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Division Algebras that Ramify Only Along a
Singular Plane Cubic Curve

T. J. Ford

ABSTRACT. Let K be the field of rational functions in 2 variables over an
algebraically closed field k of characteristic 0. Let D be a finite dimensional
K-central division algebra whose ramification divisor on the projective plane
over k is a singular cubic curve. It is shown that D is cyclic and that the
exponent of D is equal to the degree of D.

Let k be an algebraically closed field of characteristic 0. Let P? = Proj k[z, y, 2|
denote the projective plane over k and K the function field of P2. We view K
as the set of all rational functions of the form f/g € k(z,y, z) where f and g are
homogeneous forms in k[z,y, z] of the same degree.

The Brauer group of the projective plane, B(PP?), is trivial. Therefore a division
algebra D that is central and finite dimensional over K necessarily ramifies at some
prime divisor of P2. By [1, Theorem 1] there is a canonical exact sequence

(1) 0 —— B(K) —— @ ,H(K(C),Q/Z) .

The map a measures the ramification of a central K-division algebra D along a
prime divisor C' on P?. The group H'(K(C),Q/Z) is the first étale cohomology
group of the function field K(C) of C, with coefficients in the constant sheaf Q/Z.
By Kummer theory [4, pp. 125-126] H'(K(C),Q/Z) classifies the finite cyclic
Galois extensions of K(C). The “ramification of D along C” is a cyclic extension
L of K(C) obtained in the following way. Let A be a maximal order for D over
the local discrete valuation ring Oc. Then L = A ® K(C)/(radical) is a cyclic
extension of K (C), which represents an element of H'(K(C),Q/Z). Those C for
which L is non-trivial make up the ramification divisor of D. A division algebra D
is completely determined by its ramification data.

In this article we consider the case where D is a finite dimensional K-central
division algebra whose ramification divisor is a reduced cubic curve C that is sin-
gular. Our main result is Theorem 1 below which states that every such algebra D
is a cyclic algebra with exponent(D) = degree(D). By exponent(D) we mean the
exponent of the class of D in the Brauer group B(K). By degree(D) we mean the
square root of the dimension of the vector space D over K.
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If D has ramification divisor C, a nonsingular cubic curve on P2, then it is known
that exponent(D) = degree(D). The reader is referred to [3] and its bibliography
for a discussion of this case. M. Van den Bergh has recently announced a proof
that if D has odd exponent, then D is cyclic.

In our context, each irreducible component of C' is a rational curve whose nor-
malization is isomorphic to P'. Let C be a reduced curve on P? each of whose
irreducible components is a rational curve. Write C = Cy U --- U (), as a union
of irreducible curves. Let C; denote the normalization of C;. By our assumption
C; =~ PL. Let C be the disjoint union Cy 11---11 Cyn. Let Z denote the singular
locus of C, which is a finite set of points, hence Z = {Z1,...,Z;}. Let 7: C — C
be the natural projection and W = 7~1(Z). Then W is a finite set of points, hence
W = {W1,...,W.}. The square

Qe

W —
(2) |=
A

Q

e

is commutative. Define a graph I' = T'(C). The vertex set of ' is {Z1, ..., Zs, Cy,
..,C’m} and the edge set is {W7i,...,W,.}. The edge W; has positive end the C'j

containing W; and negative end the Z; defined by Z; = w(W;). Let M be the

incidence matrix of I'. Then M induces a boundary map, also denoted M,

(3) M (Z/n) = (z/n)™ & (Z/n)")

for any positive integer n. The kernel of M is the combinatorial cycle space
Hi(T,Z/n) of T. Since we are assuming each C; = P! is simply connected,
it follows that H'(C,Z/n) = 0. Since P? is simply connected, H'(P?,Z/n) =
H?(PP?,Z/n) = 0. Combining Lemma 0.1 and Corollary 1.3 of [2], there is an iso-
morphism ,, B(P? — C) = H;(T,Z/n). Therefore the K-division algebras D with
exponent dividing n and that ramify only along C' make up a subgroup of B(K)
that is isomorphic to Hy(I',Z/n).

Let «, B be elements of K, n > 2 an integer, and ( a fixed nth root of unity
in K. The symbol algebra («, 3), is the associative K-algebra generated by u, v
subject to the relations u™ = «, v = (3, uv = (vu. The ramification divisor of
the algebra (a, 8), is contained in the union of the sets of zeros and poles of the
functions o and § on P2.

The main tool used in proving Theorem 1 is [2, Theorem 2.1] which tells us how
to map a symbol algebra («, 3), over K to a sum of weighted edges in the graph
I'. This sum of weighted edges is an element in the edge space, Z/n(e), that is in
ker M = Hy (T, Z/n). According to [2, Theorem 2.1], the weights on the edges of the
graph can be computed in terms of the local intersection multiplicities of the various
components of a and 3. Suppose the zeros and poles of @ and 3 are contained in
C. Let P € Z be a singular point on C. Let Aj,...,A; be the components of C
corresponding to vertices in I that are adjacent to P, as shown in Figure 1. Assume
first that the curve A; has only one point W; lying over P. Then the weight (as
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FIGURE 1

an element of Z/n) assigned to the edge W7 connecting P to A; is
t

(4) D [1(Bvi(e) — vi(@)vi(8)] (Ar-Ai)p

i=2
where (A;.A;)p is the local intersection multiplicity and v; is the discrete valuation
on K given by the local ring O4,. If A; has multiple tangents at P, then there
will be several edges connecting A; to P in I'. In this case (4) gives the weight
for any one branch W; of A; at P where instead of (A;.4;)p the local intersection
multiplicity for the branch that is associated with W is used.

Theorem 1. Let C be a reduced cubic curve in P? and assume C is singular. Let
D be a finite dimensional central K -division algebra whose ramification divisor on
P2 is C. Then D is a cyclic algebra and exponent(D) = degree(D).

Proof. Let n be the exponent of the class of D in the Brauer group of K. We use
the techniques of [2, Sec. 2] that were mentioned above. Upon desingularization,
the singular cubic C' consists of one, two or three components each of which is
isomorphic to P*. Therefore the subgroup of B(K) consisting of classes of division
algebras annihilated by n that ramify only along C is isomorphic to Hy (T, Z/n).
Here T is the graph associated to C and H; is simply the combinatorial cycle space
of the graph. In each example below, I' is a planar graph hence the Z/n-rank of
H;(T',Z/n) simply counts the number of regions of I".

There are only 6 cases to consider. In each case we show that D is a symbol
algebra (a, 8), hence is cyclic.

Case 1: ( is irreducible and has a cuspidal singularity. In this case C is
simply connected, Hy(I'(C),Z/n) = 0, hence no non-trivial division algebra can
have ramification divisor equal to C.

Case 2: (C is irreducible and has a nodal singularity. Let [y = 0 and I, = 0
be the equations of the tangent lines to C' at the node. The line [; = 0 intersects
the first branch of C' with multiplicity 2 and the second branch with multiplicity
1. Similarly, lo intersects the first branch of C' with multiplicity 1 and the second
branch with multiplicity 2. Consider the symbol algebra

llc
A=|—, =
<b’@>n

over K. The ramification divisor of A must be contained in the curve l1lasc = 0. The
graph of l1lsc = 0 is shown in Figure 2. Let W; denote the edge of I" corresponding
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F1GURE 2. The graph for the symbol A in Case 2.
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F1cURE 3. The graph for the symbol A in Case 3.

to the first branch of C. We apply (4) to determine the weights w; for the edges
W; of the element in the cycle space corresponding to A. In the notation above, we
have a = I1 /1o, 3 = ¢/I3, A; is the first branch of C, A, is the curve [; = 0, A3 is
the curve Iy = 0, (A1.42)p =2, (A1.43)p =1, v1(8) = 1, v2(B) = 0, v3(B) = -3,
vi(a) =0, va(a) = 1, and v3(a) = —1. From (4) we have

wy = [(1)(1) = (0)(0)](2) + [(1)(=1) = (0)(=3)](1) = +1 .
To compute wy using (4), we have A; is the second branch of C, Ay is the curve

Iy =0, As is the curve Iy = 0, (A1.42)p =1, (A1.A3)p = 2, and the v; values are
the same as for wy. From (4) we have

wy = [(1)(1) = (0)(0)](1) + [(1)(=1) = (0)(=3)](2) = —1 .
To compute ws using (4), we have A; is the curve I; =0, As = C, Az is the curve
lo =0, (A1.42)p = 3, (A1.43)p = 1, v1(B) = 0, v2(B) = 1, v3(B) = =3, vi(a) =1,
va(a) = 0, and vz(a) = —1. From (4) we have

ws = [(0)(0) — (1)(1)](3) + [(0)(=1) = (1)(=3)](1) =0 .
Similarly, using (4) we find wy = 0. Therefore A has ramification divisor C' and
exponent n. Since ,, B(P? — C) = Hy (', Z/n) = Z/n we see that every algebra class
of exponent n is some power of the class of A, and therefore has degree n.

Case 3: C factors into a line and an irreducible conic and has 2 nodes. Let
q = 0 be the equation of the conic and Iy = 0 the equation of the line. Let P and
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F1GURE 4. The graph for the symbol A in Case 5.

@ denote the 2 nodes of C. Let I = 0 be the equation of the tangent to ¢ = 0 at
P. Consider the symbol algebra
li q
A=|—, =5
(b’@)n

over K. The ramification divisor of A is contained in the curve l1log = 0. The
graph for A is shown in Figure 3. We apply (4) to compute the weight w; of edge
W, for the algebra A. In the notation above, we have a = I1/ls, B = q/I3, A; is
the curve Iy = 0, As is the curve Iy = 0, A3 is the curve ¢ = 0, (A1.42)p = 1,
(A1.43)p = 1, vi(a) = 1, va(a) = —1, v3(a) = 0, v1(B) = 0, v2(8) = —2, and
v3(B) = 1. From (4) we have

wi = [(0)(=1) = (D(=2)](1) + [(0)(0) = ()(D](1) = +1 .

Similarly we compute ws = —1, w3 = +1, wy = —1, and w5 = 0. Therefore A has
ramification divisor C' and exponent n. Since , B(P? — C) = Hy(T,Z/n) = Z/n
we see that every algebra class of exponent n is some power of the one given, and
therefore has degree n.

Case 4: C factors into a line and an irreducible conic and has a cuspidal sin-
gularity. In this case C is simply connected, H;(I',Z/n) = 0, hence no division
algebra can have ramification divisor equal to C.

Case 5: C factors into 3 lines and has 3 nodes. Let the equation of C be written
l1l5l3 = 0 where each [; is a linear form. Consider the symbol algebra

Iy Iy
A= (2L 2
(&),

over K. The graph for A in this case is the hexagon shown in Figure 4. Using (4)
and the same ideas as in the earlier cases, we find that the ramification divisor of
A is C and exponent(A) = n. Since , B(P? — C) = Hy (T, Z/n) = Z/n we see that
every algebra class of exponent n is some power of the one given, and therefore has
degree n.

Case 6: C factors into 3 lines and has 1 singular point. In this case C' is simply
connected, Hy (T, Z/n) = 0, hence no division algebra can have ramification divisor
equal to C. O
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