthal defined finite Baire index for a bounded
real-valued function f on a separable metric space, denoted by i(f), and proved that for any
bounded functions f and g of finite Baire index, i(h) ≤ i(f) + i(g), where h is any of the
functions f + g, fg, f ∨ g, f ∧ g. In this paper, we prove that the result is optimal in the
following sense : for each n, k < ω, there exist functions f, g such that i(f) = n, i(g) = k,
and i(h) = i(f) + i(g).

1. Introduction

A real-valued function f defined on a separable metric space X is called a difference
of bounded semicontinuous functions if there exist bounded lower semicontinuous
functions u and v on X such that f = u−v. The class of all such functions is denoted
by DBSC(X). Some authors have studied this class and some of its subclasses (see,
e.g. [1,3]). Chaatit, Mascioni, and Rosenthal [1] defined finite Baire index for functions
belonging to DBSC(X), whose definition we now recall.

Let X be a separable metric space. For a given bounded function f : X → R, the
upper semicontinuous envelope Uf of f is defined by

Uf(x) = limy→xf(y) = inf{sup
y∈U

f(y) : U is a neighborhood of x}

for all x ∈ X. The lower oscillation oscf of f is defined by

oscf(x) = limy→x|f(y)− f(x)|
for all x ∈ X. Finally, the oscillation osc f of f is defined by osc f = Uoscf . Next,
for any ε > 0, let os0(f, ε) = X. If osj(f, ε) has been defined for some j ≥ 0,
let osj+1(f, ε) = {x ∈ L : osc f |L(x) ≥ ε}, where L = osj(f, ε). A bounded function
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f : X → R is said to be of finite Baire index if there is an n < ω such that osn(f, ε) = ∅
for all ε > 0. Then the finite Baire index of f is defined by

i(f) = max
ε>0

i(f, ε),

where i(f, ε) = sup{n : osn(f, ε) 6= ∅}.
Clearly, if f ∈ DBSC(X) then f is a Baire-1 function, that is, the pointwise limit

of a sequence of continuous functions. Based on the Baire Characterization Theorem,
Kechris and Louveau [4] defined the oscillation index of real-valued Baire-1 functions.
The study on oscillation index of real-valued Baire-1 functions was continued by
several authors (see, e.g., [3, 5, 6]). We recall here the definition of oscillation index.
Let C denote the collection of all closed subsets of a Polish space X. Now, let ε > 0
and a function f : X → R be given. For any H ∈ C, let D0(f, ε,H) = H and
D1(f, ε,H) be the set of all x ∈ H such that for every open set U containing x, there
are two points x1 and x2 in U ∩H with |f(x1)− f(x2)| ≥ ε. For all α < ω1 (ω1 is the
first uncountable ordinal number), set

Dα+1(f, ε,H) = D1(f, ε,Dα(f, ε,H)).

If α is a countable limit ordinal, let

Dα(f, ε,H) =
⋂
α′<α

Dα
′
(f, ε,H).

The ε-oscillation index of f on H is defined by

βH(f, ε) =


the smallest ordinal α < ω1 such that Dα(f, ε,H) = ∅
if such an α exists,

ω1, otherwise.

The oscillation index of f on the set H is defined by βH(f) = sup{βH(f, ε) : ε > 0}.
We shall write β(f, ε) and β(f) for βX(f, ε) and βX(f) respectively.

In fact, a function f is of finite Baire index if and only if β(f) < ∞ and then
β(f) = i(f) + 1. Chaatit, Mascioni, and Rosenthal proved in [1] that if f and g
are real-valued bounded functions of finite Baire index and h is any of the functions
f + g, fg, f ∨ g, f ∧ g, then i(h) ≤ i(f) + i(g). In this paper, we prove that the
estimate i(h) ≤ i(f) + i(g) in [1, Theorem 1.3] is optimal in the following sense : For
any n, k < ω, there exist bounded real-valued functions f and g such that i(f) = n,
i(g) = k, and i(h) = i(f) + i(g). We process the proof by constructing functions on
ordinal spaces [1, ωn+k] and then we extend the construction to any compact metric
space K such that K(n+k) 6= ∅, where K(α) is the αth Cantor-Bendixson derivative of
K. Note that for any function f on K, Dα(f, ε,K) ⊆ K(α), for any α < ω1.

2. Results

Before we construct functions on ordinal spaces to show that Theorem 1.3 in [1] is
optimal, we prove the following fact that we will use later.
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Lemma 2.1. Let X,Y be Polish spaces and ε > 0 be given. If θ : X → Y is a
homeomorphism and ρ : Y → R, then Dα(ρ, ε, Y ) = θ(Dα(ρ ◦ θ, ε,X)) for all α < ω1.

Proof. We prove the lemma by induction on α. The statement in the lemma is true
whenever α = 0 since θ is surjective. By the injectivity of θ, the lemma is also true if
α is a limit ordinal.

Suppose that the statement in the lemma is true for some α < ω1. Let y ∈
Dα+1(ρ, ε, Y ). Since θ is bijective, there is a unique x ∈ X such that y = θ(x). Let U
be a neighborhood of x. Since θ is a homeomorphism, θ(U) is open in Y . Therefore,
there exist y1, y2 ∈ θ(U)∩Dα(ρ, ε, Y ) such that |ρ(y1)− ρ(y2)| ≥ ε. Let x1 = θ−1(y1)
and x2 = θ−1(y2), then x1, x2 ∈ θ−1(θ(U) ∩ Dα(ρ, ε, Y )). Since

θ−1(θ(U) ∩ Dα(ρ, ε, Y )) = θ−1(θ(U)) ∩ θ−1(θ(Dα(ρ ◦ θ, ε,X))

by the inductive hypothesis

= U ∩ Dα(ρ ◦ θ, ε,X),

we have x1, x2 ∈ U ∩ Dα(ρ ◦ θ, ε,X). And also,

|(ρ ◦ θ)(x1)− (ρ ◦ θ)(x2)| = |ρ(y1)− ρ(y2)| ≥ ε.
Therefore, x ∈ Dα+1(ρ ◦ θ, ε,X), which implies that y = θ(x) ∈ θ(Dα+1(ρ ◦ θ, ε,X)).

Conversely, let y ∈ θ(Dα+1(ρ ◦ θ, ε,X)). Then there exists x ∈ Dα+1(ρ ◦ θ, ε,X)
such that θ(x) = y. Let V be any neighborhood of y. Since θ−1(V ) is open in X and
x ∈ θ−1(V ), there exist x1, x2 ∈ θ−1(V ) ∩ Dα(ρ ◦ θ, ε,X) such that

|(ρ ◦ θ)(x1)− (ρ ◦ θ)(x2)| ≥ ε.
Let y1 = θ(x1) and y2 = θ(x2), then y1, y2 ∈ θ(θ−1(V ) ∩ Dα(ρ ◦ θ, ε,X)). By the
inductive hypothesis,

θ(θ−1(V ) ∩ Dα(ρ ◦ θ, ε,X)) = θ(θ−1(V )) ∩ θ(Dα(ρ ◦ θ, ε,X)) = V ∩ Dα(ρ, ε, Y ).

Therefore, y1, y2 ∈ V ∩ Dα(ρ, ε, Y ) and

|ρ(y1)− ρ(y2)| = |ρ(θ(x1))− ρ(θ(x2))| ≥ ε.
Thus, y ∈ Dα+1(ρ, ε, Y ). �

Besides the lemma above, we will use the following useful lemma that can be found
in [5].

Lemma 2.2 ( [5], Lemma 2.1). Let U be a clopen subset of X and f : X → R is
Baire-1. Then for any ε > 0 and α < ω1, we have Dα(f, ε,X) ∩ U = Dα(f, ε, U).

Now we are ready to give the construction. For any m ∈ N, denote the clopen
ordinal interval [1, ωm] by Im. Note that for any nonzero countable ordinal α can be
uniquely written in the Cantor normal form

α = ωr1 · j1 + ωr2 · j2 + . . .+ ωr` · j`
where m ≥ r1 > . . . > r` ≥ 0 and `, j1, . . . , j` ∈ N (see, e.g., [7] ). In the sequel we
use the following function. Let a, b be any real numbers such that a 6= b and m ∈ N.
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We define ϕa,b,m : Im → {a, b} by

ϕa,b,m(ωr1 · j1 + ωr2 · j2 + . . .+ ωr` · j`) =

{
a if j` is odd

b if j` is even,

where m ≥ r1 > . . . > r` ≥ 0 and `, j1, . . . , j` ∈ N. The following lemma is related to
the function ϕa,b,m.

Lemma 2.3. For sufficiently small ε > 0, if we let ϕ = ϕa,b,m, then Dm(ϕ, ε, Im) =
{ωm} and ϕ(ωm) = a.

Proof. Take any 0 < ε < |a − b|. We prove the lemma by induction on m. Clearly,
the assertion is true for m = 1 since ω is the only limit ordinal in [1, ω]. Suppose that
the assertion is true for some m ∈ N. If ϕ = ϕa,b,m+1, it is clear that ϕ(ωm+1) = a.
For each k < ω, let Lk = [ωm · k + 1, ωm · (k + 1)]. Clearly, θ : Im → Lk defined by
θ(ξ) = ωm · k+ ξ is a homeomorphism. Therefore, by Lemma 2.1 and Lemma 2.2 we
have

Dm(ϕ, ε, Im+1) ∩ Lk = Dm(ϕ|Lk , ε, Lk) = θ(Dm(ϕ|Lk ◦ θ, ε, Im))

= θ(Dm(ϕa,b,m, ε, Im)) = θ({ωm}) = {ωm · (k + 1)}.
Thus {ωm · k : 0 < k < ω} ⊆ Dm(ϕ, ε, Im+1).

Recall that Dm(ϕ, ε, Im+1) ⊆ Dj(ϕ, ε, Im+1) for all j < m. Let j ≤ m and
take any neighborhood U of ωm+1. Then there exists an even k < ω such that
ωm · k ∈ U ∩ Dj(ϕ, ε, Im+1) and |ϕ(ωm+1) − ϕ(ωm · k)| = |a − b| ≥ ε. Thus ωm+1 ∈
Dm+1(ϕ, ε, Im+1), and therefore Dm(ϕ, ε, Im+1) = {ωm · k : 0 < k < ω} ∪ {ωm+1}.
Since (Dm(ϕ, ε, Im+1))

′
= {ωm+1}, then it follows that Dm+1(ϕ, ε, Im+1) = {ωm+1}.

�

The ordinal interval In+k = [1, ωn+k], n, k ∈ N, can be written as a disjoint union⋃
0≤α<ωk

[ωn · α+ 1, ωn · (α+ 1)] ∪ {ωn · ξ : ξ ≤ ωk, ξ is a limit ordinal}.

We use the function ϕa,b,m to prove the following lemma.

Lemma 2.4. Let n ∈ N be fixed and a, b ∈ R with a 6= b. If for any k ∈ N we define
gk : In+k → {a, b} by

gk(τ) =

{
ϕ(α+ 1) if τ = ωn · α+ ξ, ξ ∈ [1, ωn], 0 ≤ α < ωk

ϕ(ξ) if τ = ωn · ξ, ξ ≤ ωk is a limit ordinal,

where ϕ = ϕa,b,k : Ik → {a, b}, then Dk(gk, ε, In+k) = {ωn+k} for any sufficiently
small ε > 0.

Proof. Take any 0 < ε < |b − a|. We prove the lemma by induction on k. First we
prove for k = 1. Take any neighborhood U of ωn+1, then there is an odd number
` < ω such that ωn · `+ 1 ∈ U , therefore

|g1(ωn · `+ 1)− g1(ωn+1)| = |ϕ(`+ 1)− ϕ(ω)| = |b− a| ≥ ε.
Thus ωn+1 ∈ D1(g1, ε, In+1). Furthermore, for all τ < ωn+1 can be written as
τ = ωn · ` + ξ, where ` < ω and 1 ≤ ξ ≤ ωn. Therefore g1(τ) = ϕ(` + 1) and since
[1, ω)′ = ∅, it follows that D1(g1, ε, In+1) = {ωn+1}.
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Now we assume thatDk(gk, ε, In+k) = {ωn+k} and we will prove thatDk+1(gk+1, ε,
In+k+1) = {ωn+k+1}. For each j < ω, let Lj := [ωn+k · j + 1, ωn+k · (j + 1)] and
gj = gk+1|Lj . Let θ : In+k → Lj be defined by θ(ξ) = ωn+k · j + ξ, clearly that θ is a
homeomorphism and gk = gj ◦ θ. Therefore, by Lemma 2.1 and Lemma 2.2 we have

Dk(gk+1, ε, In+k+1) ∩ Lj = Dk(gj , ε, Lj) = θ(Dk(gj ◦ θ, ε, In+k))

= θ(Dk(gk, ε, In+k)) = θ({ωn+k}) = {ωn+k · (j + 1)}.

Thus,{ωn+k · j : 0 < j < ω} ⊆ Dk(gk+1, ε, In+k+1) ⊆ D`(gk+1, ε, In+k+1), for all
` < k. Since gk+1(ωn+k+1) = ϕ(ωk+1) = a and there exists an even j < ω which
implies gk+1(ωn+k · j) = ϕ(j) = b, it follows that ωn+k+1 ∈ Dk+1(gk+1, ε, In+k+1).
Since {ωn+k · j : 0 < j < ω}′ = ∅, we obtain Dk+1(gk+1, ε, In+k+1) = {ωn+k+1}. The
proof is completed. �

Theorem 2.5 below shows that Theorem 1.3 in [1] is optimal.

Theorem 2.5. For any n, k ∈ N, there exist f, g : In+k → R such that i(f) = n,
i(g) = k, and i(h) = n+ k, where h is any of the functions f + g,fg,f ∨ g, f ∧ g.

Proof. Let a, b ∈ R with a 6= b, n ∈ N, and ϕ = ϕa,b,n : In → {a, b}. Define
f : In+k → {a, b} by

f(τ) =

{
ϕ(ξ) if τ = ωn · α+ ξ, ξ ∈ [1, ωn], 0 ≤ α < ωk

a if τ = ωn · ξ, ξ ≤ ωk is a limit ordinal.
.

We are to prove that i(f) = n. Take any 0 < ε < |b − a|. For any α < ωk, let
Lα = [ωn · α + 1, ωn · (α + 1)] and fα = f |Lα . Let θ : In → Lα be defined by
θ(ξ) = ωn · α + ξ. Then it is clear that θ is a homeomorphism from In to Lα. Also,
by the definition of f , clearly fα ◦ θ = ϕ.

Since θ : In → Lα is a homeomorphism, then by Lemma 2.1 and Lemma 2.2 we
have

Dn(f, ε, In+k) ∩ Lα = Dn(fα, ε, Lα) = θ(Dn(fα ◦ θ, ε, In))

= θ(Dn(ϕ, ε, In)) = θ({ωn}) = {ωn · (α+ 1)}.
and fα(ωn · (α+ 1)) = (ϕ ◦ θ−1)(ωn · (α+ 1)) = ϕ(ωn) = a. It follows that

Dn(f, ε, In+k) ∩
( ⋃

0≤α<ωk
Lα

)
=

⋃
0≤α<ωk

(Dn(fα, ε, Lα)) =
⋃

0≤α<ωk
{ωn · (α+ 1)}.

Therefore

Dn(f, ε, In+k) ⊆
( ⋃

0≤α<ωk
{ωn · (α+ 1)}

)
∪ {ωn · ξ : ξ ∈ Ik, ξ is a limit ordinal}

= {ωn · α : α ∈ Ik}.
Since f(ωn · α) = a for all α ∈ Ik, then Dn+1(f, ε, In+k) = ∅. This implies that
β(f) = supε>0 β(f, ε) = n+ 1, and therefore i(f) = n.

Now, let c, d ∈ R with c 6= d and denote ψ = ϕc,d,k : Ik → {c, d}. Define
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g : In+k → {c, d} by

g(τ) =

{
ψ(α+ 1) if τ = ωn · α+ ξ, ξ ∈ [1, ωn], 0 ≤ α < ωk

ψ(ξ) if τ = ωn · ξ, ξ ≤ ωk is a limit ordinal.

Then, by Lemma 2.4, Dk(g, ε, In+k) = {ωn+k} which implies that i(g) = β(g)− 1 =
supε>0 β(g, ε)− 1 = k.

Let h = f + g and choose the numbers a, b, c, d such that a+ c 6= b+ d. Take any
sufficiently small ε > 0. For each 0 ≤ α < ωk, let Lα = [ωn · α + 1, ωn · (α + 1)] and
hα = h|Lα . For each α < ωk and τ = ωn ·α+ξ ∈ Lα we have hα(τ) = ϕ(ξ)+ψ(α+1).
Therefore, hα ◦ θ = ϕ + ψ(α + 1). Since θ : In → Lα is a homeomorphism, then by
Lemma 2.1 and Lemma 2.2, for each α < ωk we have

Dn(h, ε, In+k) ∩ Lα = Dn(hα, ε, Lα) = θ(Dn(hα ◦ θ, ε, In))

= θ (Dn(ϕ+ ψ(α+ 1), ε, In)) = θ({ωn}) = {ωn · (α+ 1)}
and h(ωn · (α+ 1)) = (hα ◦ θ)(θ−1(ωn · (α+ 1)) = a+ ψ(α+ 1).

Take any limit ordinal ξ ≤ ωk. Then h(ωn · ξ) = a+ ψ(ξ). For any neighborhood
U of ωn · ξ, there exists α < ξ such that ωn · α ∈ U ∩ D`(h, ε, In+k) for all ` < n and
h(ωn · α) 6= a + ψ(ξ). It follows that ωn · ξ ∈ Dn(h, ε, In+k) . Thus we obtain that
Dn(h, ε, In+k) = {ωn ·α : 1 ≤ α ≤ ωk} and h(ωn ·α) = a+ψ(α) for each 1 ≤ α ≤ ωk.
Let q : [1, ωk]→ {ωn ·α : 1 ≤ α ≤ ωk} be defined by q(α) = ωn ·α. Then q is bijective
and continuous (see, e.g., [7]). Since [1, ωk] is compact and {ωn · α : 1 ≤ α ≤ ωk}
is Haussdorf, then q is a homeomorphism (see, e.g., [2]). It can be observed that
h ◦ q = ϕa+c,a+d,k. Therefore, by Lemma 2.1,

Dn+k(h, ε, In+k) = Dk(h, ε,Dn(h, ε, In+k)) = q
(
Dk(h ◦ q, ε, Ik)

)
= q({ωk}) = {ωn+k}.

It implies that Dn+k+1(h, ε, In+k) = ∅, and therefore i(h) = β(h)− 1 = n+ k.
Similarly, we can prove for h = fg, h = f ∧ g, and h = f ∨ g by choosing the

appropriate numbers a, b, c, and d. We may choose a, b, c, d such that ac 6= bd, a < b
and c < d, and a > b and c > d for h = fg, h = f ∧ g, and h = f ∨ g, respectively. �

Furthermore, the result in Theorem 2.5 may be extended to any compact metric
space K such that K(n+k) 6= ∅. For this, we use the following lemma.

Lemma 2.6 ( [5], Lemma 6.8.). Let K be a compact metric space. If K(α) 6= ∅ for
some 0 < α < ω1, then there is a subspace L ⊆ K such that L is homeomorphic to
[0, ωα].

Theorem 2.7. Let K be any compact metric space such that K(n+k) 6= ∅. Then there
exist f, g : K → R such that i(h) = i(f) + i(g), where h is any of the functions f + g,
fg, f ∧ g, f ∨ g.

Proof. By Lemma 2.6, there exists L ⊆ K such that L is homeomorphic to In+k,
suppose that θ : L → In+k is the homeomorphism. By Theorem 2.5, there exist
f̃ , g̃ : In+k → R such that i(h̃) = i(f̃) + i(g̃), where h̃ is any of the functions f̃ + g̃,
f̃ g̃, f̃ ∧ g̃, f̃ ∨ g̃.

Define f, g : L→ R by f = f̃ ◦ θ and g = g̃ ◦ θ. Let ψ be any of the functions f̃ , g̃,
h̃. Then by Lemma 2.1, we have Dj(ψ ◦ θ, ε, L) = θ−1(Dj(ψ, ε, In+k)), j ≤ n + k. It



A. Zulijanto 213

follows that i(h) = i(f) + i(g) on L, where h is any of the functions f + g, fg, f ∧ g,
f ∨ g. Furthermore, by Theorem 3.6 of [5], f, g, and h can be extended onto K with
preservation of the finite index i. �
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