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Abstract

In this paper a new approximate convex hull algorithm is given. For
the presented algorithm the outer approximation can be equal to the
true convex hull for each finite grid point set. The proposed algorithm
is an adaptation of the Jarvis algorithm.

AMS Mathematics Subject Classification (1991): 68E99
Key words and phrases: grid point set, convex hull, computational
geometry, convex hull approximation.

1. Introduction

The determination of the convex hull of a finite set of points is important
in such areas as computer graphics, robotics and pattern recognition.
Several algorithms have been presented for computing the convex hull of n
planer points in O(n - logn) worst case time [5,6]. On the other hand, it
has been shown that Q(n - logn) is the lower bound for planar convex hull
computation [6,10].

However, it is still possible that for some special application certain ap-
proximations of the convex hull should be prefered with respect to reducing
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the computation time, without any loss of efficiency. Bentley, Faust and
Preparata (1] presented a linear time algorithm for computing an approxi-
mate convex hull in a two dimensional space. That is, for given n points in
the plane, a convex polygon with vertices in this points set is determined in
time O(n), such that this polygon is arbitrarily close to the true convex hull
of the point set. ‘

A grid point set is a finite set of points with integer coordinates. In [4] Klette
proposed an algorithm for determining the outer and inner approximation
for finite grid point sets. In Section 2 we sha]l _briefly, present Klette’s al—
gorithm.

In Section 3 we shall give a new a]gonthm for determmmg the inner and -

outer approximation of the convex hull of the finite grid point set.” The
proposed algorithm does not have some of the deficiency which Klette algo—
rithm has. .

Section 4 discusses the new algorithm.

2. Klette’s algorithm

A grid point set is a set of points P = (z3,z3) in the regular orthogonal grid
ha.vmg integer coordinates: zj,z3.

For a direction a € [0,27) and a grid point P(I],zg) let g(a, P) be the
stright line passing through point P in direction a + 7. Points Y = (y1,y2)
of g(a, P) satisfy the equation:

(y2 — z2)sina + (y1 — z1)cosa = 0.

Let Z,(Y) denote the function: (y, — z;)sina + (y; — z;)cosa. A point
P = (p1,p2) € G is called an extreme point in direction a of the grid point
set G (write P € Ez4(G)) iff Zo(P) = 0.and Zo(Y) <0 foral Y € G.
(Note that then all the points of G are contained in one of the two closed
half-planes defined by the stright line g(a, P).) If P is the extreme point
in direction a, then by hp(a,G) we define the closed half-plane defined by
9(e, G) and containing the set G.

Let dir(n) denote the set {0, ior,20m, ... 121r} of n dlrectlons

Let Ha(G) = Naedir(n) hp(a G) be the outer approximation of CH (G)
called the n-hull of G, (CH(G) C H. 2G).

Let A,(G) = CH(Uaed"(n) Exa(G)) be the inner a.pproxnmatlon of CH(G),
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called the n- approximation (4.(G) € CH(G)).
In {1] it is shown:

ifn> 2x then A,.(G) = CH(G),
ey (G) (G)

for all the grid point sets G with diam(G) < m.

(diam(G) = max{max{|z, — wl,|z2 — y21}, (21,22) € G and (31,¥2) € G)}.
That means: for each set G there exists an integer n such that A,(G) =
CH(G). Klette mentioned an open problem: whether there is an integer n
such that H,(G) = CH(G) for the given grid point set G?

In [2] it is shown: H,(G) = CH(G) for some integer n iff Hg(G) = CH(G).
That means outer approximation H,(G) is equal to exact convex hull iff
angles between edges of C H(G) and z-axis are in the form k- 5. From the
above considerations it follows that:

1) There are sets G for wich H,(G) # CH(G) for all n € N.

Some of vertices of H,(G) can be points which are not grid points but:

2) The number of these points is unknown.
It is clear that some of vertices of H,,(G) are points which are not convex
hull points but:

3) The number of these points is unknown.
In {8] Stojmenovié¢ and Kim gave a new approximate algorithm for which
outer approximation can be equal to the true convex hull for each finite grid
point set G. They observed A,(G) and H,(G) with respect to the new set
of directions

diry(n) = {arctg%,arctg—f;l- | -n<i<n}
i

In both of these algorithms time complexity is O(n - N), where n is the
number of directions and N is the number of points.

In the next section we shall give a new algorithm which has none of the
defficiencies 1, 2 and 3.
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3. New algorithm

The algorithm proposed in this section is an adaptation of the exact Jarvis
convex hull algorithm (see fig. 1).

Fig. 1. The Jarvis march for constructing the convex hull. The algo-
rithm of Jarvis finds successive hull vertices by repeatedly turning angles.

The new algorithm is iterative and in each iteration gives the outer ap-
proximation of the convex hull for finite grid point set.
We denote the outer approximation of the convex hull obtained in n-th it-
eration by P,(G) and call it n-approximation. For the representation of
P, (G) we shall use the list of vertices of P,,(G) ordered by counterclockwise.
(P,(G) is always a convex set).
Let To,1,T0,2,Toa and Ty 4 be the vertices of the smallest rectangle with hor-
izontal and vertical sides which contains set G.
Let us find points with the maximal (minimal) z-coordinate. From those
points we choose one with maximal y-coordinate and denote it with Eg,(Eg ;)
and a point with minimal y- coordinate and denote it with E{ ,(Ep3). Anal-
ogously, we determine the points Eg;, Eg ,, E7 3, Eg 4. Points are denoted as
shown in Fig. 2. Note that among points Ty, Eg;, Egy; for ¢ = 1,2,3,4
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there can be points which are equal.
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Fig. 2. Initial denotations.

Now, we shall define the 0-th approximation as:

Eo,1T0,1Eg: Eo 2To,2Eg 2 Eg 3To3Eg 3 E 4 Toa Eg 4.

Each following approximation we shall define recursively, using only the pre-
vious approxomation.

Let P,(G) be the n-th approximation, then the next approximation, Pn41(G),
we can define as follows:

In the triangle E; ;Tn;E;; (for i = 1,2,3,4) determine the point E] , .,
such that the angle

X (EyE; ;E}41;) is the greatest possible. If there is more than one point

with this property, then we choose Ej ., ; which is the furthest from E ..

Also, in the same triangle determine point Ey ., ;, such that angle § (E; ;E”,.;E;, ;)
is the greatest. If there are more such points, then for E£”,4,; choose the
furthest from E; ;.

Let I ., ; denote the line determined by points E;,; and E} ;, also let
I” 41, be the line determined by E”, 41 and E”, ;. Now, let T}, 4, ; denote

the intersection of lines I, ; and {"n11; (as shown in Fig. 3.).
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Fig. 3.
The (n + 1)-th approximation will be obtained in the following way: In
n-th approximation - P,(G), which is represented by the list of vertices of
Po(G), T, substitutes with E;, +1iTn+1,iE"n+1,i- This means that Pny1(G)
is represented as the next list:

!
Egy o Eng1g Tnt11 E”agaa - Egy
E(I)"z voe E'I.L+1’2 Tﬂ.+l.2 E”n+1‘2 cer E”0,2
E(I)'3 sn E:.‘+l'3 Tﬂ+l'3 E”n+l’3 aee E”O‘a

4 ]
E6’4 Y En+1’4 Tn+l'4 E”ﬂ+1,4 ves E”O'4

thus, Pay1(G) = CH({E};, BTy | for 1S i <4, 0<j < n+1)). At
the end of the (n + 1)-th iteration, we discard the points in the interior of
regions E; (E; . :E"n41iE7 i for i = 1,2,3,4. It is clear that in cases:

1) if there exist j (j < =) and ¢ (1 < ¢ < 4) so that Tj; = Ef; = E”;;,
then one can disregard triangles E} [Ty ;E"k; for k > j (they degenerate in
the convex hul point E;;) and
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2) if for some j (j < n) and all ¢ from 1,2,3,4, Tj; = Ej; = E”j;is -
valid, then Pjx(G) = Pj(G) = CH(G) for every integer k.

4. Discussion of the new algorithm
Lemma 1. If P,(G) is determined then:

1) No more than four points from vertices of P,(G) are not grid points.

2) No more than four points from vertices of P,(G) are not convez hull
points.

Proof. 1t is obvious that points E};,E";; (0 < j < n, 1 < i < 4), are convex

hull points and also, they are grid points. Points: T, 1,75 2,Th 3 and T}, 4
are not convex hull points (except those which satisfy T, = Ej ;). Points
Tp1yTn2,Tn,3 and T, 4 can be grid points, but not necessarily.

Theorem 1. For each given finite grid point set G there is n such that
P,(G) = CH(G).

Proof. Let h(G) denote the number of vertices of C H(G) for the finite grid
point set G. For every integer n it is obviously satisfied:

1) if h(Pas2(G)) = h(Po(G)), then Po(G) = CH(G),
2) h(Pn41(G)) 2 h(Pa(G)) and
3) h(G) > h(Pa(G)) - 4.

If integer n does not exist such that P,(G) = CH(G), then from 1) and 2)
follows: -

h(P1(G)) < h(P2(G)) < ... < (P(G)) < h(P;i11(G)) < ...
but it is in contradiction with k = h(G) > h(P,(G)) — 4.
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The performance of this algorithm is easy to analyze. Let m be the
number of paints of the finite grid point set G. The space that it takes is
proportional to m. Finding the points Ej ;, E”, ;, Ty, ; requires O(m) time.
The running time of the proposed algorithm is therefore O(m - n) (in the
worst case), where m is the number of points and n is the number of itera-

tions.

5. Concluding remarks

The proposed algorithm can be used for determining the inner approxima-
tion of the convex hull for finite grid point sets. Note that if: I,(G) =
CH(Pu(G)—{T0nilTw; # E, ;, 1 <1< 4}), then [,(G) is the inner approx-
imation of the convex hull for finite grid point set G.

I.(G) can be represented by the list of vertices of P,(G) with the excep-
tion of the points from T, 1,7y 2,753 and Ty, 4 which satisfy T, ; # E;, ; for
1=1,2,3,4.

So, the algorithm proposed here can be used for finding the inner approxi-
mation. Obviously I,,(G) = CH(G) iff P,(G) = CH(G).
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REZIME

SPOLJNA APROKSIMACIJA KONVEKSNOG OMOTACA ZA
SKUP TACAKA SA CELOBROJNIM KOORDINATAMA

U ovom radu je dat jedan algoritam za odredjivanje aproksimacije konvek-
snog omotaca. PredloZeni algoritam daje spoljnu aproksimaciju koja moze
biti jednaka konveksnom omotacu za svaki skup tataka za celobrojnim ko-
ordinatama. Ovaj algoritam je adaptacija Jarvis-ovog algoritma.
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