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Spectral Pairs� Mixed Hodge Modules� and Series

of Plane Curve Singularities

A� N�emethi and J�H�M� Steenbrink

Abstract� We consider a mixed Hodge moduleM on a normal surface sin�

gularity �X� x� and a holomorphic function germ f � �X� x� � �C� �� For the
case that M has an abelian local monodromy group� we give a formula for
the spectral pairs of f with values in M� This result is applied to generalize
the Sebastiani�Thom formula and to describe the behaviour of spectral pairs
in series of singularities�
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�� Introduction

Spectral pairs were introduced �rst in ��	� as discrete invariants of the mixed
Hodge structure on the vanishing cohomology of an isolated hypersurface singular�
ity� The spectral pairs which are considered in this article are de�ned following a
slightly di�erent convention� as in ����� This invariant encodes the dimensions of
the eigenspaces of the semisimple part Ts of the monodromy acting on each sub�
quotient GrWp�qGr

p
F of the vanishing cohomology� and takes its values in the group

ring Z�Q� Z��
Instead of vanishing cycles with constant coe�cients one may consider vanishing

cycles with coe�cients in a mixed Hodge module ����� We are led to consider
these in the study of composed functions f � p � � where � � �X� x� � �C�� ��
is a ��parameter smoothing of an isolated complete intersection singularity and
p � �C�� ��� �C� �� is a holomorphic function germ� The main result of this article
gives a formula for the spectral pairs for such p at � with values in a mixed Hodge
module on �C�� �� in terms of a decorated graph associated with p�������� where
� is the discriminant of the mixed Hodge module� under the assumption that the
latter has an abelian local monodromy groupG� In fact� in the Main Theorem ������
�C�� �� has been replaced by an arbitrary normal surface singularity� The mixed
Hodge module we consider gives rise to a limit mixed Hodge structure on which
G acts �� and this action is used as input for the formula� The assumption about
abelian monodromy is always ful�lled in case the complement of � has abelian local
fundamental group� e�g�� when � has normal crossings� We obtain generalizations
of the Sebastiani�Thom formula �the case where � � f � g with f and g isolated
hypersurface singularities� in Section ��� We also obtain formulas describing the
behaviour of the spectral pairs in certain series of singularities� which generalize
����� where the case of Yomdin�s series was treated�
A quick review of mixed Hodge modules and vanishing cycle functors is given in

Section �� which also contains the de�nition of spectral pairs and their basic proper�
ties� The �avour of our result is described in Section � by reformulating the case of
a ��dimensional base� The ingredients of the main formula are de�ned in Section ��
whereas its statement and proof form the content of Section �� Some illustrative
examples are treated in Section �� Sections 	��� deal with the application to series
of singularities�
The authors thank the MSRI at Berkeley for its hospitality in May ��� when

part of this work was done� The �rst author thanks the University of Nijmegen for
its hospitality in the academic year ����� when this paper was �nished�
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�� Mixed Hodge Modules and Spectral Pairs

Let X be a �separated and reduced� complex analytic space� In ���� the category
MHM�X� of mixed Hodge modules on X is associated with X � This category is
stable under certain cohomological functors� for example under Hjf� and Hjf � as�
sociated with a morphism f of complex analytic spaces� and under Hjf� associated
with a projective �or proper K�ahler� morphism f � Moreover� if g is a holomorphic
function on X and X� � g������ then the vanishing and the nearby cycle functors
�g � �g � MHM�X� � MHM�X�� are de�ned� All these functors are compatible
with the corresponding perverse cohomological functors on the underlying perverse
sheaves via the forgetful �exact� functor

rat �MHM�X�� Perv�QX �

which assigns to a mixed Hodge module the underlying perverse sheaf �with Q
coe�cients�� �For the de�nition of the functors �g and �g at the level of the
constructible sheaves� see �����
The vanishing and nearby cycle functors have a functor automorphism Ts of �nite

order� It is provided by the Jordan decomposition T � Ts � Tu of the monodromy
T �
One has the decompositions�

�g � �g�� � �g���� respectively �g � �g�� � �g����

such that Ts is the identity on �g�� and �g�� and has no ��eigenspace on �g� ��� and
�g����� One has the canonical morphisms�

can � �g � �g and V ar � �g � �g�����

compatible with the action of Ts� such that

can � �g����
�
�� �g� ������

is an isomorphism�
Let DbMHM�X� be the derived category of MHM�X� �i�e�� the category of

bounded complexes whose cohomologies are mixed Hodge modules on X�� Let
i � Y � X be a closed immersion and j � U � X the inclusion of the complement
of Y � Then the cohomological functors are lifted to functors i�� i

�� i�� j�� j�� j�� and
we have the functorial distinguished triangles forM� DbMHM�X��

� j�j
�M�M� i�i

�M
��
���

� i�i
�M�M� j�j

�M
��
��� �

���

The connection between the two sets of functors is the following� SetX� � g�����
and let i � X� � X be the corresponding immersion� Then forM� ObMHM�X�
one has�

�� H��i�M� �g��M
can
��� �g��M�H�i�M� ��

�� H�i�M� �g��M
V ar
��� �g��M����� H�i�M� ��

���

and Hk��i�M � Hki�M � � if k 	� f�� �g�



��� A� N�emethi and J�H�M� Steenbrink

On the other hand� if f � X � Y is a proper morphism and g is a holomorphic
function on Y � then for anyM� ObMHM�X� one has�

�gH
jf�M � Hjf��g�fM �and similarly for ������

Example ���� Assume thatX is smooth� A mixed Hodge moduleM�MHM�X�
is called smooth if ratM is a local system �������

Example ���� The moduleM is called pure of weight n �or a polarizable Hodge
module of weight n� if GrWi M � � for i 	� n�
The category of smooth polarizable mixed Hodge modules is equivalent to the

category of variation of polarizable mixed Hodge structures which are admissible
in the sense of ����

Example ���� MHM�point� is the category of polarizable Q�mixed Hodge struc�
tures ����� ������

If g� and g� are two holomorphic functions such that g
��
� ��� intersects g

��
� ���

transversally along X�� then

�g��g� � �g��g� �MHM�X��MHM�X�� �the same for ��s��

In this case �g��g�M has two commuting monodromies T� and T� induced by the
��functors�
Moreover� consider the holomorphic functions g�� � � � � gs such that s � dimX

and the intersection 
si��g
��
i ��� is a regular point x � X � and the divisor �si��g

��
i ���

in a neighbourhood of x has normal crossings� Then on �g� � � ��gsM�MHM�fxg�
the commuting set of monodromies T�� � � � � Ts acts� We make the set of this type
of objects more explicit� For the de�nition of mixed Hodge structures� see ����

De�nition ���� For any abelian group G we let MHS�G� denote the category of
representations

� � G� AutMHS�H�

for H a mixed Hodge structure� For such � we let �pq denote the induced represen�
tation of G in AutC�H

pq�� where Hpq � GrWp�qGr
p
FHC�

Example ���� LetM be a mixed Hodge module on X � g � X � C holomorphic
and x � g������ Then for all j � Z� we have the objects Hji�x�gM and Hji�x�gM
of MHS�Z�� where the action of � � Z is the semisimple part of the monodromy�
By the monodromy theorem� this is an automorphism of �nite order�

De�nition ��	� For � � Z� Aut�H� in MHS�Z� with �nite order one de�nes�
hpq� �� multiplicity of t� � as a factor of the characteristic polynomial of �pq���

�for � � C��
and

Spp��� �
X
��w

h
��	�w���	
e��i�

�	�w� � Z�Q� Z��

where �	� is the integral part of 	� Moreover� for g � X � C holomorphic and
x � g����� one de�nes for a mixed Hodge moduleM on X �

Spp��M� g� x� ��
X
j

����jSppHji�x�gM�

Spp��M� g� x� ��
X
j

����jSppHji�x�gM�
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These take their values in Z�Q� Z��

Remark ���� In ��	� the invariant SppSt�g� �� of spectral pairs was de�ned for
an isolated hypersurface singularity g � �Cn��� �� � �C� ��� Its relation with the
invariants above is as follows�

if SppSt�g� �� �
X

n��w�	�w�� then

Spp��Q
H
Cn�� �n� ��� g� �� �

X
���Z

n��w�n� 	�w� �
X
��Z

n��w�n� 	�w � ���

Example ��
� Let X be a smooth space�germ� Y � X a reduced divisor� and
x � Y � Let V be a polarized variation of Hodge structure on X n Y such that its
underlying representation is abelian and quasi�unipotent� Then one obtains a limit
mixed Hodge structure LV at x equipped with a semi�simple action of H��X nY ��
cf� ��� i�e�� an object of MHS�H��X n Y ���
If Y has irreducible components Y�� � � � � Ys� then H��X n Y � is free abelian on

generatorsM�� � � � �Ms� whereMj is represented by an oriented circle in a transverse
slice to Yj �

Lemma ���� a� There is an unique way to extend the de�nition of Spp��M� g� x�
to M� ObDbMHM�X� in such a way that for any distinguished triangle

M� �M�M�� ��
���

one has

Spp��M� g� x� � Spp��M
�� g� x� � Spp��M

��� g� x��

b� For u � O�
X�x one has

Spp��M� ug� x� � Spp��M� g� x��

c� Spp��M� g� x� �
P

l Spp��Gr
W
l M� g� x� for M� ObMHM�X��

d� Let T �p� q� � Z�Q � Z� � Z�Q � Z� be the automorphism mapping �	�w� to
�	� p� w � p� q�� Then

Spp��M�QH
X�k�� g� x� � T ��k��k��Spp��M� g� x���

e� We let Hji�xM�MHS�Z� with trivial representation� Then

Spp��M� g� x� � Spp��M� g� x� �
X
j

����jSpp�Hji�xM��

f� Let cn � Z�Q�Z�� Z�Q�Z� �n � N�� be the unique map which sends �	�w�

to
Pn��

k�� ��	� �
f�g�k

n
� w�� �here �
� �resp� f
g � 
 � �
�� is the integer part

�resp� the fractional part� of 
�� Then�

Spp��M� fn� x� � cn Spp��M� f� x��

The properties a��d� also hold with � instead of ��

The proof is left to the reader�
During the paper the notation QH

X means a�XQ
H
pt� where aX � X � pt is the

constant function �see ����� p� �����
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�� The General Setup

Assume a complex analytic space X and a point x � X are given� The invariant
Spp��M� f� x� depends onM and on f in a complicated way� We want to decom�
pose it into one step depending only on M� and a combinatorial step depending
mainly on f � To illustrate this� we �rst treat the case where dim�X� � ��

Example ���� Let X be one�dimensional� x � X and f � X � C non�constant
holomorphic with f�x� � �� Assume that X is irreducible at x� LetM be a mixed
Hodge module on X � We will indicate how to compute Spp��M� f� x��

Let � � �X � X be the normalization of X � and let t be a uniformizing parameter
at �x � ����x�� Then f � � � u � tn for some germ u � O�


X�
x
and n � N�� If

N � H���M� then by ��� and Lemma �� b and f� one has�

Spp��M� f� x� � cn Spp��N � t� �x��

Moreover� Spp��N � t� �x� � Spp�LM� Ts� with LM the limit mixed Hodge structure
ofN at �x �observe that the restriction of N to a punctured neighbourhood of �x is an
admissible variation of mixed Hodge structure� and Ts is the semi�simple part of the
monodromy T � Hence Spp��M� f� x� � cn Spp�LM�� Here LM depends only on
M� and n depends only on f � This means that the computation of Spp��M� f� x�
goes in two steps� The �rst one� the computation of LM as an object ofMHM�Z��
does not involve f � In the second step� only the multiplicity n of �x as a zero of f ��
matters�

We are going to generalize the previous example to the two�dimensional case�
The �rst step� passage fromM to LM� is possible ifM has an abelian monodromy
group� which satis�es the condition of Example ��
� and gives rise to an object
LM of MHM�G�� where G � H��X n Y � and Y is the critical locus of M� The
second step involves identi�cation of the relevant discrete invariants of the function
f � X � C at x� We will use the decorated resolution graph � of f with respect to
Y � to be de�ned in Example ���� We will also de�ne a map �see De�nition ����

Spp� �MHM�G�� Z�Q� Z�

with the property that

Spp��M� f� x� � Spp��LM��

provided that V � j�M is a polarized variation of Hodge structure� and M �
j�j

�M� where j � X n Y � X is the inclusion�
This is the main result of the paper�

�� The De�nition of Spp�

In this sectionX is a two�dimensional analytic space� Y � X is a reduced divisor�
x � Y a normal singularity of X � Assume that �X�Y � is contractible onto x� Let
S�Y � be the set of irreducible components of Y at x�

De�nition ���� A decorated graph for �Y� x� is a �nite connected graph �� without
edges connecting a vertex to itself� with set of vertices V and set of edges E and the
following data and conditions�

a� V � D t S with D� S non�empty and an injection S�Y � �� S�



Spectral Pairs ���

b� a map e � D � Z such that the matrix A on D �D given by

A�d� d�� �

��
�

e�d� if d � d� �
� if d 	� d� and �d� d�� 	� E �
� if d 	� d� and �d� d�� � E

is negative de�nite�
c� a map g � D � N�
d� a map m � S � N taking at least one non�zero value�
e� For any d � D� let Vd � fv � V j dist�v� d� � �g be the set of neighbors of

d in �� Let ZV be the free abelian group generated by f�v�gv�V � De�ne the
group G��� as the quotient of ZV by the subgroup generated by the following
relations�

e�d��d� �
X
v�Vd

�v� � � �d � D�

or X
d��D

A�d� d���d�� �
X

v�VdnD

�v� � � �d � D��

Let l be the composition ZS �� ZV � G���� and let m � ZS � Z be the
linear extension of m �i�e�� m�s� � m�s��� Then we assume that m can be
extended to G���� i�e�� there exists m� � G���� Z such that m� � l � m�

Our maps are summarized in the following diagram�

�

ZS Z

ZV G���

�

coker�A�

m
�

����



�
��

�
��

�
��

�
��

l

Notice that cokerA is a �nite group of order detA� therefore if A is unimodular
l is an isomorphism and the assumption in e� is automatically satis�ed�

De�nition ���� For v � V we de�ne� mv � m���v��� v �  Vv� and Mv � G���
as the image of �v� by the natural projection� For d � D we denote gd �� g�d��

It is a well�known fact that all the entries of the matrix �A�� are strictly positive
if A is a matrix as in De�nition ����b� In particular� md � � for any d � D�

De�nition ���� Fix a character � � G��� � C� of �nite order� Let 
v � ��� �� be
such that exp ��i
v � ���v���
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For d � D we de�ne Sppd��� as follows�
For each v � Vd and k � f�� � � � �md � �g de�ne�

Rkv
d � f�
v �

mv

md

�k � 
d�g�

	kd � f
k � 
d
md

g�

We let Rk
d �

P
v�Vd

Rkv
d � and 

k
d �  fv � R

kv
d 	� �g� Then Sppkd��� ����

�
��	kd� �� � �d � �� � �	

k
d � �� �� � gd�	

k
d � �� � gd�	

k
d � �� �� if Rk

d � �
�gd �Rk

d � ���	
k
d� �� � �gd � kd �Rk

d � ���	
k
d � �� �� � �d � kd��	

k
d � �� ��

else�

and

Sppd��� ��

md��X
k��

Sppkd����

For e � �v� w� � E we de�ne Sppe��� as follows� Let me �� g�c�d��mv �mw�� The
system of equations� �

f
vg � fmv�e�meg
f
wg � fmw�e�meg

either has a solution �e � R�Z or has not� We de�ne Sppe��� by�

Sppe��� ��

� Pme��
k�� �f

k��e
me

g� ��� �fk��e
me

g� �� �� if �e exists

� otherwise

Finally� we let

Spp���� ��
X
d�D

Sppd��� �
X
e� 
E

Sppe����

where �E �� E 
 �D �D��

Rk
d � N� therefore Spp���� � Z�Q� Z��

De�nition ���� Let � � MHS�G����� The representation �pq splits into a direct
sum of characters

�pq � �d�p�q�
i�� �pqi � d�p� q� � dimHp�q�

We de�ne

Spp���� ��
X
p�q

d�p�q�X
i��

T �p� q�Spp���
pq
i ��

Example ���� Let X be a two�dimensional complex analytic space with normal
singularity at x� Let Y � X be a �reduced� divisor such that the pair �X�Y � is
contractible to x and X nY is smooth� As in Section �� S�Y � is the set of irreducible
components of Y at x�
We now consider a holomorphic function p � X � C and construct a decorated

graph �� the decorated resolution graph of p with respect to �Y� x�� The point
x � X is an isolated singular point of the reduced curve p����� � Y � We let S
denote the set of branches of p����� � Y at x� then S�Y � � S� Let � � U � X be
an embedded good resolution of p������Y � Then D �� ����Y �p������ is a union
of smooth curves on the two�dimensional complex manifold U � Let E � ����x�
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and let D be the set of irreducible components of E� and V � D t S� We assume
that D 	� �� For v � V we let Dv be the corresponding irreducible component of E
if v � D and the strict transform of the corresponding local irreducible component
of Y � p����� for v � S� The edges of � are pairs �v� w� for which v 	� w and
E
Dv
Dw 	� �� We let g�d� � the genus of Dd and e�d� � Dd �Dd for d � D� The
matrix A as de�ned in �����b� is then the intersection matrix of the components of
E� which is negative de�nite� Finally we let m�v� be the order of zero of p along Dv

for v � S� or even for v � V � Then m vanishes on the relations �����e� because the
divisor ���p������ on U is linearly equivalent to zero� hence has zero intersection
product with each Dd �d � D�� The induced map with source G��� is m��
EachMv �v � V� can be represented inH��Xnp������Y � by an oriented circle in

a transversal slice to Dv� They generate the subgroup G��� of H��X n p������Y ��
Actually� there exists an exact sequence

�� G���
i
� H��X n p����� � Y �� H��E�� ��

Since H��E� is a torsion free group� the above sequence splits�
Notice that for any s � S we have exactly one ds � D such that �s� ds� � E �

	� The Main Result

Assumption� In this section� X is a two�dimensional complex analytic space�
x � X a normal point on X � and Y � X a reduced divisor with x � Y � Assume
that X n Y is smooth and connected� Let V be a polarized variation of Hodge
structure on X n Y such that its underlying representation � is abelian and quasi�
unipotent� Consider K �� im� � Aut�H� and its torsion subgroup T � If K�T 	� ��
we assume that there exist wj � OX �j � �� � � � � s�� such that Y � �sj��Z�wj�� and

w � �w�� � � � � ws� � X n Y � �C��s induces an epimorphism w� � H��X n Y � � Zs

which �ts in the following commutative diagram�

���X n Y � K

Zs K�T

w�

�

�f

�

�

� �

For such aV� the limit mixed Hodge structure LV �MHS�H��XnY �� exists by
�� �cf� Example ��
�� LetM � j�V where j � X n Y � X is the natural inclusion�
Let p � X � C be a holomorphic function� Let � be a decorated resolution graph

of p with respect to �Y� x� �cf� Example ���� and Spp��LV� the invariant de�ned
in De�nition ��� via the composed map G��� �� H��X np������Y �� H��X nY ��
Our key result is�

Theorem ���� Let X and M be as above� Then�

Spp��M� p� x� � Spp��LV��
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Recall that the spectrum Spp��M� p� x� of a mixed Hodge module M with
irreducible one�dimensional support Y is zero if pjY � �� otherwise it can be
computed as follows� Since M is a polarizable admissible variation of Hodge
structure on Y n fxg� it has a limit mixed Hodge structure LM� The topologi�
cal information from p is the degree deg�pjY � of the map pjY � Y � C� Then
Spp��M� p� x� � cdeg�pjY ��Spp�LM�� �cf� Example �����
If Ys is one of the irreducible components of the critical locus Y ofM and � is

a decorated resolution graph of p with respect to �Y� x�� then deg�pjYs� � m�ds�
where �s� ds� � E �

Theorem ���� Let X and M be as in the Assumption� Let Y � �s�S�Y �Ys be the

irreducible decomposition of �Y� x�� iYv � Yv � X and j � X n Y � X the natural

inclusions� Then�

Spp��M� p� �� � Spp��Lj
�M� �

X
s�S�Y �
pjYs ���

X
k

����kcm�ds� Spp�LH
ki�YsM��

Proof� Use ���� Lemma ��� and Theorem ����

���� The proof of Theorem ���� The proof is divided into three steps�

Step �� Let � � U � X be a resolution of p����� � Y as in Example ����
Set N � H���M and NE � i�E�p��N � where iE � E � ������ � U is the

natural inclusion� Now it is clear that H���N �M modulo terms with support in
f�g� and supp Hj��N � f�g if j 	� �� Therefore� �pHj��N � �pM if j � � and
� � if j 	� �� Hence� by ����

Hj���p��N � � if j 	� �����

Consider the following isomorphisms� i���pM � i���pH
���N

��
� i��H

����p��N
���
�

i�����p��N
���
� ��i

�
E�p��N � ��NE �

The relation ��� follows from i���� � ��i
�
E � For this� notice� that �� � �� because

� is proper ����� ��������� and then use �loc� cit�� ��������

For each d � D� let �Dd � Dd n�d��D	VdDd� and kd � �Dd �� Dd its inclusion� For

each e � �d� d�� � �E denote by ie � Dd 
Dd� � E the natural inclusion� Then by
��� one has the following distinguished triangle�

� �e� 
E�ie��i
�
eNE � NE � �d�D�kd��k

�
dNE �

By the additivity of the functor Spp� we obtain�

Spp�i���pM� � Spp���NE� �
X
e� 
E

Spp�i�eNE� �
X
d�D

Spp����kd��k
�
dNE�����

�Everywhere� the action is the natural monodromy provided by ���

Fix d � D� Let D�
d �

�Dd n St�p
����� � Y � � Dd n �v�VdDv� and jd � D

�
d �� Dd

denotes the natural inclusion�

Lemma ���� The restriction to D�
d of the module N �

E � �kd��k
�
dNE is smooth �i�e��

rat j�dN
�
E is a local system�� Moreover� it satis�es

N �
E � �jd���jd�

�N �
E ��	�
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Proof� By construction� j�dN
�
E � j�dNE � j�d�p��N �

Since ratN restricted to U nD is a local system� and D�
d is a smooth divisor in

U n �v�VdDv� the sheaf rat j
�
d�p��N is a local system� too�

The obstruction to the isomorphism �	� lies in the points P � Dd 
 ��v�SDv� �
�Dd nD�

d�
Take P � Dd
Dv such that pjYv 	� � �v � S�� Then the assumptionM � j�j

�M
and ��� give �p��i

�
Dv
N � �� Now ��� and the commutativity of the vanishing cycle

functors complete the argument in this case�
If P � Dd 
Dv such that v � S and pjYv � �� then see ���� ���	��

Notice that j�dN
�
E � j�dNE � and by Lemma ���� �kd��k

�
dNE � �jd��j

�
dNE � Since

the isomorphismH
�Dd� �jd��j
�
dNE� � H
�D�

d� j
�
dNE� is compatible with the mixed

Hodge structures� one has�

Spp����kd��k
�
dNE� � Spp�H
�D�

d� j
�
dNE���

Step �� The identity Spp�H
�D�
d� j

�
dNE�� � Sppd�LV��

By the additivity of Spp �see �����a� it is enough to proveX
l

Spp�H
�D�
d� Gr

W
l j�dNE�� � Sppd�LV���
�

Since j�dNE is smooth �Lemma ����� Vd�l �� GrWl j�dNE is a polarizable variation
of Hodge structure on D�

d�

Lemma ���� The representation associated with the local system ratVd�l is abelian

and quasi�unipotent�

Proof� D�
d has a neighbourhood homeomorphic to D

�
d � fdiscg�

The importance of this lemma appears in the following�

Lemma ���� Any polarizable variation of Hodge structure on a quasi�projective

smooth curve C� whose underlying local system has a monodromy representation

which is abelian and quasi�unipotent� is locally constant�

Proof� Since the monodromy representation on C is semi�simple ����� ��������� it
follows� that it is a direct sum of one�dimensional representations� which are �nite�
Hence a �nite cover �C of C has trivial local and global monodromies� Therefore a
global marking �C � D can be de�ned in the moduli space of Hodge structures�
This by Gri�ths� theorem ��� can be extended to the smooth closure of �C� But this
extended map is trivial by the rigidity theorem �����

Consider now the limit mixed Hodge structure LV � MHS�H��X n Y ��� Its
representation de�nes a locally constant abelian variation M� on X n Y � In ���
among other facts� the following is proved�

Lemma ��	� Let �C� x� � �X� x� be a curve with C 
 Y � fxg� Let L�MjC��
respectively L�M�jC� be the limit mixed Hodge structures at x of the restrictions

of M� respectively of M�� to C� Then GrWL�MjC� � GrWL�M�jC��

Now� if we replace in the above construction M by M�� then we obtain a
variation V��d�l instead of Vd�l
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Lemma ���� The variations of Hodge structure Vd�l and V��d�l on D�
d are iso�

morphic�

Proof� Both are abelian variations by Lemma ���� with �at Hodge bundles by
Lemma ���� By construction� the underlying representations are the same� We
have only to show that in a �xed point P � D�

d the stalks are isomorphic �by an
isomorphism� which is compatible with the representations��
Let C be a transversal slice to D�

d at a point P � D�
d and t a uniformizing

parameter of �C�P �� Then �Vd�l�P � GrWl �tmd �MjC� � �md

i��Gr
W
l L�MjC�� Sim�

ilar isomorphisms holds for the other variation� therefore the result follows from
Lemma ���� The compatibility follows from the naturality of the constructions�

Therefore� �
� is equivalent toX
l

Spp�H
�D�
d�V��d�l����� � Sppd�LV����

Notice that both sides of �� depend only on the limit mixed Hodge structure LV�

Now� �LV� �� � MHS�H��X n Y �� splits in a direct sum � � �p�q �
d�p�q�
i��

�p�qi � d�p� q� � dimLVp�q � The construction of V��d�l preserves this decompo�

sition� therefore V��d�l � �p�q�l �
d�p�q�
i�� Vp�q�i

��d � We have to show that

Spp�H
�D�
d�V

p�q�i
��d ����� � Sppd��

p�q
i ������

In the sequel we omit the indices p� q and i� Moreover� we can assume that � is of
type �p� q� � ��� ���

Lemma ��
� The variation V��d is md�dimensional� It has a direct sum decompo�

sition �md��
k�� Vk

d in one�dimensional locally constant variations of C�Hodge struc�

ture �of the same type ��� ���� such that the monodromy of Vk
d around the points

�Pd 
 Pv�v�Vd is exp����iRkv
d �� The monodromy action on Vk

d given by the van�

ishing cycle functor is exp���i	kd��

Proof� The veri�cation is local in small neighbourhoods of the points Dd
Dv �v �
Vd�� Here� in a suitable coordinate system � � � � xmdymv � The veri�cation is left
to the reader�

Proof of ���� By Lemma ��
� we have to verify only�

Spp�H
�D�
d�V

k
d����� � Sppkd��������

In order to compute the left hand side of ����� we have to compute the dimensions
hpq of the spaces GrWp�qGr

p
FH


�D�
d�V

k
d�� Then h

pq
� � hpq if � � exp���i	kd�� and

� � otherwise�
Let !
�log "d� be the complex of meromorphic di�erentials on Dd with at worst

logarithmic poles along "d � �v�Vd�Dd
Dv�� and let V denote Deligne�s canonical
extension of Vk

d �C OD�

d
� Now� H��D�

d�V
k
d� � H��Dd�K


�� where K
 is the

complex fr � V � !��log"d��Vg� The Hodge �ltration of this complex is Deligne�s
#�ltration b$ete% ��p� therefore the �rst term of the Hodge spectral sequence is

FE
pq
� � Hq�Dd�K

p�� This spectral sequence degenerates at E��
If Rk

d � �� then V � OD�

d
� Hence E��

� � C� E��
� � Cgd � and E��

� � Cgd�	d���
This case corresponds to the trivial �at bundle� therefore we recover exactly the
mixed Hodge structure of Dd n fd pointsg� In particular� H� � C has type ��� ���
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E��
� has type ��� ��� Cgd � E��

� has type ��� ��� and C	d�� � E��
� �Cgd has type

��� ���
Assume that Rk

d 	� �� Then FE
pq
� � � if p � q 	� � because degV � �Rk

d � �
and deg�O��"� � V�� � Rk

d � d � �� Then by the Riemann�Roch Theorem�
dimE��

� � gd � Rk
d � �� and dimE��

� � gd � d � Rk
d � �� This means that the

only nontrivial cohomological group is H� � H��D�
d�V

k
d�� In order to compute its

Hodge numbers hpq � we need the weight �ltration too�
The weight �ltration of the complex K
 is W��K


 � �� W�K

 � fr � V �

imrg� and W�K

 � K
� The extension W� is a resolution of j�V

k
d and �by �����

H��Dd� j�ratV
k
d� is pure of weight �� On the other hand R�j�ratV

k
d � C	d�	

k
d

and it induces in H� a quotient of weight �� Therefore� the only nonzero Hodge
numbers are� h��� h�� and h��� More precisely� h�� � d � kd � h

�� � gd �Rk
d � ��

and h�� � gd � kd � Rk
d � �� Now the expression for the spectral pairs readily

follows�

Example ���� Assume that d � �� Then Rk
d � � for any k� Therefore Spp

k
d �

��	kd� �� � gd�	
k
d � �� � gd�	

k
d � �� �� for any k�

Example ����� Assume that gd � �� d � � and Vd � fv� wg� Then Rk
d �

Rkv
d � Rkw

d � f�� �g� Using the obvious fact that for x� y � R with x � y � Z
one has fxg � fyg � � if x 	� Z� and � � if x � Z� we obtain that Rk

d � � if

v �

mv

md
�k � 
d� 	� Z and � � otherwise�

Lemma ����� Let ld � g�c�d��md�mv� � g�c�d��mv�mw�� The following assertions

are equivalent�

a� There exists k� � Z such that 
v �
mv

md
�k� � 
d� � Z�

b� There exists �d � R�Z such that�
f
vg � fmv�d�ldg
f
dg � fmd�d�ldg�

c� There exists �d � R�Z such that�
f
vg � fmv�d�ldg
f
wg � fmw�d�ldg�

�Notice that b� or c� determines �d uniquely��
Moreover� if one of these conditions hold� then�


v �
mv

md

�k � 
d� � Z�
�k � k��mv

md

� Z�

Proof� Use the relation �v� � �w� � ed�d� � � �cf� De�nition ����e��

Therefore� the lemma implies that if gd � � and d � �� then

Sppd��� �

� Pld��
k�� ��f

k��d
ld

g� �� � �fk��d
ld

g� �� �� if �d exists

� otherwise�

We will see later that the expression Sppe��� �e � E �� is exactly of this type�
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Step �� The computation of Spp�i�eNE��

Fix a node e � �v� w� � �E � Let us modify the resolution by a blowing up at

the point P � Dv 
Dw� The new resolution is �
� � U � � U

�
�� B� De�ne D� and

E � similarly as in the �rst case� Then D� � D t fDeg� E � � �E n fPg� t fPv� Pwg�
where De is the new exceptional divisor� and Pv � De 
 Dv� Pw � De 
 Dw�
where the strict transforms of Dv and Dw are denoted by the same symbols� Set
E� � ���������� and consider the modules N � � H��

��M and N �
E � H

�i�E��p���N ��

Lemma ����� The mixed Hodge structures i�PNE� i
�
Pv
N �
E and i�PwN

�
E are isomor�

phic in a way compatible with their monodromy action�

Proof� In a neighbourhood of P �resp� of Pv� NE � �p��N �resp� N �
E � �p���N ���

On the other hand� H��i�P�p��N � � H�
c�Fp�� �N �� where Fp�� is the Milnor �ber

of p � � in P � Similarly� H��i�Pv�p���N �� � H�
c�Fp��� �N ��� But� for a suitable

representatives� one has an inclusion of Fp��� into Fp�� �induced by the blowing
up map� which is a homotopy equivalence� and it identi�es the sheaves N and N ��
Moreover� it preserves the monodromy action too� Since rat is an exact functor�
the lemma follows�

Now� if we write ��� for the resolutions � and ��� we obtain that

Spp�i�PvN
�
E� � Spp�i�PwN

�
E� � SppDe

���� � Spp�i�PNE��

Using Lemma ���� one has Spp�i�eNE� � �SppDe
����� Now� the result follows from

the computation of Example �����


� Examples

	��� Abelian coverings� Consider a connected normal surface singularity �X� x�

and a covering � � �X� x� � �C�� �� which is rami�ed over �� Let � � �S���
v�� �v

be the irreducible decomposition of �� Consider a germ� p � �C�� ��� �C� ��� We
are interested in spectral pairs Spp��Q

H
X ���� f� x�� where f is the composed map

f � p � �� The pair ��� �X� x�� is uniquely determined by the nonrami�ed covering
X� � ����B n��� B n� ���� �here �B��� is a good representative��
In particular� the mixed Hodge moduleM � H���Q

H
X ��� on �C

�� �� is completely
determined by the exact sequence

�� ���X
��� ���B n�� ��



�� G� ��

The critical locus ofM is contained in � and the representation ofMjBn� is the
induced representation by � of the regular representation �G of G�
Now� ��� assures� that H
i�x�fQ

H
X ��� � H


i���pM� therefore

Spp��Q
H
X ���� f� x� � Spp��M� p� ���

Suppose� that G is abelian� Then Theorem ��� can be applied� The variation
MjBn� is a �at variation of Hodge structure� It can be identi�ed with �Q

jGj� F�W ��

where GrpFQ
jGj � GrWl QjGj � � if p 	� � or l 	� �� The underlying abelian

representation is

�ab � �G � �
ab � H��B n��Z�� GL�jGj�Q�

where �ab � H��B n��Z� � G is induced by � � Actually� this is the description of
LM� too� In particular Spp��LM� is well�de�ned�
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Let v � S���� The variation i��v
M has the following description� If j � B n��

B is the natural inclusion� then R�j�j
���CX � ��CX and for any point Pv �

�v � f�g one has dim�R�j�j
���CX�P � dim�R

�j�j
���CX�P � av � where above

Pv there lie exactly av points of X � The above spaces can be recovered from the

representation �ab via the expression C
jGj
v � ker��ab�Mv�� �� � CjGj� Let dv � D

be the unique vertex such that �v� dv� � E � Then C
jGj
v is a sub�Hodge structure of

CjGj with the automorphism �ab��Mdv ���
The above discussion shows that M � j�j

�M is one�to�one� In particular�
i�Hki��v

M � � if k 	� �� The exact sequence ��� shows that H�i��v
M is of type

��� ��� Its restriction to �v�f�g is a locally constant variation� it can be identi�ed

with C
jGj
v ���� with monodromy �ab��Mdv ��� Similarly as above� its limit LH

�i��v
M

has the same presentation too�
Finally� notice that degree�f j�v� � m�dv��

Proposition 	���

Spp��Q
H
X ���� f� x� � Spp��C

jGj� �ab��
X

v�S���
pj�v ���

cm�dv�Spp�C
jGj
v ����� �

ab��Mdv ����

Example 	��� The case of Hirzebruch�Jung singularities� Let �z�� z�� be a
local coordinate system in �C�� ��� We make the above formula more explicit in the
case when � � fz�z� � �g�
Let An�q � C��Zn be the cyclic quotient singularity� where the action of G � Zn

is given by �u�� u�� �� ��u�� �
pu��� � � exp���i�n� and pq � ��modn�� Then

� � An�q � C� given by zi � uni �i � �� �� de�nes a covering which is rami�ed over
fz�z� � �g�
In this case� the covering transformation group is G � Zn� and

�ab � H��B n��Z� � Z� � Zn

is �ab�e�� � $�� �
ab�e�� � c�q�

On the other hand� for any v � S��� one has C
jGj
v � C and the transformation

�ab��Mdv �� is the identity� Therefore�

Spp��Q
H
X ���� p � �� x� � Spp��C

n� �ab��
X

v�S���
pj�v ���

mdv��X
k��

�
� �

k

mdv

� �

�
�

Example 	��� Take p�z�� z�� � z� � z� in Example ���� For x � R take �x� � �
if x � Z� and � � if x 	� Z� Then�

Spp��Q
H
X ���� p � �� x� � ���� �� �

n��X
i��

�
��

�
�i

n

�
�

�
qi

n

�
� �� 

�
�� q

n
i

��
�

Remark ���� Above� we computed the spectral pairs of a composed function f �
By our general result� we can compute Spp��Q

H
X ���� f� x� of an arbitrary function

f � �X� x� � �C� ��� provided that we know the decorated resolution graph of f
�cf� the second part of this section��
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	��� The case of the trivial mixed Hodge module� Let �X� x� be a normal
surface singularity and f � �X� x� � �C� �� an analytic germ� Assume that M �
QH
X ���� The limit LM is the one�dimensional mixed Hodge structure QH with

trivial action and GrWl QH � GrpFQ
H � � if l 	� � or p 	� �� Denote the set of

spectral pairs merely by Spp��f�� By Theorem ��� one has� Spp��f� � Spp��Q
H��

where � is the decorated resolution graph of f �
Let h � rank H���� be the number of independent cycles of �� Alternatively�

h � rank H��E�� rank H�� �E�� where �E is a smooth model for E � ����x��
By a computation� we obtain an #almost symmetric% form of Spp��f��

Proposition 	��� Let g �
P

d�V gd� R
k
d �

P
v�Vd

fk � mv�mdg� and R��n� �

f�� � � � n� �g� Then�

Spp��f� � �h� ����� �� � �h� S � ����� �� � g��� �� � g��� ��

�
X
s�S

X
k�R��m�es��

�� �
k

m�es�
� �� �

X
e� 
E

X
k�R��me�

��
k

me

� �� � ���
k

me

� ���

�
X
d�D

X
k�R��md�

Rk
d��

��
k

md

� �� � ���
k

md

� ���

�
X
d�D

X
k�R��md�

Rk
d ���

�Rk
d � �� ��

k

md

� �� � ���
k

md

� ���

�
X
d�D

X
k�R��md�

gd��
k

md

� �� � ���
k

md

� ����

Here m�es� � g�c�d��m�s��m�ds��� where ds is the unique vertex in D with �s� ds� �
E�

Example 	�	� Let �X� x� � fz� � �x� y���x� � y��g � �C�� �� and f�x� y� z� � z�
Then the decorated resolution graph is the following�

s

s

s

s

�

�

�

�
����

����

����

����

�



�

�

In parentheses are the numbers ed� the others are the multiplicities� All excep�
tional divisors are rational� The spectral pairs are�

Spp��f� �

�X
k��

��k�� �� � ����� �� � ����� �� � � � ��� ���

Remark ���� Using ��� one has� Spp��f� � Spp��f� � ��� ���
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�� Topological Series of Curve Singularities

Let p � �C�� �� � �C� �� be a curve singularity with irreducible decomposition
p �

Qr
j�� p

mj

j � and � � �C�� �� a reduced one�dimensional analytic space�germ
with irreducible decomposition �si���i� Let � be the decorated resolution graph of
p����� ��� Let S��� �resp� S�p�� be the subset of S corresponding to the strict
transforms St��i� �resp� St�p

��
j ������ Recall that the multiplicity of a vertex v � V

is the multiplicity of p �� on the divisor Dv � In particular� the multiplicities of the
vertices v � S are� fmjgrj�� corresponding to s � S�p�� and ms � � corresponding

to s � S��� n S�p� In the sequel we use the index notation j � f�� � � � � rg for the
set S�p��
The schematic graph of �� together with multiplicities� is�

�

�

�

�

�
�

�
�

�

�

���

���

���

���
���

mr

m�

S��� n S�p� D S�p�

s

s

lr

l�
����

The vertices indexed by D are in the box� Those indexed by S are drawn as
arrows� The arrows from the left�hand side corresponds to S��� n S�p�� those from
the right�hand side to S�p��
For each j � S�p�� let dj � D be the unique vertex which is adjacent to j� The

corresponding exceptional divisor �Ddj � is denoted by Ej and its multiplicity is
lj � mdj � The intersection point Dj 
 Ej is denoted by Pj �

De�nition ���� The topological series of curve singularities belonging to p� relative
to �� consist of all curve singularities p� such that there are decorated resolution
graphs � of p����� ��� and �� of �p������� �� respectively� such that � has form
����� and �� has the following form�

�r

��

�

�

�

�

�

�

� �
�

�
�

�

�
�

�

�

���

���
���

���

���

���
���

���
���

s s

s s

lr�mr

l��m�

lr

l�
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The index sets D��S � and E � are de�ned similarly as D�S and E � For j �
f�� � � � � rg� the new index set of exceptional divisors �resp� of strict transforms or
arrows� of �j is denoted by Dj �resp� Sj�� Therefore D� � D t �tjDj�� S � �
�S n S�p�� t �tjSj�� and E � � E t �tjEj� t �tjfejg�� where Ej are the edges in �j �
and ej is the new edge which joins � and �j �
It can happen that the box �j is empty� In that case� instead of �j we have just

an arrow as in the case of ��

���� Geometric meaning� Let Uj be a small neighbourhood of Pj � Dj 
 Ej �
Fix a coordinate system �x� y� in Uj so that� Uj 
Dj � fy � �g� Uj 
Ej � fx � �g
and p � �jUj � xljymj �
De�nition 	�� has the following meaning� p� � �jUj � �pj�x� y�xlj � where �pj is a

curve singularity at Pj such that�

a� the line fx � �g is not in the tangent cone of f�pj � �g�
b� the multiplicity of �pj at Pj is mj �

If �pj �
Qrj

k�� p
mjk

jk is the irreducible decomposition of �pj � then
P

kmjk�x� pjk�Pj �

mj � Here ��� ��Pj denotes the intersection multiplicity at the point Pj �
We de�ne the numbers f�jgrj�� as follows� If j � S�p� nS���� then the index set

Sj is exactly f�� � � � � rjg� we set �j � �� If j � S�p� 
 S��� �i�e�� fpj � �g � �sj ��
then one of the following conditions must hold�

�� St��sj � � fpjk � �g for some k �i�e�� pjk�x� y� � y�� or
�� St��sj � 	� f�pj � �g�

In the �rst case� Sj � f�� � � � � rjg� and we set �j � �� In the second case� Sj �
f�� � � � � rjg�fsjg� and we take �j � �� This shows� that the index set S ����nS ��p��
�which is crucial in the main theorem ���� is �S��� n S�p�� t tj��j��fsjg�

It is clear� that the diagram �j is a part of the decorated resolution graph ��j
of p� � �jUj �relative to fxy � �g�� Actually� the resolution graph ��j can be
obtained from �j by adding an arrow corresponding to the strict transform of
fx � �g � Ej 
Uj � The arrow takes the place of the new edge ej � which in �� joins
� and �j � Notice� that the multiplicity of �the strict transform of� Ej is lj �

�

�
� �

�
���

���s

lj�mj

��j � lj
ej

����

Remark ���� A compatible de�nition of the topological series of curve singularities
can be given using Eisenbud�Neumann diagrams ��� �see ���� in the case � � ��
and ��� in the general case��

���� Topologically trivial series�

De�nition ���� ��� We say that p� is an element of the #topologically trivial
series% belonging to p� relative to �� if for any j � f�� � � � � rg either �pj�x� y� �
ymja�x� y� or �pj�x� y� � �y � xbj b�x� y��mja�x� y� where a� b � O�

Uj
and bj � ��

In the de�nition� #topologically trivial% means that the topological types of the
germs p and p� are the same� but the positions of their zero set with respect to �
are di�erent�
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In the �rst case ��pj � ymja� one has �j � � and the topological modi�cation�
even relative to �� is trivial� In the second case �j � �� and the diagram �j is as
follows�

s s s s s�
�

��
���

HHHHj

��� � � �
lj lj�mj lj��bj���mj lj�bjmj

E�

mj

�

�

	 
z �
����

���� Intrinsic invariants� Notice that the choice of the graphs � and �� is not
unique� Therefore� the numbers bj � lj �or even the cycle �Mdj �� have no intrinsic�
geometric meaning� In our computations� we wish to express the spectral pairs in
terms of some intrinsic invariants� Actually� this paragraph makes the connection
between the set of numerical data used in the decoration of the resolution graph
and those used in the Eisenbud�Neumann diagrams�
Fix j � f�� � � � � rg such that �j � ��
We de�ne

nj ��
X

i�S�p�nfjg

�A���dj � di�mi�

where A is the intersection matrix of � as in De�nition ����
Let �j be the multiplicity of pj on Ej � i�e�� pj � �jUj � x�jy � c�x� y�� c � O�

Uj
�

Then the relation �dj � �
P

v�S �A
���dj � dv��v� gives a relation between the set of

multiplicities of pj � � on the components of D� namely� �j � �A���dj � dj�� On
the other hand� the same relation applied for the set of multiplicities of p gives�
lj � nj � �j �mj � Therefore�

bjmj � lj � ajmj � nj � where aj �� bj � �j �����

Notice that S�p� � S�p��� Order the irreducible factors of p� in such a way that
p� �

Q
j�p

�
j�
mj � and Z�p�j� in Uj is fy � xbj b�x� y� � �g

Lemma ���� The numbers aj � nj and ajmj � nj have the following expression in

terms of intersection multiplicities at the origin�

aj � m�pj � p
�
j�� nj � m�pj �

Y
i��j

�p�i�
mi��

ajmj � nj � m�pj � p
���

Proof� m�pj � p
�
j� � deg�pj jZ�p

�
j�� � deg�x

�jyjy � xbj � �� � bj � �j � aj � The
others follow by similar argument�

�� Topological Series of Plane Singularities with Coecients

in a Mixed Hodge Module

LetM�MHM�C�� �� be mixed Hodge module with singular locus � such that
V �MjBn� is a polarisable variation of Hodge structure� Here �B��� are some
representatives as usual�
Consider a curve singularity p and let p� be an element of the topological se�

ries belonging to p� relative to �� Our purpose is to compare Spp��M� p� �� and
Spp��M� p�� ��� Since p� is a modi�cation of p in the neighbourhoods fUjgrj���
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we expect that the di�erence of their spectral pairs depends only on the germs
�pj � �Uj � Pj�� �C� �� and the restriction of H���M on �rj��Uj � Since the restric�
tion on Uj has abelian representation over Uj �fxy � �g� by our general principle�
we expect that we need only the corresponding limit mixed Hodge structures at the
points fPjgj �and the graphs of the germs f�pjgj��


��� Limit mixed Hodge structures� Let � � U � B be the resolution of
p����� � � as in Section 	� Let ��V be the lifting of V on U n D and Vj its
restriction to Uj nD �j � S�p��� If j � S�p� n S���� then Gj �� H��Uj nD�Z� � Z�
and it is generated by e� � �Mdj �� If j � S�p� 
 S���� then Gj � Z�� and it is
generated by e� � �Mdj � and e� � �Mj ��
In both cases the variation Vj has abelian representation� therefore its limit

mixed Hodge structure LVj exists ������� Set LjV �� GrWLVj � MHS�Gj�� Its
representation is denoted by �j �


��� Intrinsic meaning� We show� that LjV can be recovered in a more direct
way� without using the resolution ��
Let Zj � fpj � �g � �C�� ��� Let �j � �C� �� � �Zj � �� be the normalization of

Zj � and let x be a local uniformization of �C� ��� Then Hj �� GrW�xH���j�pjM�
MHM�f�g� is a mixed Hodge structure with two semi�simple monodromy actions�
T h
j �called the horizontal monodromy� is induced by �pj and T

v
j �called the vertical

monodromy� is induced by �x�
Now� if � is the resolution as above� then �jSt�Zj � � St�Zj�� Zj is the normaliza�

tion of Zj � Moreover� if �x� y� are the coordinates in Uj as in Section 	��� then x is a
local coordinate in St�Zj�� By our notation �cf� Section 	��� pj��jUj � x�jy c�x� y��
where c � O�

Uj
� Then by the properties of Section �� Hj � GrW�x�pj��N �

where N � H���M� Obviously� this depends only on NjUjnfxy��g � Vj hence

Hj � GrW�x�x�j ycVj �
Notice that LVj � �x�yVj � and this limit depends on the choice of the coor�

dinates �x� y�� The ambiguity is modulo the action of exp��C�� where �C is the
complex monodromy cone� Therefore LjV � Hj �
By a local computation�

T h
j � �j��Mj �� and T v

j � �j��Mdj �� �j �Mj �������

Notice� that if j � S�p� n S���� then T h
j � �j��Mj �� is the identity and the only

essential action is T v
j � �j��Mdj �� �cf� Section 
����


��� Further computations� Similarly as in Section 
��� we can consider the
mixed Hodge structure �Hj � GrW�xH���j�pjM � MHM�f�g� with semi�simple

monodromies �T h
j �induced by �pj � and

�T v
j �induced by �x��

Let Hj � Hj���� �Hj�� be the eigenspace decomposition given by T
h
j � similarly

�Hj � �Hj���� � �Hj�� provided by �T
h
j �

On the other hand� if �j � � �e�i� Zj � �sj � but p
�j�sj

����� then j � S��� n

S�p��� and to apply Theorem ��� we need the limit mixed Hodge structures Vk
j �

GrWLHki��sj
M� too� Their monodromy is denoted by T k

j �

We have the following relations between our limit mixed Hodge structures and
their semi�simple actions�
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Proposition 
��� Let j � S�p� 
 S���� Then�

can � �Hj�����T
h
j � T

v
j � ��� �Hj����� �T

h
j �
�T v
j � is an isomorphism in MHS�Z��� and

�� �V �
j � T

�
j �� � �Hj��� �T

v
j �

V ar
��� �Hj��� T

v
j ������ �V �

j � T
�
j �� �

is an exact sequence in MHS�Z��

Proof� Use ���� ��� and ��� and the fact that the vanishing cycle functor is exact�

�� The Spectral Pairs of Series of Plane Singularities

���� General formula� Let M � MHM�C�� �� be a polarizable mixed Hodge
module with critical locus �� For simplicity� we assume that M restricted to the
complement of � is pure �but this is not essential because of Lemma ���c�� Let
p � �C�� �� � �C� �� be a curve singularity� and p� a germ in the topological series
belonging to p relative to ��
Fix j � S�p�� In Section 
�� we constructed a representation �Hj � �j� �MHS�Gj��

If ��j denotes the decorated resolution graph of p
� � �jUj � �Uj � Pj� � �C� �� �rel�

ative to fxy � �g�� and ej its edge which joins � and �j �cf� Section 	���� then
Spp
�j ��j� and Sppej ��j� are de�ned �cf� De�nitions ��������� �The latter one isP

p�q�i T �p� q�Sppej ��
pq
i �� with the notations of De�nition ����� We let

Spp
�j�ej ��j� �� Spp
�j ��j� � Sppej ��j��

Theorem ���� Let �j and sj be as in Section ��	� Then one has�

Spp��M� p�� ��� Spp��M� p� �� �
X

j�S�p�

Cj � where

Cj � Spp
�j �ej ��j� � �j
X
k

����kcdeg�p�j�sj
�Spp�V

k
j � T

k
j ��

Notice also that deg�p�j�sj � is equal to the intersection multiplicity mPj �y� p
� �

�jUj��

Proof� Using ��� and Lemma �� we can assume thatM � j�V� where j � Bn��
B is the inclusion� Consider the resolution �� corresponding to the graph ��� Notice
that in the �rst step of Section ��� we did not use the commutativity assumption�
Therefore� the relation ��� holds for both p and p�� If d � D �or e � �E� then in a
neighbourhood of Dd �or of Pe� respectively� the functions p

��� and p�� di�er only
by an invertible function� Therefore� their contributions are equal� Using again the
�rst step of Section ��� applied to p� � �jUj � one has�

Spp�i���p�M�� Spp�i���pM� � Sppej ��j� � Spp�i�Pj�p����
�M��

Now� since Gj is abelian� the result follows from Theorem ����

We end this subsection with the following remark� By Lemma ���e� one has�

Spp��M� p�� ��� Spp��M� p� �� � Spp��M� p�� ��� Spp��M� p� ��

for anyM� p and p��
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���� The case of topologically trivial series� In the sequel  denotes the char�
acteristic map of R nZ� i�e��  � R� f�� �g is de�ned by �x� � � if x � Z and � �
otherwise�
Fix a character � � Z� � C� of �nite order� Choose � and � such that ��e�� �

exp���i�� and ��e�� � exp���i��� Given a triple �n�m� a� of integers �where n � ��
m � � and a � ��� we de�ne in Z�Q�Z� the elements C���� and C���� as follows�
For any k � f�� � � � � n� am� �g we let

�k �
k � �� a�

n� am
�

Then de�ne C���� ��

n�am��X
k��

��� f��g� f�kg� f�� �m�kg � fm�kg�

�� ���� �m�k� � ��� �m�k���

and de�ne C���� ��

n�am��X
k��

�f�g� f�kg� f�� �m�kg � fm�kg� ���� �m�k� � ��� �m�k���

For � �MHS�Z�� de�ne

C���� ��
X
p�q

d�p�q�X
i��

T �p� q�C���
pq
i �

�and similarly C������ where the characters �
pq
i �s are as in De�nition ����

Example ���� �� Assume that m � �� Since � and � are de�ned modulo an
integer� we can take some representatives � � ��� �� and � � �n�� n� � ���
Then

C���� �

n�a��X
k��

��k� ���� ��k� � ��� � �k���

�� Assume that m � � and n � �� Then

C���� �

a��X
k��

�
� �

k � �

a
� ���� 

�
� �

k � �

a

�
� 

�
k � �

a

��
�

Now we return to our representations �Hj � �j� and � �Hj � ��j�� �j � S�p��� Recall
that in Gj � Z� one has� e� � �Mdj � and e� � �Mj �� We de�ne the representation

��j � Z
� � AutMHS�Hj� by the following change of bases� �

�
j �e�� � �j�e�� and

��j �e�� � �j�e� � �je��� Then �
�
j �e�� � T h

j and �
�
j �e�� � T v

j by ����� Similarly we
de�ne ���j �
The relation between the above invariants is given in the following lemma�

Lemma ���� Let �Hj � �j�� � �Hj � ��j� � MHS�Z�� and �V k
j � T

k
j � be as in Section 
�

De�ne C� and C� using the triplet �nj �mj � aj�� Then

C���
�
j � �

X
k

����kcnj�ajmj
Spp�V k

j � T
k
j � � C����

�
j ��
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Proof� Notice that if ��e�� 	� � �i�e�� � 	� Z� then C���� � C����� Otherwise�
C���� � T �������C���� � cn�amSpp�C� ��e���� Now use Proposition 
���

Now we consider p�� a germ in the topological series belonging to p relative to ��
as in Section 	��� From the �rst step of Section ���� it is clear that the correction Cj
is zero provided that j � S�p�nS���� In the sequel we assume that j � S�p�
S����
We also assume that �pj � �y � xbj b�x� y��a�x� y�� otherwise Cj � � again�
We will compute Cj in a more direct way� First notice that our relations do not

depend on the choice of the resolution graph� In the case of p�� we will take the
graph ��� but for p we will use the graph of � modi�ed by bj blowing�ups� This
graph will be denoted by ���� and its schematic form is the following�

s s s s s�
�

���� � � �
lj lj�mj lj��bj���mj lj�bjmj

E��

mj

�

	 
z �
��	�

The arrow corresponds to the strict transform of Zj � �sj �
By a similar argument to that in the proof of Theorem ��� one has�

Cj � SppE���j�� SppE��j� �
X
k

����kcnj�ajmj
Spp�V k

j � T
k
j ����
�

where the vertices E�� and E� are drawn on the corresponding graphs� �cf� ��	� and
������

Lemma ���� SppE���j�� SppE��j� � C���
�
j ��

Proof� We can assume that �j is one dimensional� Let �
�
j �e�� � exp���i�� and

��j �e�� � exp���i���

In the case of p �graph ���� the invariants are�

� the degree of E�� is ��
� the multiplicities of the adjacent vertices are� nj � �aj � ��mj and mj �
� the monodromies around the adjacent vertices are� exp���i�� � �aj � �����
and exp���i���

In the case of p� �graph ��� the invariants are�

� the degree of E� is ��
� the multiplicities of the adjacent vertices are� nj � �aj � ��mj � mj and ��
� the monodromies around the adjacent vertices are� exp���i�� � �aj � ������
� and exp���i���

The multiplicity of E� and E�� is equal to nj � ajmj � and the monodromy around
them is exp���i��� aj����
The veri�cation is left to the reader�

The main result of this section is the following�

Theorem ���� Let M be a pure mixed Hodge module with critical locus �� p� a
germ of the topologically trivial series belonging to p �

Q
j p

mj

j � relative to �� Let
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�Hj be the limit mixed Hodge structure of �pjM with semisimple monodromies T h
j

�induced by �pj � and T v
j �induced by the monodromy of �pjM�� Then

Spp��M� p�� ��� Spp��M� p� �� �
X
j��j��

C��j� �Hj �T
h
j � T

v
j ��

where C��j is C� with parameters �nj �mj � aj��

Proof� Use Theorem ��� ��
�� Lemma �� and Lemma ���

Corollary ��	� Let M and p� p� as in Theorem ���� Assume that p is irreducible�

Set

� �Hj �T
h
j � T

v
j � � �p�q �

d�p�q�
i�� �Hpq

i � exp���i�
pq
i �� exp���i�

pq
i ���

where Hpq
i is one�dimensional C�Hodge structure of type �p� q�� and �pqi � �pqi � ��� ���

The integer a denotes the intersection multiplicity m�p� p��� Then�

Spp��M� p�� ��� Spp��M� p� �� �

X
p�q�i

T �p� q�

a��X
k��

�
�pqi �

k � �pqi
a

� ��pqi �� 

�
�pqi �

k � �pqi
a

�
� 

�
k � �pqi

a

��
�

Proof� If p is irreducible� then S�p� has only one element whose multiplicity is one�
and n � �� Now apply Example ���

��� Spectral Pairs of Series of Composed Singularities

����� Some invariants of an ICIS with ��dimensional base space� Let � �
�X� x� � �C�� �� be an analytic germ such that both �X� x� and �������� �� are
isolated complete intersection singularities� and dimX � n � �� By ��
� there
exists a projective extension &� � &X � �C�� �� of � such that the central �ber
&X� � &������ has only x as singular point and the germ &� � � &X� x� � �C�� ��
is analytically equivalent to �� Fix a good representative &� � &X � B of &� such
that a suitable restriction of it is a good representative � � X � B of �� We let
C � X be the critical locus of � and � � ��C� the �reduced� discriminant locus
with irreducible decomposition �si���i� Over �i lie the irreducible components
Ci�� � � � � Citi of C� The degree of the rectriction � � Cil � �i is dil�
Let �i � U � �i � resp� �il � U � Cil� be the normalization and zi �resp� zil � a

uniformizing parameter in U �
Let pi be a generator of the ideal of �i� Then the support of the mixed Hodge

module �pi��Q
H
�X
�n� is a subset of &X��C� For any i � f�� � � � � sg and l � f�� � � � � tig

we de�ne � �Hil� �T
h
il �
�T v
il� �MHS�Z�� by

�Hil �� GrW�zilH
���il�pi��Q

H
�X �n��

The �horizontal� monodromy T h
il is induced by �pi��� the other �vertical� one T

v
il

by �zil � By the properties of the vanishing cycle functors� they commute�

The structure � �Hil� �T
h
il � has another interpretation too� For this� take a point

P � �i � f�g and a transversal slice S to �i at P � Choose P
� � ����P � 
 Cil�

Then � � �����S�� P �� � �S� P � de�nes an isolated hypersurface singularity� Its

limit mixed Hodge structure on its reduced cohomology is exactly �Hil and �T
h
il is

the semi�simple part of its monodromy�
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If H is a mixed Hodge structure with commuting automorphisms T h and T v�
de�ne cm�H� as �m

i��H with automorphisms�

cm�T
h��x�� � � � � xm� � �T

h�x��� � � � � T
h�xm��� and

cm�T
v��x�� � � � � xm� � �T

v�xm�� x�� � � � � xm����

The new structure in HMS�Z�� is denoted by cm�H �T
h� T v��

De�ne the mixed Hodge module M � MHM�C�� �� by M � H� &��Q
H
�X
�n��

Then the critical locus ofM is � andMjBn� is pure� In Section 
�� we associated

the set of invariants � �Hi� �T
h
i �
�T v
i �

s
i�� � MHS�Z�� with such a module� namely

�Hi � GrW�ziH
���i �piM� The horizontal monodromy �T

h
i is induced by �pi � the

vertical one �T v
i by �zi �

Lemma ����� The following isomorphism holds�

� �Hi� �T
h
i �
�T v
i � � �

ti
l��cdil�

�Hil� �T
h
il �
�T v
il��

Proof� Use ����

����� Topological series of composed singularities� Let � be as above and
p � �C�� ��� �C� �� an arbitrary analytic germ�

De�nition ����� The topological series of composed singularities belonging to f �
p�� consists of all composed singularities f � � p��� such that p� is in the topological
series of curve singularities belonging to p relative to the discriminant locus � of
��

For simplicity� we will consider only germs f � � p���� where p� belongs to a topo�
logically trivial series of p� relative to �� For these germs we extend Theorem ��
and Corollary ��� The interested reader can formulate easily the corresponding
result which extends Theorem �� and holds for any p��
We recall our notations� Let p �

Qr

j�� p
mj

j be the irreducible decomposition of

p� Let p� be as above� We write p� �
Qr

j���p
�
j�
mj � where we ordered the irreducible

factors of p� as in Lemma 	��� For any j � S�p� 
 S��� �with �j � �� consider the
numerical invariants

aj � m�pj � p
�
j� and nj � m�pj �

Y
i��j

�p�i�
mi��

Theorem ����� With the notation Spp��f� � Spp��Q
H
X �n�� f� x� one has�

Spp��f
��� Spp��f� �

X
j�S�p�	S���

�j C��j� �Hj � �T
h
j � �T

v
j ��

where C��j is C� with parameters �nj �mj � aj��

Remark �	��� Lemma ���� implies that

C��j� �Hj � �T
h
j �
�T v
j � �

tiX
l��

C��njdjl�mj � ajdjl�� �Hjl� �T
h
jl�
�T v
jl��

Proof of Theorem ����� First notice� that Spp��f
�� � Spp��f� � Spp��f

�� �
Spp��f� �by Lemma ���e��
De�neN � i��X�

�p��Q
H
�X
�n�� Let j � &X�nfxg �� &X� be the natural inclusion� Then

j�N � j��p��Q
H
�X
�n�� because �p��Q

H
�X
�n� is supported in &X� � C� and GrW j�N is
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a constant variation of mixed Hodge structure with stalk isomorphic to �pQ
H
B ����

Similarly we consider N � de�ned by p�� Then GrW j�N � GrW j�N �� Therefore�
by the �rst distinguished triangle of ���� one has�

Spp��f
��� Spp��f� � Spp�&��N

��� Spp�&��N ��

But &��N � i���p
&��Q

H
�X
� Since for j 	� � the module Hj &��Q

H
�X
is smooth

Spp�pH
j &��Q

H
�X � Spp�p�H

j &��Q
H
�X

by Theorem ���� Therefore

Spp��f
��� Spp��f� � Spp�M� p�� ��� Spp�M� p� ���

Now apply Theorem ���

Corollary ����� Assume that p is irreducible� and fp � �g � �j � Let

� �Hjl� �T
h
jl� �T

v
jl� � �p�q �

d�p�q�l�
i�� �Hpq�l

i � exp���i�pq�li �� exp���i�pq�li ��

for any l � �� � � � � tj � where Hpq�l
i is one�dimensional C�Hodge structure of type

�p� q�� and �pq�li � �pq�li � ��� ��� Let dl be the degree of � � Cjl � �j and a � m�p� p���
Then Spp��f

��� Spp��f� �

X
l�i�p�q

T �p� q�

adl��X
k��

��pq�li �
k � �pq�li

adl
� ��pq�li �� ��pq�li �

k � �pq�li

adl
� � �

k � �pq�li

adl
���

Proof� Apply Corollary �� and Remark �����

Example ���	� The Yomdin�s series �see ���� ��� �� ����� Let f � �Cn� �� �
�C� �� �n � �� be an analytic germ with one�dimensional critical locus "� which
has an irreducible decomposition �tl��"l� The mixed Hodge module �fQ

H
X �n� is

supported on " and its restriction on "l n f�g is an admissible variation of mixed
Hodge structure� Denote its limit by �Kl� Two natural semi�simple automorphisms
act on �Kl� �T

h
l induced by �f � and

�T v
l induced by the monodromy of the restriction

�fQ
H
X �n�j"l n ��

Let l � �Cn� �� � �C� �� be a generic linear form� Then the pair � �� �f� l� �
�Cn� ��� �C�� �� de�nes an ICIS� and ��"� � �� is one of the irreducible compo�
nents of �� Then

� �Kl� �T
h
l � �T

v
l � � � �H�l� �T

h
�l� �T

v
�l��

Notice that f � p�� where p�z�� z�� � z�� Then for su�ciently large a p��z�� z�� �
z� � za� is in the topologically trivial series belonging to p� relative to ��
Therefore Spp��f � la�� Spp��f� follows from Remark �����

��� A Generalized Sebastiani�Thom Type Result

If �Hi�W
i

� F



i � �i � �� �� are mixed Hodge structures� then H� � H� carries a

mixed Hodge structure with weight �ltration Wk �
P

p�q�kW
�
p �W �

q and Hodge

�ltration F k �
P

p�q�k F
p
� � F q

� � This mixed Hodge structure is still denoted by
H� �H��
A graded mixed Hodge structure is a �nite direct sum H
 � �kH

k of mixed
Hodge structures fHkgk� Their category is denoted by GMHS� There is a natural
extension of the tensor product to GMHS by H


� �H

� �� �k��p�q�kH

p
� �Hq

� ��
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There is a natural tensor product MHS�G�� �MHS�G�� � MHS�G� � G���
which associates with two elements� say �i � Gi � AutMHS�Hi� �i � �� ��� an
element � � �� � �� � G� � G� � AutMHS�H� � H�� de�ned by ��g�� g�� �
���g��� ���g���
If GMHS�G� denotes the graded version of MHS�G� �i�e�� the category of rep�

resentations �
 � �k�
k� where �k �MHS�G��� then the above tensor product has

an extension

GMHS�G���GMHS�G��� GMHS�G� �G��

given by �
� � �
� � �k��p�q�k�
p
� � �q���

There is an extension Spp � GMHS�Z� � Z�Q � Z� of the map de�ned in
De�nition ��� by Spp��
� �

P
k����

kSpp��k�� Moreover if � is as in Section ��
then Spp� also extends by the same formula as above�
The map �	�w� � �
� �� � �	�
�w��� extends to a bilinear map Z�Q�Z��Z

Z�Q�Z�� Z�Q�Z�� In general it is not true that Spp������� � Spp�����Spp����
but still one has the following result�

Lemma ����� Set �Hi� �i� � MHS�Z� such that �� � �H�
� Let cn �n � N�� be

the map de�ned in Lemma ���f� Then one has�

a� Spp��� � ��� � Spp���� � Spp�����
b� If �� � � Z�Q� Z� such that � �

P
�	� �� satis�es 	 � Z� then

cn�� � �� � � � cn����

The easy proof is left to the reader�
In the sequel it is convenient to de�ne the map c� as the zero map�
Let g � �X� x� � �C� �� be an analytic germ� Denote �jHji���gQ

H
X �n� by

�H

g � T



g � � GMHS�Z�� Here T 
g � �
g��� is the semisimple part of the monodromy�

The decomposition �g � �g�� � �g���� gives a decomposition H


g�� �H


g���� of H


g �

Therefore the spectrum Spp��g� �� Spp�H

g � T



g � can be written as the sum of the

corresponding spectral pairs Spp����g� and Spp������g�� There are similar notations
for � instead of �� By Lemma ���e one has�

Spp��g� � Spp��g� � ����
n����� ���

We introduce the notation�

Spp��g� � Spp����g�� T ��� ��Spp����g� � ��� T ��� ���Spp��� � ����
n��� ���

Consider an analytic germ p � �C�� ��� �C� �� and the space�germ ��� �� given
by fcd � �g� where �c� d� are the local coordinates in �C�� ��� Let � be the decorated
resolution graph of p with respect to ��� �� �cf� Example ����� Notice that G��� �
ZS � H��C

� n ��p����� �����Z�� The group H��C
� n��Z� � Z� is generated by

�Mc� and �Md�� where Mc �resp� Md� is an oriented circle in a transversal slice to
fc � �g �resp� fd � �g��
Let g � �X� x� � �C� �� and h � �Y� y� � �C� �� be two analytic germs which

de�ne ICIS�s� and p � �C�� �� � �C� �� an arbitrary analytic germ� De�ne f �
�X � Y� x� y�� �C� �� by f�x� y� � p�g�x�� h�y���
Consider the tensor product H


g � H

h � GMHS�Z��� By the identi�cation of

Z� with H��C
� n��Z� one has�

�
��Mc�� � T 
g � id and �
��Md�� � id� T 
h �
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Via the map G��� � H��C
� n��Z�� induced by the inclusion� H


g �H

h becomes

an element of GMHS�G�����
Let r�c� be the intersection multiplicity m��p� c� if fc � �g is not a factor of p�

and � � otherwise� Symmetrically de�ne r�d�� The main result of this section is
the following�

Theorem ����� Let h� g� p and f be as above� Then�

Spp��f� � Spp��H


h �H


g � � cr�d�Spp��g� � Spp��h� � cr�c�Spp��h� � Spp��g��

Proof� Consider a projective extension &g � � &X� &X�� � �C� �� of the germ g such
that x � &X� � &g����� is the only singular point of &g and &g � � &X� x� � �C� ��
analytically equivalent to g� �For the existence of &g� see ��
��� Similarly� let &h �
� &Y � &Y��� �C� �� be a projective extension of h with the above properties� Now use
several times the �rst distinguished triangle ��� applied to the natural strati�cation
of &X� � &Y�� and apply Theorem ���� The details are left to the reader�

For the corresponding formula at the zeta function level� see �	� 
��

Example ����� Let g and h be as above� Then one has�

a� If Spp��g� �
P
�	�w� and Spp�h� �

P
�
� ��� then

Spp��g�x� � h�y�� � �T ��� ��� �� �
X

��	���	

��	� � �
� � 	�w � ���

b� For the sum f�x� y� � g�x� � h�y�� it is simpler to rewrite Theorem ���� in
terms of SppSt �see Remark ��	��

SppSt�f�x� � g�y�� � T ��� ��SppSt�g� � SppSt�h�

�cf� ������

References

��� P� Deligne� Th�eorie de Hodge I� II� III�� Act� Congres� Int� Math� ���
�� ���	��� Publ�
Math� IHES �� ���
��� �	��� �� ���
��� �	

�

��� P� Deligne� Le formalisme des cycles �evanescents� SGA V II� � Exp XIII� Lect� Notes in
Math� no� ��� Springer�Verlag� Berlin� ��
�� ��	����

��� D� Eisenbud and W� Neumann� Three�dimensional Link Theory and Invariants of Plane

Curve Singularities� Ann� of Math� Studies no� ��� Princeton Univ� Press� Princeton� NJ�
�����

��� P� Gri�ths� Periods of integrals on algebraic manifolds III�� Publ� Math� IHES �� ���
��
���	���

��� M� Kashiwara� A study of variation of mixed Hodge structure� Publ� RIMS Kyoto Univ� ��
������� ���	����

��� A� N�emethi� The Milnor �ber and the zeta function of the singularities of type f � P �h� g��
Compositio Mathematica �� ������� ��	�
�

�
� A� N�emethi� Generalised local and global Sebastiani�Thom type theorems� Compositio Math�

ematica �� ������� �	���
��� A� N�emethi� The zeta function of singularities� Journal of Algebraic Geometry �������� �	���
��� A� N�emethi and J� H� M� Steenbrink� Extending Hodge bundles for abelian variations� Annals

of Mathematics ��� ������� �	���
��� M� Saito� Mixed Hodge modules� Publ� RIMS Kyoto Univ� �	 ������ ���	����
���� M� Saito� On Steenbrink�s Conjecture� Math� Annalen ��� ������� 
�	
���
���� J� Scherk and J� H� M� Steenbrink� On the mixed Hodge structure on the cohomology of the

Milnor �ber� Math� Annalen ��� ������� ���	����



Spectral Pairs �		

���� W� Schmid� Variation of Hodge structure� the singularities of the period mapping� Invent�
Math� �� ���
��� ���	���

���� R� Schrauwen� Topological series of isolated plane curve singularities� l�Enseignement
Math�ematique �	 ������ ���	����

���� D� Siersma� The monodromy of a series of hypersurface singularities� Comment� Math� Hel�
vetici 	
 ������ ���	��
�

���� K� Stein� Analytische Zerlegungen Komplexer R	aume� Math� Annalen ��� ������� ��	���
��
� J� H� M� Steenbrink� Mixed Hodge structures on the vanishing cohomology� Real and Complex

Singularities �Oslo� ��
�� �P� Holm� ed��� Sijtho��Noordho�� Alphen a�d Rijn� ��

� ���	����
���� J� H� M� Steenbrink� Semicontinuity of the singularity spectrum� Invent� Math� �� �������

��
	����
���� J� H� M� Steenbrink� The spectrum of hypersurface singularities� Asterisque ������� �������

���	����

��� S� Zucker� Hodge theory with degenerating coe
cients� L� cohomology in the Poincar�e met�

ric� Ann� of Math� ��� ���
��� ���	�
��
���� I�N� Yomdin� Complex surfaces with a one�dimensional set of singularities� Sibirsk� Mat� Z�

�
��� ���
��� ���	����

Department of Mathematics� The Ohio State University� Columbus� OH ������

U�S�A

nemethi�math�ohio�state�edu

Department of Mathematics� University of Nijmegen� Toernooiveld� 	
�
 ED Ni�

jmegen� The Netherlands

steenbri�sci�kun�nl



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


