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Abstract. The language design process should be supported by mod-
ularity and abstraction in a manner that allows incremental changes as
easily as possible. To at least partially fulfill this ambitious goal a new
object-oriented attribute grammar specification language which supports
multiple attribute grammar inheritance is introduced. Multiple attribute
grammar inheritance is a structural organization of attribute grammars
where the attribute grammar inherits the specifications from ancestor
attribute grammars, may add new specifications or may override some
specifications from ancestor specifications. With the proposed approach
a language designer has the chance to design incrementally a language
or reuse some fragments from other programming language specifications.
The multiple attribute grammar inheritance is first introduced using an
example, and thereafter by a formal model. The proposed approach is
successfully implemented in the compiler/interpreter generator tool LISA
ver. 2.0.
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1. Introduction

We have developed a compiler/interpreter generator tool LISA which au-
tomatically produces a compiler or an interpreter from the ordinary attribute
grammar specifications [1, 2]. But in this version of the tool, incremental lan-
guage development was not supported, so the language designer had to design
new languages from scratch or by scavenging old specifications. Other deficien-
cies of ordinary attribute grammars become apparent in specifications for real
programming languages. Such specifications are large and unstructured, and
are hard to understand, modify and maintain. Yet worse, small modifications
of some parts in the specifications have widespread effects on the other parts
of the specifications. Therefore specifications are not modular, extensible and
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reusable. Compared to modern programming languages, sucl as object-oriented
or functional languages, the attribute gramnmar specification languages are far
less advanced, specifically concerning the possibilities of abstraction. modular-
ization, extensibility and reusability. Therefore, the integration of specification
languages with various programming paradigms has developed in vecent years.
A detailed survey of attribute grammar based specification languages is given
in {3]. We applied inheritance, a characteristic feature of object-oriented pro-
gramming, in attribute grammars. A new abject-oriented specification language
with the paradigm FAttribute grammar = Classj, which is not included in [3], is
presented in the paper. In [4] the new concept is introduced only in the informal
manner through examples of a simple calculator language. We have incremen-
tally designed various small programming languages, such as COOL and PLM,
with multiple attribute grammar inheritance. Our experience with these non-
trivial examples shows that multiple inheritaince in attribute grammars is useful
in managing the complexity, reusability and extensibility of attribute grammars.
The benefit of this approach is also that for cach language increment a comnpiler
can be generated and the language tested. In this paper the rcasons for intro-
ducing multiple inheritance into attribute grammars and the formal definition
of multiple attribute grammar inheritance are presented. The multiple attribute
grammar inheritance approach is successfully implemented in the newly devel-
oped version of the tool LISA ver. 2.0.

2. Background

Attribute grammars have been introduced by D.E. Kinith and since then
have proved to be very useful in specifying the semantics of programmming lan-
guages, in automatic constructing of cowpilers/interpreters, in specifving and
generating interactive prograimming environments and in many other areas. At-
tribute grammars [5, 6, 7, 8] are a generalization of context-free grammars in
which each symbol has an associated set of attributes that carry semantic in-
formation, and with each production a set of semantic rules with attribute
computation is associated. An attribute grammar consists of:

e A context-free grammar G = (T, N, S, P), where T' and N are the set of
terminal symbols and nonterminal symbols; S € IV is the start symbol,
which does not. appear on the right side of any production rule; and P is
the set of productions. Now set V =T U N.

e A get of attributes A(X) for each nonterminal symbol X € N. A(X) is
divided into two mutually disjoint subsets, 1{X) of inherited attributes
and S(X) of synthesized attributes. Now set A = |JA(X). Let Type
denote a set of semantic domains. For cach a € A(X), a : type € Type is
defined which is the set of possible values of a.
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e A set of semantic rules R. Semantic rules are defined within the scope
of a single production. A production p € P,p: Xy — X1...X,, (n > 0)
has an attribute occurrence X;.a if a € A{(X;), 0 < i < n. A finite set
of semantic rules R, is associated with the production p with exactly one
rule for each synthesized attribute occurrence Xy.a and exactly one rule
for each inherited attribute occurrence X;.a,1 < 4 < n. Thus R, is a
collection of rules of the form X;.a = f(y1,...,yx), 5k > 0, where y;,1 <
j <k, is an attribute occurrence in p and f is a semantic function. In the
rule X;.a = f(y1,-..,yr), the occurrence X;.a depends on each attribute
occurrence y;,1 < j < k. Now set B = |J R,. For each production p €
Pp: Xo— X1...X, (n >0) the set of defining occurrences of attributes
is Defdtir(p) = {X,.a|X;.a = f(...) € Rp}. An attribute X.a is called
synthesized (X.a € §(X)) if there exists a production p: X - X; ... X,
and X.a € DefAttr(p). It is called inherited (X.a € I(X)) if there exists
a production ¢ : Y — X;...X ... X,, and X.a € DefAttr(q).

Therefore, an attribute grammar is a triple AG = (G, A, R) which counsists of a
context free grammar (G, a finite set of attributes 4 and a finite set of semantic
rules R.

3. Reasons for introducing multiple inheritance into attri-
bute grammars

The language design process should be supported by modularity and ab-
straction in a manner that allows to make incremental changes as easily as
possible. This is one of the strategic directions of further research on program-
ming languages. When introducing a new concept the designer has difficulties
in integrating it into the language in an easy way. Therefore inheritance can
be very helpful since it is a language mechanism that allows new definitions to
be based on the existing ones. A new specification inherits the properties of
its ancestors, and may introduce new properties that extend, modify or defeat
its inherited properties. When a new concept is added/removed in/from a lan-
guage, not only is the semantic part changed, but the syntax rules and the lex-
icon may also need to be modified. Therefore, such incremental modifications
usually do not preserve upward language compatibility. A language designer
needs a formal method which enables incremental changes and usage of speci-
fication fragments from various programming languages. We accomplish these
goals by introducing the object-oriented concepts, i.e. multiple inheritance and
templates, into attribute grammars [4]. Let us look at the informal definition of
multiple attribute grammar inheritance and templates. Multiple attribute gram-
mar inheritance is a structural organization of attribute grammars where the
attribute grammar inherits the specifications from ancestor attribute grammars,
may add new specifications, may override some specifications from ancestors or
even defeat some ancestor specifications. With inheritance we can extend the
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lexical, syntax and semantic parts of the progranmming language specification.
Therefore, regular definitions, production rules, attributes, semantic vules and
operations on semantic domains can be inherited, specialized or overridden from
ancestor specifications. In object-oriented languages the properties that consist
of instance variables and methods are subject to modification. Since in attribute
grammars semantic rules are tightly coupled with particular production rules,
properties in multiple attribute gramnmar inheritance consist of lexical regular
definitions, attribute definitions, rules which are generalized syntax rules that
encapsulate semantic rules and methods on semantic domains. The benefits of
multiple attribute grammar inheritance are:

e gpecifications are extensible since the language designer writes only new
and specialized specifications,

» specifications are reusable since specifications are inherited from ancestor
specifications, and

e the language designer can construct the programming language specifica-
tion from multiple specifications.

In our opinion, the main weakness of multiple attribute grammar inheritance
approach is that it does not help the designer in the case when languages have
similar semantics and a totally different syntax. For this reason too templates
are introduced. When studying semantic specifications for various program-
ming languages common patterns can be noticed. Patterns like value distri-
bution, list distribution, value construction, list construction, bucket brigade,
propagate value and many others are independent of the structure of produc-
tion rules. Such patterns are described with templates. A template in attribute
grammars is a polymorphic abstraction of a semantic rule parameterized with
attribute occurrences which can be associated with many production 1ules with
different nonterminal and terminal symbols. Since a nonterminal symbol can be
considered as a class in object-oriented attribute grammars [3], a template in
attribute grammars is a kind of polymorphism. Further, at template instantia-
tion appropriate semantic rules are generated at compiler generation time which
is similar to templates in object-oriented languages where the code is generated
at compile time. Templates are also independeut. of a number of attribute oc-
currences which participate in semantic rules. For this purpose a variable list of
arguments is proposed. As an example, a value distribution pattern is described
as:
Y :=X1X2.. XN
{ X1.in = Y.in; X2.in = Y.in; ... XN.in = Y.in; }
A template describing the value distribution pattern is:

template <attributes Y_in, X_in*>
compute valueDistribution {
{ Xdn* = Y.n; }
}
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The formal argument X_in#* in the template valueDistribution is a variable
list of arguments. Such arguments are denoted with an asterisk after the naine.
At template instantiation a part of semantic rules enclosed with braces is gen-
erated for each argument in the variable list. Together with a variable list of
arguments some functions are defined which can be used for variable list manip-
ulation (first, last, succ, pred). A successor for the last argument and a
predecessor for the first argument do not exist. The usage of the above functions
is presented in the next example. A pattern bucket brigade left is described as:

Y = X1X2.. XN
{ X1l.in = Y.in; X2.in = X1l.out;

XN.in = XN-l.out; Y.out = XN.out; }
A template describing the pattern bucket brigade left is:

template <attributes Y_in, Y_out, X.n*, X_out*>
compute bucketBrigadeLeft {

if (empty(Xdn*) && empty(X_out*))
Y.out = Y.in;

else
first(Xdn*) = Y.in;
{ X4in* = pred(X.out*});}
Y _out = last(X_out*);

endif

}

The benetits of templates are:

¢ specifications are more readable and maintainable since templates are on
higher abstraction level than assignment statements,

s specifications are reusable since the templates are independent of the struc-
ture of grammar productions, and

e language designers can create their own templates.

Let us look at the example of a simple language with assignment statements
which may seem trivial, but a more concrete language would require several
pages (for example COOL specifications are written on 25 pages). In the first
attempt expressions have no side effects. The meaning of the program:

a :=5
b:=a+1+a+a

is the following values: a=5, b=16. Let us develop the language without sidce
effects in an incremental way. In each language increment only one semantic
aspect is covered. In the first specification, only the rules for attribute val are
given which reflect semantic aspect for value of an expression.
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language Expr
lexicon {
Number  [0-9]+
Operator \+
ignore (\Ox09\0x0A\OxOD\ ]
}
attributes int *.val; -
rule Expressionl {
EXPR ::= EXPR + TERM compute {
EXPR[0].val = EXPR[1].val + TERM.val;

’

}

rule Expression2 {

EXPR ::= TERM compute {
EXPR.val = TERM.val;
b

}

rule Terml {
TERM ::= #Number compute {
TERM.val = Integer.valueOf(
#Number.value()).int Value(); -
b

} //language Ezpr

The language ExprEnv is an extension of the language Expr where regular def-
initions Number, ignore, and attribute val are inherited and reused. The reg-
ular definition operator, and rules Expressionl, Expression2, and Terml
are extended. Regular definition Identifier, and rules Start, Statements,
Statement, and Term2 are added. In this language semantic aspect of symbol
table management is covered.

language ExprEnv extends Expr
lexicon {

Identifier [a-z)+

extends Operator =

}
attributes Hashtable *.inEnv, *.outEnv;
rule Start {

START ::= STMTS compute {
STMTS.inEnv = new Hashtable();
START.outEnv = STMTS.outEnv;

h
}

rule Statements {
STMTS ::= STMT STMTS compute {
bucketBrigadeLeft<STMTS|[0].inEnv,
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STMTS[0].outEnv,
[STMT.inEnv, STMTS[1].inEnv},
[STMT.outEnv, STMTS[1].outEnv]>

| compute {//epsilon
bucketBrigadeLeft<STMTS.inEnv,
STMTS.outEnv, (], [|>
b;
}
rule Statement {

STMT ::= #ldentifier := EXPR. compute {
EXPR.inEnv = STMT.inEnv;
STMT.outEnv = put(STMT.inEunv,

#Identifier.value(), EXPR.val);
b
}

rule extends Expressionl {
EXPR ::= EXPR + TERM compute {
// production can be omitted as in
// Ezpression2
valueDistribution<EXPR[0].inEnv,
(TERM.inEnv, EXPR][1].inEnv]>

h
}

rule extends Expression2 {
compute {
valueDistribution<EXPR.inEnv,
[TERM.inEnv]>
}

rule Term2 {
TERM ::= #ldentifier compute {
TERM.val = ((Integer)
TERM.inEnv get(
#Identifier.value())).intValue();

i

method Environment{
import java.util.*;
public Hashtable put(Hashtable env,
String nane, int val) {
env = (Hashtable)env.clone();
env.put(name, new Integer(val));
return env;
}
}
}// language EzprEnv
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If later the designer needs expressions with side effects he/she must change only
those parts which differ from the ancestor specifications. In our example we have
to use the bucket brigade left pattern instead of the value distribution pattern
in the rules: Expressionl, Expression2, Terml, and Term2. Also, a new rule
Term3, which produces a side effect with the following expression counstruct [id
:= EXPR] is introduced. The value of id is changed and propagated in further
expressions. For example, the following program:

a :=b
b:=a+1+ [a:=8] +a

produces the following values: a = 8 and b = 22. The language ExprSideEffect
is an extension of the langnage ExprEnv where the regular definitions Number,
Operator, Identifier and ignore, attributes inEnv, outEnv and val, rules
Start, Statements and method Environment are inherited and reused. The
rules Statement, Expressionl, Expression2, Terml and Term2 are extended,
and the regular definition Separator and the rule Term3 are added.

language ExprSideEffect extends ExprEnv
lexicon {
Separator \[]\]

rule extends Start {
compute { }
} // for starting production
rule extends Statement {
compute {
bucketBrigadeLeft<STMT.inEnv,
STMT.outEnv,
[(EXPR.inEnv], [put{(EXPR.outEnv,
#ldentifier.value(), EXPR.val)])>

}

rule extends Expression] {
compute {
bucketBrigadeLeft<EXPRJ[0].inEnv,
EXPR[0].outEnv,
[EXPR([1).inEnv, TERM.inEnv),
[(EXPR][1].cutEnv, TERM.outEnv]>
}
}
rule extends Expression2 {
compute {
bucketBrigadeLeft<EXPR.inEnv,
EXPR.outEnv, [TERM.inEnv],
[TERM.outEnv]>
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rule extends Terml {
compute {
bucketBrigadeLeft<TERM.inEnv,
TERM.outEnv, [, []>
}
}

rule extends Term?2 {
compute {
bucketBrigadeLeft<T ERM.inEnv,
TERM.outEnv, [}, []>
}

}

rule Term3 {
TERM ::= [ #Identifier \:= EXPR }
compute

{
bucketBrigadeLeft<TERM.inEnv,

TERM.outEnv, [EXPR.inEnv],
[put(EXPR.outEnv,
#ldentifier.value(), EXPR.val)}>
TERM.val = EXPR.val;
}

} // language ExprSideEffect
Let us look what semantic rules are generated from the template in rule Term3:

EXPR.inEnv = TERM.inEnv;
TERM.outEnv = put(EXPR.outEuv,
#ldentifier.value(), EXPR.val);

Language ExprSideEffect inherits properties from a single parent. An
example where a language inherits properties from several parents can be found
in [4, 15]. In [15], incremental development of PLM language is presented.

4. Formal definition of multiple attribute grammars inher-
itance

Formally, inheritance can be characterized as R = P & AR [9], where R
denotes a newly defined object or class, P denotes the properties inherited from
an existing object or class, AR denotes the incrementally added new properties
that differentiates It from P, and < denotes an operation that combines AR
with the properties of P. As a result of this combination, R will contain all the
properties of P, except that the incremental modification part AR may intro-
duce properties that overlap with those of P so as to redefine or cancel certain
properties of P. Therefore, R may not always be fully compatible with P. The
form of inheritance where properties arc inherited from a single pareut is known
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as single inheritance, as opposite to multiple inheritance where inheritance from
several parents is allowed at the same timme. Multiple inheritance can be formally
characterized as R = P, ¢ P, & ... @ P, & AR. Before inheritance on regular
definitions, context-free grammars and on attribute grammars are defined, let
us look at the semantic domains used in formal definitions.
ProdSem is a finite set of pairs (p, R,), where p is a production and R, is a
finite set of semantic rules associated with the production p.
ProdSem ={(p, Rp)|p € P,

p: Xo — Xl.}&’g...)&'n,

Rp = {Xi.a = f(l\’o,b, e ,JYJ'.C)l

X;.a € DefAttr(p)}}

Properties in attribute grammars consist of lexical regular definitions, attribute
definitions, rules which are generalized syntax rules that encapsulate semnantic
rules, and methods on semantic domains.

Property = Regdef Name + AttributeName+
RuleName + MethodName

For each language I, an Ancestors(l) is a set. of ancestors of the language [.

Ancestors : Language — { Language}
Ancestors(l) = {l;,ls,...,1,}

For each language I, a LexSpec(l) is a set of mappings from regular definitions
to regular expressions of the language I. A regular definition is a named regular
expression.
LexSpec : Language — Regde fName
— RegFExp
LexSpec(l) = {dy — rexpy,...,d, — reazp,}

For each language [, an Attributes(l) is a set mappings from attributes to their
types of the language I.
Attributes : Language — Attribute Name

— Type
Attributes(l) = {a1 v typer, ..., an — type,}

For each rule r in the language !, Rules(l)(r) is a finite set of pairs (p, R,).
where p is a production and R, is a finite set of semantic rules associated with
the production p.
Rules : Language — RuleName — ProdSem
Rules(l)(r) = {(p, Rp)|p € P,
p: )(0 — ‘YIX‘Z .. .Xn,
R, = {Xia= f(Xoup,. - Xl
Xi.a € DefAttr(p))}}
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A set of properties of the language [, which are not accessible (and hence
overridden) in the language !y, is denoted with Quverriddenld(ly,15).

Overriddenld : (Language x Language)
— {Property}
Overriddenld(ly,13) = {pri,pra,...,pr0}

Rules inherited from ancestors must be merged with the rules in the specified
language so that the underlying attribute grammar remains well defined. If a
production p exists in the current and in inherited rules, then semantic rules
must be merged R, = merge(Rpc:, Ryr). Otherwise, rules are simply copied
from the inherited or current rules.

Merge : ProdSem x ProdSem — ProdSem
Merge(CurrentProd, InhProd) =

{(p, Rp)|((p, Rp1) € InhProdn

(p, Rpc) € CurrentProdA

R, = merge(Rpc, Rp1))}V

((p, Rp) € InhProdA

(p, Rpc) ¢ CurrentProd)V

((p, Rp) € CurrentProdA

(5, Ryr) ¢ InhProd))}

merge(Rpc, Rpr) is a set, of semantic rules associated to production p where the
semantic rule for the same attribute redefines the inherited ones.

merge(Rpc, Ryr) =
{JY.L'.G, = f()(()_b, vy ‘Yj.c)
| Xi.a € Def Attr(pc)
V(X;.a € Def Attr(pr)A
Xe.a ¢ DefAttr(pc)))

For the function f : A — B, let fla/b] be the function that acts just like f
except that it maps specific value a € A to b € B. That is:

(fla/b])(a) =
(fla/b})(ao) = f(ap);Vap € AAag #a

4.1. Regular definition inheritance

The input string can be recognized with different regular expressions even in
monolithic lexical specifications. In such cases the first match rule is commonly
used and the order of regular expressions becomes important. The concept of
inheritance of regular definitions causes further problems as presented in the
following example [4]:

AddSubCalc.digit [0-9]

Dec.int [0-9]+
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For example, the input string 7’ is recognized as AddSubCalc.digit. If
reference to Dec.int was made in the syntax specifications, the error would
be reported, despite the correctuness of specifications. If the order of regular
definitions were different, the same problem would appear with reference to
AddSubCalc.digit. Our solution to this problem is to find all matching regular
definitions for the input string. For example, the result of lexical analyses for the
input string ’7’ would be the set {AddSubCalc.digit, Dec.int}. In that case
reference to both regular definitions can be made and therefore the sequence
of regular definitions becomes irrelevant. For these reasons the inheritance of
regular definitions is defined in the following way:

Let E,, E,, ..., E,, be sets of mappings from regular definitions to regnlar ex-
pressions of the languages [y,1z,...l,, formally defined as

Ey = {di; = en,dia = €e1a,...,dip = e}
E; = {dy1 » es1,daz = €22,...,dy — ey}

En = {dﬂll = ey Qo = emn}

where d;; is a regular definition and e;; is a regular expression, then £ =
E,;®...@FE,, ®AE,, where E|, which inherits from E,, ..., E,,, is defined as:

E:Elu...UE,,,.

Example:

Eg.pr = {Expr .Number — [0-9]+,
Expr.Qperator — \+,
Expr.ignore — [\0x09 \0x0A\0xOD\ 1}

EEa:pr @ AEE‘;rprEnv = {
Expr.Number +—» [0-9]+,
Expr.Operator — \+,
Expr.ignore — [\0x09 \0x0A\0xOD\ ]} U
{ExprEnv.Identifier — [a-z]+,
ExprEnv.0Operator +—:= | Expr.Operator}

EEIp'r 53] AEE.rpv-E‘nv D AEEu:p(-Si(leE_(fect = {
Expr.Number — [0-9]+,
Expr.Operator — \+,
Expr.ignore — [\0x09 \0x0A\0xOD\ ] } U
{ExprEnv.Identifier — [a-z]+,
ExprEnv.0Operator — := | Expr.Operator} U
{ExprSideEffect.Separator — \[ | \1}

4.2. Context-free grammar inheritance

Let Gy, Ga, ..., G, be context-free grammars, formally defined as
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Gl = (T11N1)515P1)7
G?- - (T21N2as21P2)a

Gm = (Tnu N, Sy Pm.)a then

G:GQEB...@G.,R({)AG],
where GG, which inherits from
Ga, ..., G,,, is defined as

G =(T,N, S, P), where
T=T12...0T,,
N=N1 @...@N,n,
P=P&...0PF,.

Note that the start nonterminal symbol of context-free grammar G is the start
nonterminal of context-free grammar G . Since the incrementally added new
productions P; may override some productions where terminal and nonterminal
symbols are defined, the final set of terminal symbols T' and the set of nonter-
minal symbols N are not, simply a union of inherited terminal and nonterminal
symbols. The operation @ is defined as:

VI@Vz(Z)'--@VYm,:
ViU (W \ {z]z € QuerriddenSym(l1,12)})
u...uU
(Vi \ {z]z € OverriddenSym(ly, 1) }).

Where, OverriddenSym(l;,12) is a set of overridden symbols of the language
which are not accessible from the language !;. Also, the set of productions P
is not simply a union of inherited productions since some productions may be
overridden or cause horizontal overlap [9]. The operation is defined as:

P=P1®...®P7,L:P1_U
(Po\ {plp € Fst(Rules(ls)(r)) A
r € Querriddenld({,.[;}})U... U
(P \ {plp € fst(Rules(l,,)(r)) A
r € OverriddenId(ly 1,,)}) A
dom(Rules(1;)) N dow{ Rules(l;)) = 1,
T=2.an, ) =2.mNiLF .

Example:

Ouverriddenld(ExprEnv, Expr) =
OuerriddenSym(ExprEnv. Expr) = ()
Ouwerriddenld(ExprSideEffect, ExprEnv) = I}
OverriddenSym(ExprSideEffect, ExprEnv) = ¢
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GEzpr = ({#Number, +}, {EXPR, TERM}, EXPR,
{EXPR — EXPR + TERM, EXPR — TERM,
TERM — #Number})

GEzpr & AGEJJPT‘ETLU = ({#NMber,
+, #Identifier, := },
{EXPR, TERM, START, STMTS, STMT},
START, {EXPR — EXPR + TERM,
EXPR — TERM, TERM — #Number,
START — STMTS,
STMTS — STMT STMTS,
STMTS — ¢,
STMT — #Identifier := EXPR,
TERM — #Identifier})

GE‘J:pr & AGEzprEnu & AGE:cp-rSideEffect = (

{#Number, +, #ldentifier, :=, [, 1},
{EXPR, TERM, START, STMTS, STMT},
START,

{EXPR — EXPR + TERM, EXPR — TERM,
TERM — #Number,

START — STMTS,

STMTS — STMT STMTS,

STMIS — ¢,

STMT — #Identifier := EXPR,

TERM — #Identifier,

TERM — [#Identifier := EXPR]})

4.3. Multiple attribute grammar inheritance

M. Mernik, et al

Let AG;, AGa, ..., AG,, be attribute grammars formally defined as:

AG) = (G1, A1, Ry),
AG2 = (GZZ)AZ) R?)a

AGo = (Gmiy Amy Run), then

AG:AG2®®AGnL®AAG1 y
where AG}, which inherits from
AGs, ..., AGy, is defined as

AG = (G, A, R), where
G=G21®...9Gm & AGy,
A=A 6...6A,,
R=R®..9R, .

Since each attribute has a type, a set of attributes A; is defined as:
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Ai = {ail —r typeil: vy i type‘i'n.}-

Then, 4 = A; 6...63 A, can not be defined simply as a union, since the same
attribute can be of different type in a different set A;. This situation denotes
horizontal or vertical overlapping. Since unordered inheritance is used, horizon-
tal overlapping is forbidden and vertical overlapping is resolved by asymmetric
descendant-driven lookup [9]. Hence, A = A4, & ... 5 A,, is defined as:

A=A4; U(A2\ {alp — typelpla“, € fSt(Al)})
U...U(Am \ {a1p — typeplai, €
fst(A DA (=3aj;,7 =2.m,i = 1..n,
k#1: (aj; — typejp)A
(aji = typej) A (typer # type;r)).

The set of semantic rules R is not a simple union of inherited semantic rules,
since some semantic rules may be overridden or may cause horizontal overlap. In
any case, current semantic rules have to be merged with the inherited semantic
rules.

R=R;®...@ R =
Rl U snd(Merge((Pl, Rl)’ (Pg, Rz\
{Ry|R, € snd(Rules(l2)(r))A
r € Querriddenld(ly,12)})))
U...U snd(Merge({P1, R, ),
(P, B \ {Rp| Ry € snd(Rules(l,,)(r)A
r € QuerriddenlId(ly,l,)})))
A dom(Rules(l;)) N dom(Rules(l;)) = 0,
i=2.m,j =2.m,i#j.

Example:

AGEa:pr = (GE‘a:pr, AE:r:pr, REa:pr)

Aggpr = {EXPR.val — int, TERM.val — int}

RE.tp-r - RE-.rpression.l U RE:pressionZ U RTcrml

REspressiont = REXPR—EXPR+TERM

REzpression2 = RexPR—TERM

RTcrml = RTERM—V#N‘anber

ReExPR—EXPR+TERM = {
EXPR[0].val=EXPR([1].val + TERM][0].val}

RexproTERM = {EXPR[0].val=TERM][0].val}

R’I’E’RM—&#Number = {TERM[O].V&]"—‘
Integer.valueOf(#Number[0].value()).intValue()}

AGEIp‘I‘ 55 AAGE::prEnv =
(GE:cpr @D AGE;cprE-n.'n,
AEmprEnu S) AEa:pr, RFJ:rprEnu & RE‘a:pv-)
AgzprEay © Agspr = {START.outEnv — Hashtable,
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STMTS.inEnv — Hashtable,
STMTS.outEnv — Hashtable,
STMT.inEnv — Hashtable,
STMT.outEnv — Hashtable,
EXPR.inEnv — Hashtable,
TERM.inEnv — Hashtable } U
{EXPR.val + int, TERM.val + int}
RE‘zpr'Enu ® RE.‘DpT = (RStart. U RSlatemeufs u
RStatement U merge(REa:pre.ssionl ’ EZ'I)"'-REmrrcssimll)
U merge(RE:vpression2, Expr-RE.vpressionZ)
U RTerm‘).) U E.’BPT‘-RTcrml
Rstart = RsTARTSSTMTS
Rstatements = RSTMTS557MT STMTS U RSTMTS 56
Rstatement = RSTMT s #identifier,=EXPR
REzpressiont = REXPRSEXPR+TERM
REzpression2 = REXPROTERM
Rrerms = RTERM 5 f#1dentifier
Rsrarrostmrs = {
STMTS[0]).inEnv = new Hashtable(),
START(0]).outEnv = STMTS[0].outEnv}
RstmTsosTmT stmTs = |
STMT[0).inEnv = STMTS[0].inEnv,
STMTS(1].inEnv = STMT[0].outEnv,
STMTS[0].outEnv=STMTS[1].outEnv}
Rsrmrs—e = {STMTS[0]).outEnv = STMTS[0].inEnv}
RsTMTo#identifier=EXPR = {
EXPR[0].inEnv=STMT[0].inEnv,
STMT[0].outEnv = put(STMT(0).inEnv,
#Identifier.value(), EXPRJ[0].val) }
RepxproExpreTERM = {
TERM[0].inEnv = EXPR[0].inEnv,
EXPR[1].inEnv = EXPR[0].inEnv}
RexproTERM = {TERM[O].iIlEnv=EXPR[O].inEnv}
RrerM o #identificr =
{TERM]0].val=((Integer) TERM[0].inEnv.get(
#Identifier[0].value())).int Value())}
me'rge(RE'zpression.l,EIEPT.RE::pressionl) = {
EXPR([0].val=EXPR([1].val + TERM]0].val,
TERM(0].inEnv = EXPR(0].inEnv,
EXPR/[1].inEnv = EXPR[0].inEnv}
meT‘ge(REa:pression2, EzPT-RE;upressimzZ) = {
EXPR]0].val = TERM[0].val,
TERM[0].inEnv=EXPR[0].inEnv}

M. Mernik, et al
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5. Tool LISA ver 2.0

Multiple attribute grammar inheritance is successfully implemented in the
compiler/interpreter generator tool LISA ver. 2.0. The tool LISA is a compiler
generator with the following features:

e LISA is platform independent since it is written in Java
o it offers the possibility to work in a textual or visual environment

s it offers an integrated development environment (Fig. 1) where the uscrs
can specify - generate - compile-ou-the-fly - execute programs in a newly
specified language

e lexical, syntax and semantic analysers can be of different types and can
operate standalone; the current version of LISA supports LL, SLR. LALR,
and LR parsers, tree-walk, parallel, L-attribute and Katayama evaluators
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Figure 1: LISA Integrated Development Environment



80 M. Meruik, et al

» visual presentation of different structures, such as finite state antomata,
BNF, syntax tree, semantic tree, dependency graph

¢ animation of lexical, syntax and semantic analysers

o the specification language supports multiple attribute grammar inheri-
tance and templates which enable to desigu a language incrementally or
reuse some fragments from other programming language specifications.

6. Related work

There has been a lot of research on augmenting ordinary attribute grammars
with extensions to overcome deficiencies of attribute grammars such as lack of
modularity, extensibility and reusability.

Modular attribute grammars MAG [10] are proposed as a solution to at-
tribute pragmatic problems. The whole language specification consists of sev-
eral MAGs. A single MAG is a set of patterns and associated templates. For
each match between a production and pattern a set of attribute computations is
generated. Both, the matching and generation process are further constrained
to generate only useful and meaningful attribute computations. As in our tem-
plate approach, MAG too specifies the semantic rules for sets of productions
rather than for a particular production. We are convinced that our template
approach offers a better abstraction of attribute computation since our tem-
plate is a generic module parameterized by attribute instances, which is not
the case with MAG modules. Also, in our approach the attribute computa-
tion generation is explicitly stated by the designer, and in MAG by the pattern
matching process which is very difficult to follow. On the other hand, MAG has
no counterpart. to our multiple inheritance approach.

We borrowed the idea "of grammar inheritance from [11] where the only
property is a production rule, and extended it to multiple attribute grammar
inheritance. The difference between the approaches is also in the gramlarity of
modification. In the approach of [11} modification is possible only for the whole
production rule, since the name of the property is left hand nonterminal.

In object-oriented attribute grammars [3, 12] the concepts of class and class
hierarchies have been introduced where nonterminals act as classes and class
hierarchies have been derived from the context-free grammar. Inheritance could
be applied to attributes, attribute computations and syntactic patterns within
one attribute grammar. It is also well known that inherited attributes and class
hierarchies produce some conflicts on well-definedness of attribute grammars
and hence multiple inheritance is not allowed, and also inherited attributes can
not be used in dynamic classes. In our approach a different view is chosen where
the whole attribute grammar is a class without the above mentioned conflicts.

In the report [13], extensible attribute grammars are used to geuerate in-
tegrated programming systems in an incremental way. In order to perform
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incremental generation as quickly and as easily as possible, the restricted form
of extension is used. For example, nonterminal symbols can not disappear on
the right hand of productions upon extensions. At most, they can be replaced
by extended nonterminals which nust contain all attributes of its respective
base nonterminal. Therefore, extensible attribute grammars support some form
of strict inheritance while our approach supports nonstrict inheritance.

In our opinion, the only widely accepted approach with reusability of at-
tribute grammars is the approach presented in [14] and incorporated in the Eli
compiler generator, where with remote attribute access aud inheritance, an at-
tribution module is defined which can be reused in a variety of applications. But
with this approach the attribution module can be only constructed for those at-
tribute computations where the attribute depends only on remote attributes.
In this case computation is associated to a symbol rather than to production.
With the inheritance described in [14] an attribute computation can be further
independent from symbols used in particular language definitions.

7. Conclusion

When introducing a new concept, the designer has difficulties in integrating
it into the language in an easy way. To enable incremental language design
we introduce a new object oriented attribute grammar specification language
based on the paradigm lAttribute Grammar = Clabg. In multiple attribute
grammar inheritance the properties which can be inherited or overridden are
regular definitions, attributes, rules which encapsulate productions and semantic
rules, and methods. Therefore, with multiple attribute grammar inheritance we
can extend the lexical, syntax and semantic part of language definition. In
the paper, an example and the formal definition of multiple attribute grammar
inheritance are given. The main advantages of the proposed approach are:

¢ simplicity and clearness of the approach,

¢ the object concept is simply transposed on the basic objects of attribute
grammars at the specification level, and

s incremental language development is enabled.

We have incrementally designed various small programming languages, such
as COOL and PLM with multiple attribute grammar inheritance. Qur experi-
ence with these non-trivial examples shows that multiple inheritance in attribute
grammars is useful in managing the complexity, reusability and extensibility of
attribute grammars. The benefit of this approach is also that for each language
increment a compiler can be generated and the language tested.
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