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A METHOD FOR OBTAINING THIRD-ORDER
ITERATIVE FORMULAS

Djordje Herceg1, Dragoslav Herceg2

Abstract. We present a method for constructing new third-order meth-
ods for solving nonlinear equations. These methods are modifications of
Newton’s method. Also, we obtain some known methods as special cases,
for example, Halley’s method, Chebyshev’s method, super-Halley method.
Several numerical examples are given to illustrate the performance of the
presented methods.
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1. Introduction

In this paper we consider a family of iterative methods for finding a simple
root α of nonlinear equationf (x) = 0. We assume that f satisfies

(1) f ∈ C3 [a, b] , f ′ (x) 6= 0, x ∈ [a, b] , f (a) > 0 > f (b) .

Under these assumptions the function f has a unique root α ∈ (a, b).
Newton’s method is a well-known iterative method for computing approxi-

mation of α by using

xk+1 = xk − f (xk)
f ′ (xk)

, k = 0, 1, . . .

for some appropriate starting value x0. Newton’s method quadratically con-
verges in some neighborhood of α if f ′ (α) 6= 0, [4].

The classical Chebyshev-Halley methods which improve Newton’s method
are given by

xk+1 = xk − f (xk)
f ′ (xk)

·
(

1 +
t (xk)

2 (1− βt (xk))

)
,
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Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: herceg@im.ns.ac.yu

2Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad,
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where

(2) t (x) =
f (x) f ′′ (x)

f ′ (x)2
.

This family has third-order of convergence and includes Chebyshev’s method
(β = 0), Halley’s method (β = 1

2 ) and super-Halley method (β = 1), see
[3, 5, 7].

Newton’s and Chebyshev-Halley methods belong to the class of one-point
iteration methods without memory [7]

(3) xk+1 = F (xk) .

Here we consider the developing of third-order modifications of Newton’s method.
Using an iteration function of the form

F (x) = x− f (x)
f ′ (x)

G (x) ,

we obtain for a specific function G and some of its approximations iterative
methods of the form (3), which are cubically convergent. Some known methods
are members of our family of methods. So, our algorithm 2 is Chebyshev’s
method, our algorithm 5 is Halley’s method, and our algorithm 6 is super-Halley
method. Also, our algorithm 7 is

xn+1 = xn − 2f (xn)

f ′ (xn) + f ′
(
x− f(xn)

f ′(xn)

)

from [8] and [2], and our algorithm 9 is

xn+1 = xn − f (xn)
2


 1

f ′ (xn)
+

f ′
(
x− f(xn)

f ′(xn)

)



from [2] and [6]. The algorithm 1 is a class of algorithms depending on two
parameters.

2. Main result

The crux of the present derivation is to obtain a specific function G and
some of its approximations such that the special iteration function F

(4) F (x) = x− f (x)
f ′ (x)

G (x)

produces a sequence {xn} by (3) which is cubically convergent.
One can see that Newton’s and Chebyshev-Halley iteration functions are

special cases of (3) with
G (x) = 1
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and

G (x) = 1 +
t (x)

2 (1− βt (x))

respectively.
If we define

(5) G (x) =

√
f ′ (x)
f ′ (α)

,

and F by (4) we obtain an iterative method of third-order. For our definition
of the function G we need the knowledge of the zero α. Since the value of α is
unknown, we can use appropriate approximations for G. In [1] another weight
function h is considered. Namely,

h (x) = 1 +
1
2

ln
(∣∣∣∣

f ′ (x)
f ′ (α)

∣∣∣∣
)

.

We shall consider three different possibilities for constructing the function G.
Firstly, we approximate α in (5) only. In this way we obtain algorithm 1. The
second possibility is to approximate G using Taylor or Padé expansion and
after that to use some approximations for α, f ′(α) and f ′′(α). In this way we
construct algorithms 2-8. The third possibility is to approximate the square
root in (5) and after that to approximate f ′(α). This way we obtain algorithms
9 and 10. Obviously, using similar approximations one can also obtain other
new third-order iterative methods.

2.1. Algorithm 1. Approximations of α

We can use some quadratic approximation for α,

α ≈ ϕβ,γ(x),

where ϕβ is a suitable function depending on a real parameter β. For example,
we can choose

(6) ϕβ,γ(x) = x− f(x)
f ′(x− βf(x)) + γf (x)

.

One can see that for γ = 0 and β = 1 we have (7), for γ = 0 and β = 0 (8) and
for γ = 0 and β = −1 we obtain (9), which are given in [1], i.e.

(7) ϕ1(x) = x− f(x)
f ′(x− f(x))

(8) ϕ0(x) = x− f(x)
f ′(x)

(9) ϕ−1(x) = x− f(x)
f ′(x + f(x))
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Now we define for real parameter β

Gβ,γ (x) =

√
f ′ (x)

f ′ (ϕβ,γ (x))
.

2.2. Approximation of G by using Taylor expansion

Using Taylor expansion from

√
f ′(x)
f ′(α)

we obtain

(10) G(x) ≈ 1 +
(x− α)f ′′(α)

2f ′(α)
.

Using this approximation, we can obtain some new functions:

2.2.1. Algorithm 2. Chebyshev method

In (10) instead of x−α we use Newton’s correction f(x)
f ′(x) and approximate f ′(α)

with f ′(x) and approximate f ′′(α) with f ′′(x). This way we obtain

GCH(x) = 1 +
f(x)f ′′(x)
2f ′(x)2

= 1 +
t (x)

2
.

Iterative method (3) with GCH(x) and F defined by (4) becomes Chebysev’s
iterative method.

2.2.2. Algorithm 3.

In (10) instead of x−α we use Newton’s correction f(x)
f ′(x) and approximate f ′(α)

with f ′(x) and f ′′(α) is approximated with

f ′′(α) ≈
f ′(x)− f ′

(
x− f(x)

f ′(x)

)

f(x)
f ′(x)

.

So, we obtain

GD1(x) = 1 +
f ′(x)− f ′

(
x− f(x)

f ′(x)

)

2f ′(x)
.
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2.2.3. Algorithm 4.

In (10) instead of x−α we use Newton’s correction f(x)
f ′(x) and approximate f ′(α)

with

f ′(x− f (x)
f ′ (x)

),

and approximate f ′′(α) with

f ′′(α) ≈
f ′(x)− f ′

(
x− f(x)

f ′(x)

)

f(x)
f ′(x)

.

This way we obtain

GD2(x) = 1 +
f ′(x)− f ′

(
x− f(x)

f ′(x)

)

2f ′
(
x− f(x)

f ′(x)

) =
f ′(x) + f ′

(
x− f(x)

f ′(x)

)

2f ′
(
x− f(x)

f ′(x)

) .

2.3. Approximation of G by using Padé expansion

Using Padé expansion from √
f ′(x)
f ′(α)

we obtain

(11) G(x) ≈ 1

1− (x−α)f ′′(α)
2f ′(α)

Using this approximation, we can obtain some new algorithms:

2.3.1. Algorithm 5. Halley’s method

In (11) instead of x−α we use Newton’s correction f(x)
f ′(x) and approximate f ′(α)

with f ′(x) and f ′′(α) with f ′′(x). In such way we obtain

GHL(x) =
1

1−
(

f(x)
f′(x)

)
f ′′(x)

2f ′(x)

=
2

2− t (x)
.

Iterative method (3) with GCH(x) and F defined by (4) becomes Halley’s iter-
ative method.

2.3.2. Algorithm 6. Super-Halley method

In (11) instead of x− α we use Halley’s correction

f (x)
f ′ (x)

2
2− t(x)
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and approximate f ′(α) with f ′(x) and f ′′(α) with f ′′(x). This way we obtain
super-Halley method.

GSH(x) =
1

1−
f(x)
f′(x)

1

1− t(x)
2

f ′′(x)

2f ′(x)

=
1

1− t(x)
2

1

1− t(x)
2

=
1

1− t(x)
2−t(x)

=
2− t (x)

2 (1− t (x))
.

2.3.3. Algorithm 7.

In (11) instead of x−α we use Newton’s correction f(x)
f ′(x) and approximate f ′(α)

with f ′(x) and f ′′(α) with

f ′′(α) ≈
f ′(x)− f ′

(
x− f(x)

f ′(x)

)

f(x)
f ′(x)

.

So, we obtain

GD3 (x) =
2f ′ (x)

f ′ (x) + f ′
(
x− f(x)

f ′(x)

) .

Iterative method (3) with GD3(x) and F defined by (4) is considered in [8] and
[2].

F (x) = x− f (x)
f ′ (x)

GD3 (x) .

2.3.4. Algorithm 8.

In (11) instead of x−α we use Newton’s correction f(x)
f ′(x) , we approximate f ′(α)

with

f ′(x− f (x)
f ′ (x)

)

and f ′′(α) with

f ′′(α) ≈
f ′(x)− f ′

(
x− f(x)

f ′(x)

)

f(x)
f ′(x)

.

Now, we have

GD4 (x) =
−2f ′

(
x− f(x)

f ′(x)

)

f ′ (x)− 3f ′
(
x− f(x)

f ′(x)

) .

2.4. Approximation of G by using square root approximation

For approximating square root of a real number there are many different
formulas. We shall use only two to demonstrate a way for obtaining some new
iterative methods of form (3) with F given by (4) where G is replaced with GHR

or GLB .
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2.4.1. Algorithm 9.

Using Heron’s approximation of square root
√

f ′(x)
f ′(α)

≈ 1
2

(
1 +

f ′(x)
f ′(α)

)

and

f ′ (α) ≈ f ′
(

x− f(x)
f ′(x)

)
,

we obtain

GHR (x) =
1
2

+
f ′ (x)

2f ′
(
x− f(x)

f ′(x)

) .

Iterative method (3) with GHR(x) and F defined by (4) is considered in [2] and
[6].

2.4.2. Algorithm 10.

Using Lambert’s approximation of square root, i.e.

√
f ′ (x)
f ′ (α)

≈
1 + 3 f ′(x)

f ′(α)

3 + f ′(x)
f ′(α)

=
3f ′ (x) + f ′ (α)
f ′ (x) + 3f ′ (α)

and

f ′ (α) ≈ f ′
(

x− f(x)
f ′(x)

)
,

we obtain

GLB (x) =
3f ′ (x) + f ′

(
x− f(x)

f ′(x)

)

f ′ (x) + 3f ′
(
x− f(x)

f ′(x)

) .

Let us consider the iterative procedure (3) where F is given by (4). Our condi-
tions imply that f has exactly one root in (a, b).

Theorem 1. Let us assume that the function f is sufficiently smooth in a
neighborhood of its simple root α and f ′ (α) 6= 0. Then the iterative method
xk+1 = F (xk), where

F (x) = x− f (x)
f ′ (x)

G (x)

and function G is some of our functions Gβ,γ , GCH , GHL, GSH , GHR, GLB,
GD1, GD2, GD3, GD4, converges cubically to the unique solution α of f (x) = 0
in a neighborhood of α.
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Proof. It is well known that the iterative method (3) is cubically convergent if

F (α) = α, F ′ (α) = F ′′ (α) = 0, F ′′′ (α) 6= 0.

Differentiating (4) we get

F ′ (x) = 1− u′ (x)G (x)− u (x)G′ (x)

and
F ′′ (x) = −u′′ (x)G (x)− 2u′ (x) G′ (x)− u (x) G′′ (x)

where

u (x) =
f (x)
f ′ (x)

.

It is easy to see that for all our functions G it holds G (α) = 1. After simple
calculations one can obtain that

G′ (α) =
f ′′ (α)
2f ′ (α)

.

We have u′ (x) = 1− t (x), where t is defined by (2). It follows that
u (α) = 0 and u′ (α) = 1.
Now, we can see that F (α) = α and F ′ (α) = 0. Since

u′′ (α) = −t′ (α) = −f ′′ (α)
f ′ (α)

and

F ′′ (α) =
f ′′ (α)
f ′ (α)

G (α)− 2G′ (α) =
f ′′ (α)
f ′ (α)

− 2
f ′′ (α)
2f ′ (α)

= 0,

we conclude that
F (α) = α, F ′ (α) = F ′′ (α) = 0,

which is sufficient to complete the proof. 2

3. Numerical examples

We present some numerical test results for our cubically convergent methods
and the Newton’s method. Methods with iteration functions F were compared,
where

F (x) = x− f (x)
f ′ (x)

G (x) ,

and G is one of our functions 1, Gβ,γ , GCH , GHL, GSH , GHR, GLB , GD1, GD2,
GD3 , GD4. So, we have the following 13 iterative functions:

F1 (x) = x− f (x)
f ′ (x)

,
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F2 (x) = x− f (x)
f ′ (x)

Gβ,γ (x) , β = 1, γ = 0,

F3 (x) = x− f (x)
f ′ (x)

Gβ,γ (x) , β = 0, γ = 0,

F4 (x) = x− f (x)
f ′ (x)

Gβ,γ (x) , β = −1, γ = 0,

F5 (x) = x− f (x)
f ′ (x)

GCH (x) ,

F6 (x) = x− f (x)
f ′ (x)

GD1 (x)

F7 (x) = x− f (x)
f ′ (x)

GD2 (x)

F8 (x) = x− f (x)
f ′ (x)

GHL (x) ,

F9 (x) = x− f (x)
f ′ (x)

GSH (x) ,

F10 (x) = x− f (x)
f ′ (x)

GD3 (x) ,

F11 (x) = x− f (x)
f ′ (x)

GD4 (x) ,

F12 (x) = x− f (x)
f ′ (x)

GHR (x) ,

F13 (x) = x− f (x)
f ′ (x)

GLB (x) .

The order of convergence COC can be approximed using the formula

COC ≈ ln |(xn+1 − α) / (xn − α)|
ln |(xn − α) / (xn−1 − α)| .

All computations were performed in Mathematica 6.0. When SetPrecision is
used to increase the precision of a number, we can choose number prec of digits
in floating point arithmetics. In our tables we give the value of prec. We use
the following stopping criteria in our calculations: |xk − α| < ε and|f (xk)| < ε,
where α is exact solution of considered equation. With it we denote number
of iteration steps. For numerical illustrations in this section we used the fixed
stopping criteria ε = 10−15 andprec = 1000.

We present some numerical test results for our iterative methods in Table 1.
We used the following functions:

f1 (x) = sin x− 1
2
, α1∗ ≈ 0.5235987755982988731,
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f2 (x) = x3 − 10, α2∗ ≈ 2.1544346900318837218,

f3 (x) = ex − x2, α3∗ ≈ 0.9100075724887090607,

f4 (x) = x3 + 4x2 − 10, α4∗ ≈ 1.3652300134140968458,

f5 (x) = (x− 1)3 − 1, α5 = 2,

f6 (x) = sin x− x

2
, α6∗ ≈ 1.8954942670339809471.

We also display the approximation α∗ of exact root α for each equation. α∗ is
calculated with precision prec, but only 20 digits are displayed.

As a convergence criterion it was required that distance of two consecutive
approximations δ for the zero be less than 10−15. Also displayed are the number
of iterations to approximate root (it), the computational order of convergence
(COC), the value f (xit) and|xit − α|.

Table 1: Numerical results

IT COC ∆x∗ f(x∗) δ
f1, x0 = 0.05
F1 5 2 3.6 · 10−35 −3.1 · 10−35 1.1 · 10−17

F2 4 3 1.2 · 10−58 −1.0 · 10−58 8.7 · 10−20

F3 4 3 1.3 · 10−76 −1.1 · 10−76 1.5 · 10−25

F4 4 3 8.9 · 10−65 7.7 · 10−65 9.5 · 10−22

F5 4 3 3.1 · 10−24 −2.7 · 10−54 2.1 · 10−18

F6 4 3 2.4 · 10−78 2.1 · 10−78 3.1 · 10−26

F7 4 3 4.3 · 10−71 −3.7 · 10−71 8.0 · 10−24

F8 4 3 8.0 · 10−56 −7.0 · 10−56 6.9 · 10−19

F9 4 3 5.0 · 10−58 −4.3 · 10−58 1.4 · 10−19

F10 4 4 2.0 · 10−158 1.7 · 10−158 5.9 · 10−40

F11 4 3 3.3 · 10−64 −2.8 · 10−64 1.3 · 10−21

F12 4 3 1.2 · 10−76 −1.0 · 10−76 1.4 · 10−25

f1, x0 = 1.0
F1 6 2 2.8 · 10−45 −2.4 · 10−45 9.8 · 10−23

F2 4 3 1.5 · 10−51 1.3 · 10−51 2.0 · 10−17

F3 4 3 6.2 · 10−82 5.4.10−82 2.5 · 10−27

F4 4 3 5.1 · 10−60 −4.5 · 10−60 3.7 · 10−20

F5 5 3 6.9 · 10−81 5.9 · 10−81 2.7 · 10−27

F6 5 3 5.1 · 10−131 4.4 · 10−131 8.5 · 10−44

F7 4 3 2.7 · 10−59 2.4 · 10−59 7.0 · 10−20

F8 5 3 1.7 · 10−127 1.4 · 10−127 8.7 · 10−43

F9 4 3 3.3 · 10−90 2.9 · 10−90 2.7 · 10−30

F10 4 4 7.0 · 10−138 6.1 · 10−138 8.0 · 10−35

F11 4 3 2.7 · 10−47 2.3 · 10−47 5.4 · 10−16

F12 4 3 2.8 · 10−59 2.4 · 10−59 7.0 · 10−20

F13 4 3 6.4 · 10−77 5.5 · 10−77 1.2 · 10−25
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f2, x0 = 2.2
F1 8 2 5.0 · 10−216 4.1 · 10−216 2.9 · 10−108

F2 6 3 7.9 · 10−520 −6.5 · 10−520 1.1 · 10−173

F3 6 3 2.2 · 10−757 −1.8 · 10−757 1.2 · 10−252

F4 6 3 1.9 · 10−506 −1.6 · 10−506 3.6 · 10−169

F5 6 3 3.3 · 10−503 −2.7 · 10−503 3.5 · 10−168

F6 6 3 2.0 · 10−537 −1.7 · 10−537 1.5 · 10−179

F7 5 3 2.0 · 10−370 1.6 · 10−370 1.8 · 10−123

F8 6 3 4.4 · 10−571 −3.6 · 10−571 1.0 · 10−190

F9 6 3 5.7 · 10−742 −4.6 · 10−742 2.1 · 10−247

F10 6 3 8.9 · 10−639 −7.3 · 10−639 3.1 · 10−213

F11 6 3 2.2 · 10−592 −1.8 · 10−592 8.5 · 10−198

F12 5 3 2.0 · 10−370 1.6 · 10−370 1.8 · 10−123

F13 6 3 9.6 · 10−751 −7.9 · 10−751 1.9 · 10−250

f3, x0 = 1.27
F1 6 2 2.3 · 10−51 −6.8 · 10−51 6.2 · 10−26

F2 5 3 1.0 · 10−90 3.0 · 10−90 7.7 · 10−31

F3 4 3 6.5 · 10−89 −1.9 · 10−88 8.5 · 10−30

F4 5 3 1.9 · 10−131 5.7 · 10−131 2.1 · 10−44

F5 4 3 7.4 · 10−51 −2.2 · 10−50 2.1 · 10−17

F6 4 3 2.0 · 10−58 −6.1 · 10−58 6.9 · 10−20

F7 4 3 1.0 · 10−92 −3.0 · 10−92 5.3 · 10−31

F8 4 3 1.9 · 10−56 −5.7 · 10−56 3.4 · 10−19

F9 4 3 9.5 · 10−68 −2.8 · 10−67 8.8 · 10−23

F10 4 3 4.3 · 10−71 −1.3 · 10−70 5.4 · 10−24

F11 4 3 3.7 · 10−60 −1.1 · 10−59 2.1 · 10−20

F12 4 3 1.0 · 10−92 −3.0 · 10−92 5.3 · 10−31

F13 4 3 1.4 · 10−87 −4.2 · 10−87 2.4 · 10−29

f4, x0 = 1.8 [1]
F1 5 2 1.6 · 10−42 2.7 · 10−41 1.8 · 10−21

F2 4 3 8.9 · 10−57 −1.5 · 10−55 1.0 · 10−19

F3 4 3 1.8 · 10−115 −2.9 · 10−114 1.1 · 10−38

F4 5 3 3.4 · 10−53 5.7 · 10−52 1.6 · 10−18

F5 4 3 1.5 · 10−96 −2.4 · 10−95 1.5 · 10−32

F6 4 3 5.4 · 10−93 −8.9 · 10−92 2.2 · 10−31

F7 3 3 2.7 · 10−49 −4.4 · 10−48 2.1 · 10−16

F8 4 3 3.7 · 10−112 −6.2 · 10−111 1.3 · 10−37

F9 4 3 5.4 · 10−130 −9.0 · 10−129 2.1 · 10−43

F10 4 3 7.3 · 10−105 −1.2 · 10−103 3.0 · 10−35

F11 4 3 2.3 · 10−109 −3.8 · 10−108 1.0 · 10−36

F12 3 3 2.7 · 10−49 −4.4 · 10−48 2.1 · 10−16

F13 4 3 9.8 · 10−116 −1.6 · 10−114 8.7 · 10−39
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f5, x0 = 1.8 [1]
F1 6 2 9.6 · 10−42 2.9 · 10−41 3.1 · 10−21

F2 5 3 4.4 · 10−98 1.3 · 10−97 2.0 · 10−33

F3 4 3 5.8 · 10−61 −1.7 · 10−60 9.5 · 10−21

F4 6 3 4.0 · 10−105 −1.2 · 10−104 8.4 · 10−36

F5 5 3 1.7 · 10−118 −5.0 · 10−118 4.6 · 10−40

F6 5 3 2.1 · 10−99 −6.4 · 10−99 9.9 · 10−34

F7 4 3 4.6 · 10−107 1.4 · 10−106 6.5 · 10−36

F8 4 3 5.8 · 10−61 −1.7 · 10−60 9.5 · 10−21

F9 4 3 1.3 · 10−69 −3.9 · 10−69 1.6 · 10−23

F10 4 3 1.3 · 10−49 −4.0 · 10−49 4.9 · 10−17

F11 4 3 3.5 · 10−56 −1.1 · 10−55 3.5 · 10−19

F12 4 3 4.6 · 10−107 1.4 · 10−106 6.5 · 10−36

F13 4 3 9.5 · 10−63 −2.8 · 10−62 2.4 · 10−21

f6, x0 = 2.3 [1]
F1 6 2 3.0 · 10−48 −2.5 · 10−48 2.3 · 10−24

F2 4 3 1.1 · 10−51 −8.9 · 10−52 1.2 · 10−17

F3 4 3 4.1 · 10−77 −3.4 · 10−77 6.7 · 10−26

F4 5 3 1.7 · 10−136 1.4 · 10−136 7.4 · 10−46

F5 4 3 6.9 · 10−49 −5.7 · 10−49 9.8 · 10−17

F6 4 3 3.1 · 10−53 −2.5 · 10−53 3.6 · 10−18

F7 4 3 3.6 · 10−115 −2.9 · 10−115 2.2 · 10−38

F8 4 3 1.6 · 10−55 −1.3 · 10−55 7.4 · 10−19

F9 4 3 6.5 · 10−72 −5.3 · 10−72 4.6 · 10−24

F10 4 3 4.3 · 10−64 −3.5 · 10−64 1.1 · 10−21

F11 4 3 3.9 · 10−58 −3.2 · 10−58 1.0 · 10−19

F12 4 3 3.6 · 10−115 −2.9 · 10−115 2.2 · 10−38

F13 4 3 3.1 · 10−76 −2.6 · 10−76 1.3 · 10−25

Conclusions

In this paper we presented the family of third-order iterative methods. Some
well known methods belong to this family, for example, Halley’s method, Cheby-
shev’s method and super-Halley method from [3, 5, 7]. The first method in our
tables is the Newton’s method. The test results in Table 1 show that the com-
puted order of convergence of the presented iterative methods is three, which
supports the theoretical result obtained in this paper.
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