FACTORIZATION OF OPERATORS WITH $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ AND $g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ KERNELS

Smiljana Jakšić¹ and Snježana Maksimović²

Abstract. The aim of this paper is to prove that any linear operator with kernel in the spaces $G^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}), \alpha \geq 1$ and $g^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}), \alpha > 1$ is a composition of two operators in the same space.

AMS Mathematics Subject Classification (2010): 47B34, 45P05

Key words and phrases: Laguerre functions, Ultradistributions over $[0, \infty)^d$, Kernel theorems, Factorization algebra

1. Introduction

The test space $\mathcal{S}(\mathbb{R}_+)$ for the space of tempered distributions supported by $[0,\infty)$ is studied in [3], [9] and [12]; recently, the space $\mathcal{S}(\mathbb{R}^d_+)$ is examined in [5]. In [6] *G*-type spaces, $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\alpha \geq 1$ and their dual spaces, i.e. the spaces of ultradistributions of Roumier type over $[0,\infty)^d$, are characterized in terms of their Foirier-Laguerre coefficients; cf. Duran [4] for the one-dimensional case. Actually, the results of [4] is extended and the full topological characterization is given, in all dimensions, as well as applications to pseudo-differential operators with radial symbols.

In this paper we introduce g-type spaces, $g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\alpha > 1$ and their dual spaces i.e. the spaces of ultradistributions of Beurling type over $[0,\infty)^d$. We give the kernel theorem for $g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\alpha > 1$.

For any topological vector space \mathcal{B} , the set of continuous linear functionals on \mathcal{B} , denoted by $\mathcal{M} = \mathfrak{L}(\mathcal{B})$, is a factorization algebra (also the term a decomposition algebra can be used). This means that any operator T in \mathcal{M} is a composition of two operators T_1, T_2 in \mathcal{M} since we can choose T_1 as the identity operator and $T_2 = T$. If \mathcal{B} is a Hilbert space, then it follows from spectral decomposition that the set of compact operators on \mathcal{B} is a factorization algebra, where the factorization property are obtained by straight-forward applications of the spectral theorem.

An interesting subclass of linear and continuous operators on an L^2 space concerns the set of all linear operators whose kernels belong to the Schwartz space (see e.g. [1], [7], [11]). Similar facts hold true for the set of operators with kernels in Gelfand-Shilov spaces (cf. [10]) and Pilipović spaces (cf. [2]).

In this paper we consider the case when \mathcal{M} is the set of all linear operators

¹Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000, Belgrade, Serbia, e-mail: smiljana.jaksic@sfb.bg.ac.rs

 $^{^2{\}rm Faculty}$ of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina,

e-mail: snjezana.maksimovic@etfbl.net

with kernels in $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\alpha \geq 1$ and $g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\alpha > 1$ spaces. We prove that any such \mathcal{M} is a factorization algebra. Note that the identity operator does not belong to these operator classes.

2. Preliminaries

We denote by \mathbb{N} , \mathbb{Z} , \mathbb{R} and \mathbb{C} the sets of positive integers, integers, real and complex numbers, respectively; $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $\mathbb{R}_+ = (0, \infty)$, $\mathbb{R}_+^d = (0, \infty)^d$ and $\overline{\mathbb{R}_+^d} = [0, \infty)^d$. We use the standard multi-index notation. Let $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, $k = (k_1, \ldots, k_d) \in \mathbb{N}_0^d$. Then $|x| = \sqrt{x_1^2 + \ldots + x_d^2}$, $|k| = k_1 + \ldots + k_d$, $k! = k_1! \cdots k_d!$, $x^k = \prod_{i=1}^d x_i^{k_i}$, $D^k = \prod_{i=1}^d \frac{\partial^{k_i}}{\partial x_i^{k_i}}$. Furthermore, if $x, \gamma \in \overline{\mathbb{R}_+^d}$ we also use $x^\gamma = \prod_{j=1}^d x_j^{\gamma_j}$. In this case, if $x_j = 0$ and $\gamma_j = 0$, we use the convention $0^0 = 1$.

For $j \in \mathbb{N}_0$ and $\gamma > -1$, the *j*-th Laguerre polynomial of order γ is defined by

$$L_j^{\gamma}(x) = \frac{x^{-\gamma} e^x}{j!} \frac{d^j}{dx^j} (e^{-x} x^{\gamma+j}), \quad x \ge 0.$$

For $\gamma = (\gamma_1, \ldots, \gamma_d) \in \mathbb{R}^d$ such that $\gamma_j > -1$, $j = 1, \ldots, d$ and $n \in \mathbb{N}_0^d$, the *d*-dimensional *n*-th Laguerre polynomial of order γ is defined by $L_n^{\gamma}(x) = L_{n_1}^{\gamma_1}(x_1) \ldots L_{n_d}^{\gamma_d}(x_d)$. For $\gamma = 0$, we write $L_n(x)$ instead of $L_n^0(x)$.

The *j*-th Laguerre function (of order 0) is defined by $l_j(x) = L_j(x)e^{-x/2}$, $x \ge 0, j \in \mathbb{N}_0$ and in a *d*-dimensional case we have $l_n(x) = l_{n_1}(x_1) \dots l_{n_d}(x_d)$, $x \in \mathbb{R}^{\overline{d}}_+, n \in \mathbb{N}^d_0$. The Laguerre functions form an orthonormal basis for $L^2(\mathbb{R}^d_+)$. Also, they have a special role for the characterisation of the spaces $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\alpha \ge 1$ and $g^{\alpha}_{\alpha}(\mathbb{R}^d_+), \alpha > 1$ considered below.

2.1. Basic spaces

We denote by \mathbb{R}^d_+ the set $(0,\infty)^d$ and by $\overline{\mathbb{R}^d_+}$ its closure, i.e. $[0,\infty)^d$. The space $\mathcal{S}(\mathbb{R}^d_+)$ consists of all $f \in \mathcal{C}^{\infty}(\mathbb{R}^d_+)$ such that all derivatives $D^p f$, $p \in \mathbb{N}^d_0$, extend to continuous functions on $\overline{\mathbb{R}^d_+}$ and

$$\sup_{x \in \mathbb{R}^d_+} x^k |D^p f(x)| < \infty , \forall k, p \in \mathbb{N}^d_0.$$

Let A > 0. We denote by $G_{\alpha,A}^{\alpha,A}(\mathbb{R}^d_+)$ the space of all $f \in \mathcal{S}(\mathbb{R}^d_+)$ for which

$$\sup_{p,k\in\mathbb{N}_0^d} \frac{\|t^{(p+k)/2}D^p f(t)\|_2}{A^{|p+k|}k^{(\alpha/2)k}p^{(\alpha/2)p}} < \infty.$$

With the following seminorms

$$\sigma_{A,j}(f) = \sup_{p,k \in \mathbb{N}_0^d} \frac{\|t^{(p+k)/2} D^p f(t)\|_{L^2(\mathbb{R}_+^d)}}{A^{|p+k|} k^{(\alpha/2)k} p^{(\alpha/2)p}} + \sup_{\substack{|p| \le j \\ |k| \le j}} \sup_{t \in \mathbb{R}_+^d} |t^k D^p f(t)|, \ j \in \mathbb{N}_0.$$

one easily verifies that it becomes an (F)-space.

Define $G^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}) = \varinjlim_{\substack{A \to \infty \\ \alpha \to \alpha}} G^{\alpha,A}_{\alpha,A}(\mathbb{R}^{d}_{+}) \text{ and } g^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}) = \varinjlim_{\substack{A \to \alpha \\ A \to 0}} G^{\alpha,A}_{\alpha,A}(\mathbb{R}^{d}_{+}).$ Clearly, $G^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}), \alpha \geq 1 \text{ and } g^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}), \alpha > 1 \text{ are continuously injected into } \mathcal{S}(\mathbb{R}^{d}_{+}) \text{ i.e.}$

$$g^{\alpha}_{\alpha}(\mathbb{R}^d_+) \hookrightarrow G^{\alpha}_{\alpha}(\mathbb{R}^d_+) \hookrightarrow \mathcal{S}(\mathbb{R}^d_+).$$

We immediately have

(2.1)
$$(G^{\alpha}_{\alpha}(\mathbb{R}^d_+))' = \bigcup_{A \in \mathbb{N}} (G^{\alpha,A}_{\alpha,A}(\mathbb{R}^d_+))'$$

in set theoretical sense (see [8, (1.2), p.34]). Since the sequence $G^{\alpha,A}_{\alpha,A}(\mathbb{R}^d_+)$, when $A \to \infty$, is reduced, we have

(2.2)
$$(g^{\alpha}_{\alpha}(\mathbb{R}^d_+))' = \bigcap_{A \in \mathbb{N}} (G^{\alpha,1/A}_{\alpha,1/A}(\mathbb{R}^d_+))'$$

in the set theoretical sense (see [8, (1.1), p.33]).

Let $\alpha \geq 1$ and a > 1. We define $s^{\alpha,a}$ as the space of all complex sequences $\{a_n\}_{n\in\mathbb{N}_0^d}$ for which $\|\{a_n\}_{n\in\mathbb{N}_0^d}\|_{s^{\alpha,a}} = \sup_{\substack{n\in\mathbb{N}_0^d\\ n \neq 1}} |a_n|a^{|n|^{1/\alpha}} < \infty$. With this norm $s^{\alpha,a}$ becomes a (B)-space. We define $s^{\alpha} = \lim_{\substack{n \to 1^+\\ a \to 1^+}} s^{\alpha,a}$ (resp. $\sigma^{\alpha} = \lim_{\substack{n \to \infty\\ a \to \infty}} \sigma^{\alpha,a}$). In particular, s^{α} is a (DFN)-space (resp. σ^{α} is a (FN)-space). The strong dual $(s^{\alpha})'$ of s^{α} is an (FN)-space of all complex valued sequences $\{b_n\}_{n\in\mathbb{N}_0^d}$ such that, for each a > 1, $\|\{b_n\}_{n\in\mathbb{N}_0^d}\|_{(s^{\alpha,a})'} = \sum_{n\in\mathbb{N}_0^d} |b_n|a^{-|n|^{1/\alpha}} < \infty$ (resp. the strong dual $(\sigma^{\alpha})'$ of σ^{α} is a (DFN)-space of all complex valued sequences $\{b_n\}_{n\in\mathbb{N}_0^d}$ such that there exists a > 1 such that $\|\{b_n\}_{n\in\mathbb{N}_0^d}\|_{(s^{\alpha,a})'} < \infty$).

Theorem 2.1. ([6, Theorem 5.7.]) Let $\alpha \geq 1$. For $f \in L^2(\mathbb{R}^d_+)$ let $a_n = \int_{\mathbb{R}^d_+} f(t)l_n(t)dt$, $n \in \mathbb{N}^d_0$. Then $f \in G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ if and only if there exist c > 0 and a > 1 such that $|a_n| \leq ca^{-|n|^{1/\alpha}}$.

With small modifications of the arguments (by the use of the closed graph theorem for an F-space), we have the next theorem

Theorem 2.2. Let $\alpha > 1$. For $f \in L^2(\mathbb{R}^d_+)$ let $a_n = \int_{\mathbb{R}^d_+} f(t)l_n(t)dt$, $n \in \mathbb{N}^d_0$. Then $f \in g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ if and only if for every a > 1 there exists c > 0 such that $|a_n| \leq ca^{-|n|^{1/\alpha}}$.

Theorem 2.3. ([6, Theorem 6.1]) Let $\alpha \geq 1$. The mapping $\iota: G^{\alpha}_{\alpha}(\mathbb{R}^d_+) \to s^{\alpha}$, $\iota(f) = \{\langle f, l_n \rangle\}_{n \in \mathbb{N}^d_0}$, is a topological isomorphism between $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ and s^{α} . For each $f \in G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\sum_{n \in \mathbb{N}^d_0} \langle f, l_n \rangle l_n$ is summable to f in $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$.

In a similar way, we prove the next theorem.

Theorem 2.4. Let $\alpha > 1$. The mapping $\iota : g_{\alpha}^{\alpha}(\mathbb{R}^{d}_{+}) \to \sigma^{\alpha}$, $\iota(f) = \{\langle f, l_{n} \rangle\}_{n \in \mathbb{N}^{d}_{0}}$, is a topological isomorphism between $g_{\alpha}^{\alpha}(\mathbb{R}^{d}_{+})$ and σ^{α} .

For each $f \in g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\sum_{n \in \mathbb{N}^d_0} \langle f, l_n \rangle l_n$ is summable to f in $g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$.

The last four results are crucial and we will often tacitly apply them throughout the rest of this article.

3. *G***-** and *g***-** kernels

Firstly, we state the kernel theorems:

Theorem 3.1. ([6, Theorem 6.4.]) Let $\alpha \ge 1$. We have the following canonical isomorphism:

$$(3.1) \quad (G^{\alpha}_{\alpha}(\mathbb{R}^{d_1}_+))' \hat{\otimes} (G^{\alpha}_{\alpha}(\mathbb{R}^{d_2}_+))' \cong (G^{\alpha}_{\alpha}(\mathbb{R}^{d_1+d_2}_+))' \cong \mathcal{L}(G^{\alpha}_{\alpha}(\mathbb{R}^{d_1}_+), (G^{\alpha}_{\alpha}(\mathbb{R}^{d_2}_+))').$$

Theorem 3.2. Let $\alpha > 1$. We have the following canonical isomorphism:

$$(3.2) \qquad (g^{\alpha}_{\alpha}(\mathbb{R}^{d_1}_+))' \hat{\otimes} (g^{\alpha}_{\alpha}(\mathbb{R}^{d_2}_+))' \cong (g^{\alpha}_{\alpha}(\mathbb{R}^{d_1+d_2}_+))' \cong \mathcal{L}(g^{\alpha}_{\alpha}(\mathbb{R}^{d_1}_+), (g^{\alpha}_{\alpha}(\mathbb{R}^{d_2}_+))').$$

Proof. The proof for $(g^{\alpha}_{\alpha}(\mathbb{R}^d_+))'$ can be obtained it the same way as for $(G^{\alpha}_{\alpha}(\mathbb{R}^d_+))'$ in Theorem 3.1.

The isomorphisms (3.1) and (3.2) call for some comment. In what follows we use the convention that if T is a linear and continuous operator from $G_1^1(\mathbb{R}^{d_1}_+)$ to $(G_1^1(\mathbb{R}^{d_2}_+))'$, and $g \in (G_1^1(\mathbb{R}^{d_0}_+))'$, then $T \otimes g$ is the linear and continuous operator from $G_1^1(\mathbb{R}^{d_1}_+)$ to $(G_1^1(\mathbb{R}^{d_2+d_0}_+))'$, given by

$$(T \otimes g) : f \mapsto (Tf) \otimes g.$$

The following theorem is the main result of this paper.

Theorem 3.3. Let T be a linear and continuous operator from $G_1^1(\mathbb{R}^{d_1}_+)$ to $(G_1^1(\mathbb{R}^{d_2}_+))'$ with the kernel K, and let $d_0 \ge \min(d_1, d_2)$. Then the following is true:

- (R) If $\alpha \geq 1$ and $K \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_1}_+)$, then there are operators T_1 and T_2 with kernels $K_1 \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_0+d_1}_+)$ and $K_2 \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_0}_+)$ respectively such that $T = T_2 \circ T_1$.
- (B) If $\alpha > 1$ and $K \in g_{\alpha}^{\alpha}(\mathbb{R}^{d_2+d_1})$, then there are operators T_1 and T_2 with kernels $K_1 \in g_{\alpha}^{\alpha}(\mathbb{R}^{d_0+d_1})$ and $K_2 \in g_{\alpha}^{\alpha}(\mathbb{R}^{d_2+d_0})$ respectively such that $T = T_2 \circ T_1$.

Remark 3.4. Let $\alpha \geq 1$. An operator with kernel in $G^{\alpha}_{\alpha}(\mathbb{R}^{2d}_{+})$ is sometimes called a regularizing operator with respect to $G^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+})$, because it extends uniquely to a continuous mapping from $(G^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+}))'$, into $G^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+})$.

Let $\alpha > 1$. An operator with kernel in $g^{\alpha}_{\alpha}(\mathbb{R}^{2d}_{+})$ is sometimes called a regularizing operator with respect to $g^{\alpha}_{\alpha}(\mathbb{R}^{d}_{+})$.

Proof. First we assume that $d_0 = d_1$, and start to prove (R). Let $l_{d,n}(x)$ be the Laguerre function on \mathbb{R}^d_+ of order $n \in \mathbb{N}^d$. Then K posses the expansion

(3.3)
$$K(x,y) = \sum_{n \in \mathbb{N}^{d_2}} \sum_{k \in \mathbb{N}^{d_1}} a_{n,k} l_{d_2,n}(x) l_{d_1,k}(y),$$

Factorization of operators with $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ and $g^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ kernels

where the coefficients $a_{n,k}$ satisfies

(3.4)
$$\sup_{n,k} |a_{n,k}e^{A(|n|^{1/\alpha} + |k|^{1/\alpha})}| < \infty,$$

for some A > 0. Let $z \in \mathbb{R}^{d_1}_+$ and

(3.5)

$$K_{0,1}(z,y) = \sum_{n,k \in \mathbb{N}^{d_1}} c_{n,k} l_{d_1,n}(z) l_{d_1,k}(y)$$

$$K_{0,2}(x,z) = \sum_{n \in \mathbb{N}^{d_2}} \sum_{k \in \mathbb{N}^{d_1}} b_{n,k} l_{d_2,n}(x) l_{d_1,k}(z),$$

where

$$c_{n,k} = \chi_{n,k} e^{-\frac{A}{2}|n|^{1/\alpha}}$$
 and $b_{n,k} = a_{n,k} e^{\frac{A}{2}|k|^{1/\alpha}}$

and $\chi_{n,k}$ is the Kronecker delta. Then we have

$$\int K_{0,2}(x,z)K_{0,1}(z,y)dz = \sum_{n \in \mathbb{N}^{d_2}} \sum_{k \in \mathbb{N}^{d_1}} a_{n,k}l_{d_2,n}(x)l_{d_1,k}(y) = K(x,y).$$

Hence, if T_j is the operator with kernel $K_{0,j}$, j = 1, 2, then $T = T_2 \circ T_1$. Furthermore,

$$\sup_{n,k} |b_{n,k}e^{\frac{A}{2}(|n|^{1/\alpha}+|k|^{1/\alpha})}| \le \sup_{n,k} |a_{n,k}e^{A(|n|^{1/\alpha}+|k|^{1/\alpha})}| < \infty$$

and

$$\sup_{n,k} |c_{n,k}e^{\frac{A}{4}(|n|^{1/\alpha}+|k|^{1/\alpha})}| = \sup_{n} |e^{-\frac{A}{2}|n|^{1/\alpha}}e^{\frac{A}{2}|n|^{1/\alpha}}| < \infty.$$

This implies that $K_{0,1} \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_1+d_1}_+)$ and $K_{0,2} \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_1}_+)$ (see Theorem 2.1). If we put $K_1 = K_{0,1}$ and $K_2 = K_{0,2}$, we proved (R) in the case when $d_0 = d_1$.

In order to prove (B) assume that $K \in g^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_1})$ and let $a_{n,k}$ be the same as the above. Then (3.4) holds for any A > 0, which implies that if $N \ge 0$ is an integer, then

(3.6)
$$\Sigma_N = \sup\{|k| : |a_{n,k}| \ge e^{-2(N+1)(|n|^{1/\alpha} + |k|^{1/\alpha})} \text{ for some } n \in \mathbb{N}^{d_2}\}$$

is finite. Let $I_1 = \{k \in \mathbb{N}^{d_1} : |k| \le \Sigma_1 + 1\}$ and define inductively

$$I_j = \{k \in \mathbb{N}^{d_1} \setminus I_{j-1} : |k| \le \Sigma_j + j\}, \ j \ge 2.$$

Then

$$I_j \cap I_k = \emptyset$$
 when $j \neq k$, and $\mathbb{N}^{d_1} = \bigcup_{j \ge 1} I_j$.

Let $K_{0,1}$ and $K_{0,2}$ be as in (3.5) where

$$c_{n_1,k} = \chi_{n_1,k} e^{-j|k|^{1/\alpha}}$$
 and $b_{n_2,k} = a_{n_2,k} e^{j|k|^{1/\alpha}}$,

 $n_1 \in \mathbb{N}^{d_1}, n_2 \in \mathbb{N}^{d_2}$ and $k \in I_j$. If T_j is the operator with kernel $K_{0,j}, j = 1, 2$, then it follows that $T = T_2 \circ T_1$. Moreover, if A > 0 we have

$$\sup_{n,k} |b_{n,k}e^{A(|n|^{1/\alpha}+|k|^{1/\alpha})}| \le J_1 + J_2,$$

where

(3.7)
$$J_1 = \sup_{j \le A+1} \sup_{n} \sup_{k \in I_j} |b_{n,k} e^{A(|n|^{1/\alpha} + |k|^{1/\alpha})}|$$

and

(3.8)
$$J_2 = \sup_{j>A+1} \sup_{n} \sup_{k \in I_j} |b_{n,k}e^{A(|n|^{1/\alpha} + |k|^{1/\alpha})}|.$$

We will prove that J_1 and J_2 are finite. Since in (3.7) we have the finite numbers of k, from (3.4) and the definition of $b_{n,k}$ we obtain that J_1 is finite.

For J_2 we have

$$J_{2} = \sup_{j>A+1} \sup_{n} \sup_{k \in I_{j}} |a_{n,k}e^{A|n|^{1/\alpha} + (A+j)|k|^{1/\alpha}}|$$

$$\leq \sup_{j>A+1} \sup_{n} \sup_{k \in I_{j}} |e^{-2j(|n|^{1/\alpha} + |k|^{1/\alpha})}e^{A|n|^{1/\alpha} + (A+j)|k|^{1/\alpha}}| < \infty$$

where the first inequality follows from (3.6). Hence,

$$\sup_{n,k} |b_{n,k} e^{A(|n|^{1/\alpha} + |k|^{1/\alpha})}| < \infty,$$

which implies that $K_{0,2} \in g^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_1}_+)$.

In a similar way if we replace $b_{n,k}$ with $c_{n,k}$ in the definition of J_1 and J_2) we obtain

$$\sup_{n,k} |c_{n,k} e^{A(|n|^{1/\alpha} + |k|^{1/\alpha})}| < \infty$$

which implies $K_{0,1} \in g_{\alpha}^{\alpha}(\mathbb{R}^{d_1+d_1})$ and (B) follows in the case $d_0 = d_1$.

Next, assume that $d_0 > d_1$ and let $d = d_0 - d_1 \ge 1$. Then we set

$$K_1(z,y) = K_{0,1}(z_1,y)l_{d,0}(z_2)$$
 and $K_2(x,z) = K_{0,2}(x,z_1)l_{d,0}(z_2),$

where $z_1 \in \mathbb{R}^{d_1}_+$, $z_2 \in \mathbb{R}^d_+$ and hence, $z = (z_1, z_2) \in \mathbb{R}^{d_0}_+$. Next, we obtain

$$\int_{\mathbb{R}^{d_0}_+} K_2(x,z) K_1(z,y) dz = \int_{\mathbb{R}^{d_1}_+} K_{0,2}(x,z_1) K_{0,1}(z_1,y) dz_1 = K(x,y).$$

In this case the assertion (R) and (B) follows from the equivalences

$$K_{1} \in G_{\alpha}^{\alpha}(\mathbb{R}^{d_{0}+d_{1}}_{+}) \ (g_{\alpha}^{\alpha}(\mathbb{R}^{d_{0}+d_{1}}_{+})) \iff K_{0,1} \in G_{\alpha}^{\alpha}(\mathbb{R}^{d_{1}+d_{1}}_{+}) \ (g_{\alpha}^{\alpha}(\mathbb{R}^{d_{1}+d_{1}}_{+}))$$

and

$$K_2 \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_0}_+) \ (g^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_0}_+)) \iff K_{0,1} \in G^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_1}_+) \ (g^{\alpha}_{\alpha}(\mathbb{R}^{d_2+d_1}_+)).$$

It remains to prove the result in the case $d_0 \geq d_2$. The rules of d_1 and d_2 are interchanged when taking the adjoint opeartors. Hence, the result follows from the first part of the proof in combination with the facts that G^{α}_{α} and g^{α}_{α} are invariant under pullbacks of bijective linear transformations i.e. $(x, y) \mapsto F(x, y)$ belongs to $G^{\alpha}_{\alpha}(\mathbb{R}^{d_1}_+ \times \mathbb{R}^{d_2}_+)$ if and only if $(y, x) \mapsto \overline{F(x, y)}$ belongs to $G^{\alpha}_{\alpha}(\mathbb{R}^{d_2}_+ \times \mathbb{R}^{d_1}_+)$. The proof is complete.

Acknowledgement

This work is supported by the Project 19/6-020/961-38/15 of the Republic of Srpska Ministry of Science and Technology.

References

- R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45-57.
- [2] Y. Chen, M. Signahl, J. Toft, Factorizations and singular value estimates of operators with Gelfand-Shilov and Pilipović kernels, arXiv:1511.06257
- [3] A. J. Duran, Laguerre expansions of Tempered Distributions and Generalized Functions, Journal of Mathematical Analysis and Applications 150(1990), 166-180.
- [4] A. J. Duran, Laguerre expansions of Gel'fand-Shilov spaces, J. Approx. Theory 74 (1993), 280-300.
- [5] S. Jakšić, B. Prangoski, Extension theorem of Whitney type for $\mathcal{S}(\mathbb{R}^d_+)$ by the use of the Kernel Theorem, Publ. Inst. Math. Beograd, 99 (113) (2016), 59-65.
- [6] S. Jakšić, S. Pilipović, B. Prangoski, G-type spaces of ultradistributions over R⁴₊ and the Weyl pseudo-differential operators with radial symbols, arXiv:1602.04017.
- [7] Czesław Klis, A simple proof of the identity $S \circ S = S$, in: Proc. of the Conference on Convergence and Generalized Functions, Katowice 1983, Preprint of the Institute of Math., Polish Academy of Sci., pp. 71-74.
- [8] H. Komatsu, Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105.
- [9] S. Pilipović, On the Laguerre expansions of generalized functions, C. R. Math. Rep. Acad. Sci. Canada 11(1) (1989), 23-27.
- [10] J. Toft, A. Khrennikov, B. Nilsson, S. Nordebo, *Decompositiond of Gelfand-Shilov kernels into kernels of similar class*, Journal of Mathematical Analysis and Applications, 396 (1) (2012), 315-322.
- [11] J. Voigt, Factorization in some Fréchet algebras of differentiable functions, Studia Math. 77 (1984), 333-348.
- [12] A. I. Zayed, Laguerre series as boundary values, SIAM J. Math. Anal. 13(2) (1982), 263-279.