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A Non-quasiconvex Subgroup of a

Hyperbolic Group with an Exotic Limit Set

Ilya Kapovich

Abstract. We construct an example of a torsion free freely indecomposable finitely
presented non-quasiconvex subgroup H of a word hyperbolic group G such that the
limit set of H is not the limit set of a quasiconvex subgroup of G. In particular,
this gives a counterexample to the conjecture of G. Swarup that a finitely presented
one-ended subgroup of a word hyperbolic group is quasiconvex if and only if it has
finite index in its virtual normalizer.
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1. Introduction

A subgroup H of a word hyperbolic group G is quasiconvex (or rational) in G if
for any finite generating set A of G there is ε > 0 such that every geodesic in the
Cayley graph Γ(G,A) of G with both endpoints in H is contained in ε-neighborhood
of H. The notion of a quasiconvex subgroup corresponds, roughly speaking, to that
of geometric finiteness in the theory of classical hyperbolic groups (see [Swa], [KS],
[Pi]). Quasiconvex subgroups of word hyperbolic groups are finitely presentable
and word hyperbolic and their finite intersections are again quasiconvex. Non-
quasiconvex finitely generated subgroups of word hyperbolic groups are quite rare
and there are very few examples of them. We know only three basic examples of
this sort. The first is based on a remarkable construction of E. Rips [R], which
allows one, given an arbitrary finitely presented group Q, to construct a word
hyperbolic group G and a two-generator subgroup H of G such that H is normal
in G and the quotient is isomorphic to Q. The second example is based on the
existence of a closed hyperbolic 3-manifold fibering over a circle, provided by results
of W. Thurston and T. Jorgensen. The third example is obtained using the result
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of M. Bestvina and M. Feign [BF] who proved that if F is a non-abelian free group
of finite rank and φ is an automorphism of F without periodic conjugacy classes
then the HNN-extension of F along φ is word hyperbolic.

If G is a word hyperbolic group then we denote the boundary of G (see [Gr],
[GH] and [CDP]) by ∂G. For a subgroup H of G the limit set ∂G(H) of H is the
set of all limits in ∂G of sequences of elements of H.

In this note we construct an example of a non-quasiconvex finitely presented
one-ended subgroup H of a word hyperbolic group G such that the limit set of
H is exotic. By exotic we mean that the limit set of H is not the limit set of a
quasiconvex subgroup of G. This result is of some interest since in the previously
known examples non-quasiconvex subgroups were normal in the ambient hyperbolic
groups and thus (see [KS]) had the same limit sets. Our subgroup H also provides
a counter-example to the conjecture of G. A. Swarup [Swa] which stated that a
finitely presented freely indecomposable subgroup of a torsion-free word hyperbolic
group is quasiconvex if and only if it has finite index in its virtual normalizer (this
statement was known to be true for 3-dimensional Kleinian groups). The subgroup
H, constructed here, coincides with its virtual normalizer. Here, by the virtual
normalizer of a subgroup H of a group G we mean the subgroup

V NG(H) = {g ∈ G | |H : H ∩ gHg−1| <∞, |gHg−1 : H ∩ gHg−1| <∞}.

2. Some Definitions and Notations

A geodesic in a metric space (X, d) is an isometric embedding α : [0, l] → X
where l ≥ 0 and [0, l] is a segment of the real line. We say that a metric space
(X, d) is geodesic if any two points of X can be joined by a geodesic path in X. A
path β : [0, l] → X is called λ-quasigeodesic if it is parametrized by its arclength
and for any t1, t2 ∈ [0, l]

|t1 − t2| ≤ λ · d(β(t1), β(t2)) + λ.

If x, y and z are points in a metric space (X, d) we set

(x, y)z =
1

2
(d(z, x) + d(z, y)− d(x, y)).

The quantity (x, y)z is called the Gromov inner product of x and y with respect to
z.

Let ∆ be a triangle in a metric space (X, d) with geodesic sides α, β and γ and
vertices x, y, z. (See Figure 1.)

We say that the points p, q, r on α, β and γ are the vertices of the inscribed
triangle for ∆ if d(x, p) = d(x, r) = (y, z)x, d(y, p) = d(y, q) = (x, z)y and d(z, r) =
d(z, q) = (x, y)z. In this situation ∆ is called δ-thin if for each t ∈ [0, d(x, p)]

d(p′, r′) ≤ δ

where p′, r′ are points on α, γ with d(x, p′) = d(x, r′) = t and if the symmetric
condition holds for y and z.

A geodesic metric space (X, d) is called δ-hyperbolic if there is δ ≥ 0 such that
all geodesic triangles are δ-thin.
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If G is a finitely generated group and G is a finite generating set for G, we
denote the Cayley graph of G with respect to G by Γ(G,G) and denote by dG the
word metric on Γ(G,G). Also, for any g ∈ G we define the word length of g as
lG(g) = dG(1, g). It is easy to see that (Γ(G,G), dG) is a geodesic metric space. If w
is a word in the generators G, we denote by w the element of G which w represents.

A finitely generated group G is called word hyperbolic if for each finite generating
set G for G there is δ ≥ 0 such that the Cayley graph Γ(G,G) with the word metric
dG is δ-hyperbolic.

A subgroup H of a word hyperbolic group G is called quasiconvex in G if for
some (and therefore for any) finite generating set G of G there is ε > 0 such that
every geodesic in the Cayley graph Γ(G,G) of G with both endpoints in H lies in
the ε-neighborhood of H.

If G is a word hyperbolic group with a finite generating set G, we say that a
sequence of points {gn ∈ G |n ∈ N} defines a point at infinity if

lim
n→∞

inf
i,j≥n

(gi, gj)1 =∞

where the Gromov inner product is taken in dG-metric. Two sequences (an)n∈N
and (bn)n∈N defining points at infinity are called equivalent if

lim
n→∞

inf
i,j≥n

(ai, bj)1 =∞.

The boundary ∂G of G is defined to be the set of equivalence classes of sequences
defining points at infinity. If a ∈ ∂G is the equivalence class of a sequence (an)n∈N,
we say that (an)n∈N converges to a and write lim

n→∞
an = a. The boundary ∂G can

be endowed with a natural topology which makes it a compact (and metrizable)
space. It turns out that the definition of ∂G and the topology on it are independent
of the choice of the word metric for G. Moreover, G acts on ∂G by homeomorphisms
and the action is given by g · limn→∞ an = limn→∞ gan where g ∈ G and (an)n∈N
defines a point at infinity. If S is a subset of G (e.g., a subgroup of G), we define
the limit set ∂G(S) to be the set of limits in ∂G of sequences of elements of S.
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3. The Proofs

Proposition A. Let F be the fundamental group of a closed hyperbolic surface S.
Let φ be an automorphism of F induced by a pseudo-anosov homeomorphism of S.
Take G to be the mapping-torus group of φ, that is

G = 〈F, t | tft−1 = φ(f), f ∈ F 〉.

Let x ∈ F be an element which is not a proper power in F (and so, obviously, x is
not a proper power in G). Let G1 be a copy of G. The group G1 contains a copy
F1 of F and a copy x1 of x. Set

M = G ∗
x=x1

G1 (1)

and H = sgp(F, F1).

Then

1. M is torsion-free and word hyperbolic.
2. H is finitely presented, freely indecomposable and non-quasiconvex in M .

Proof. The group G is torsion free and word hyperbolic since it is the fundamental
group of a closed 3-manifold of constant negative curvature (see [Th]). Thus, M
is word hyperbolic by the combination theorem for negatively curved groups (see
[BF], [KM]). Notice that H = sgp(F, F1) ∼= F ∗

x=x1

F1 and so H is torsion-free,

finitely presentable and freely indecomposable. Moreover, H is word hyperbolic by
the same combination theorem.

Suppose H is quasiconvex in M . It is shown in [BGSS] that F is rational with
respect to some automatic structure on H since H = F ∗C F1 where C = 〈x〉 = 〈x1〉
is cyclic. Therefore, F is quasiconvex in H (see, for example, [Swa]). Thus, since
H is quasiconvex in M and F is quasiconvex in H, the subgroup F is quasiconvex
in M . However, F is infinite and has infinite index in its normalizer in M , which
(see [KS]) implies that F is not quasiconvex in M . This contradiction completes
the proof of Proposition A. �

Theorem B. Let G, G1, M , and H be as in Proposition A. Let K be the limit set
∂M (H) of H in the boundary ∂M of M . Then

H = StabM (K) = {f ∈M | fK = K}.

Before proceeding with the proof, we choose a finite generating set G for G and
its copy G1. Then G defines the word length lG and the word metric dG for G.
Analogously, G ∪ G1 is a finite generating set for M = G ∗C G1 which defines the
word length lM and the word metric dM on M . Fix a δ > 0 such that all dM-
geodesic triangles are δ-thin. We also denote by C the subgroup of M generated
by x = x1. The element x = x1 will sometimes be denoted by c. Thus M = G ∗

C
G1

and H = F ∗
C
F1. We need to accumulate some preliminary information before

proceeding with the proof of Theorem B.



188 Ilya Kapovich

h

x

z

y

u

u

v

V

V

i

jii

j

j

jv

iU

U

V

v

w

U

u

1

hk

Figure 2

Lemma 1. Let A be a word hyperbolic group with a fixed finite generating set S.
Let H and K be quasiconvex subgroups of A such that for every a ∈ A

aHa−1 ∩K = {1}

Then there is a constant r0 > 0 such that for every h ∈ H and k ∈ K

lA(hk) ≥ r0 · lA(k)

Proof. Fix a finite generating set H for H and a finite generating set K for K.
Since K and H are quasiconvex in A, there is ε > 0 such that every geodesic [1, h],
h ∈ H in the Cayley graph of A lies in the ε-neighborhood of H and every geodesic
[1, k], k ∈ K lies in the ε-neighborhood of K. Also, there is λ > 0 such that every
dH-geodesic (dK-geodesic) word defines a λ-quasigeodesic in the Cayley graph of
A.

Let h ∈ H and k ∈ K. Fix dG-geodesic representatives u, v, w of h, k and
hk respectively. Also, fix a dH-geodesic representative U of h and a dK-geodesic
representative V of k. Consider the geodesic triangle ∆ in the Cayley graph of A
with sides u, v, w (see Figure 2).

Consider the inscribed triangle xyz in the triangle ∆ (see Figure 2). It has the
following properties:

1. dA(1, x) = dA(1, z), dA(h, x) = dA(h, y), dA(hk, y) = dA(hk, z)
2. the segment [1, u] of U is δ-uniformly close to the segment [1, z] of w

and similar conditions hold for the other two corners of ∆; in particular,
dA(x, y), dA(x, z), dA(y, z) ≤ δ.

We claim that dA(x, h) = dA(y, h) is small. More precisely, let N be the num-
ber of words in the generating set of A of length at most δ + 2ε + 2. Suppose
dA(h, u) > 4(ε + 1)(N + 1). Then there is a sequence of vertices u1, . . . , uN+1 on
the segment of u between x and h such that dA(uk, us) = 4(ε + 1)|k − s|. For
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each k = 1, . . . , N + 1 there is a vertex Uk on U such that dA(Uk, uk) ≤ ε + 1.
Note that when k 6= s, dA(Uk, Us) ≥ 4(ε + 1)|k − s| − 2(ε + 1) ≥ 2(ε + 1) > 0 and
therefore all the vertices U1, . . . , UN+1 represent different elements of A. Also, for
every k = 1, . . . , N + 1 there is a unique vertex vk on the segment of V between
h and y such that dA(h, uk) = dA(h, vk). Note that since the triangle ∆ is δ-thin,
we have dA(uk, vk) ≤ δ, k = 1, . . . , N + 1. Finally, for every k = 1, . . . , N + 1 there
is a vertex Vk of V such that dA(vk, Vk) ≤ ε + 1. Thus dA(Uk, Vk) ≤ δ + 2(ε + 1),
k = 1, . . . , N + 1. For each k we choose a dA-geodesic path αk from Uk to Vk in the
Cayley graph of A. By the choice of N there are i < j such that αi = αj = α. Put
a = α. Then a−1h′a = k′ where h′ ∈ H is the element represented by the segment
of U from Uj to Ui and k′ ∈ K is the element represented by the segment of V
from Vi to Vj . Since h′ 6= 1, this contradicts our assumption that any conjugate of
H intersects K trivially. Thus we have established that

dA(h, u) ≤ 4(ε+ 1)(N + 1) = r

Therefore l(w) ≥ dA(z, kh) = dA(v, kh) ≥ l(v) − r and lA(hk) = l(w) ≥
min(1/2, 1/r) · l(v) = min(1/2, 1/r) · lA(k) which concludes the proof of Lemma
1. �

Corollary 2. Let A be a word hyperbolic group with a fixed finite generating set A
and let a, b be elements of infinite order in A such that no nontrivial power of a is
conjugate in A to a power of b. Then there is a constant r1 > 0 such that for every
m,n ∈ Z

lA(ambn) ≥ |n| · r1

Proof. This directly follows from Lemma 1 and the fact that cyclic subgroups of
word hyperbolic groups are quasiconvex [ABC]. �

Lemma 3. Assume that conditions of Theorem B are satisfied. Let p ∈ C or
p = p1 . . . ps be a strictly alternating product of elements of G − C and G1 − C,
where ps ∈ G1 − C. Let y ∈ G be such that no power of y is conjugate in G to a
power of x. Then there is a constant D > 0 such that for every n ∈ Z

lM(pyn) ≥ D · |n|

Proof. Note that if p ∈ C, then, since every conjugate of C in G intersects 〈y〉
trivially, Corollary 2 implies that

lG(pyn) ≥ r1 · |n|

for some constant r1 > 0 independent of p, n. Theorem D of [BGSS] implies that
G and G1 are quasiconvex in M . Therefore there is a constant r > 0 such that for
every g ∈ G

lM(g) ≥ r · lG(g)

and therefore

lM(pyn) ≥ r · r1 · |n|
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From now on we assume that p 6∈ C that is p = p1 . . . ps is a strictly alternating
product of elements of G − C and G1 − C with ps ∈ G1 − C. To prove Lemma 3
in this case, recall that by the theorem of G. Baumslag, S. Gersten, M. Shapiro,
and H. Short [BGSS], cyclic amalgamations of hyperbolic groups are automatic. In
the proof of this theorem they construct an actual automatic language for a cyclic
amalgam of two hyperbolic groups, which, therefore, consists of quasigeodesic words
(see [ECHLPT], Theorem 3.3.4). We will explain how their procedure works in the
case of the group M = G ∗C G1 (we use the fact that dG |C= dG1

|C). Fix a
lexicographic order on the generating set G of G and a copy of this order on the
generating set G1 of G1. We will say that a dG-geodesic word u is minimal in the
coset class uC if lG(u) ≤ lG(u · c) for every c ∈ C and whenever l(u) = l(u′) for
some dG-geodesic word u′ with u′ ∈ uC then u is lexicographically smaller than u′.
It is clear that any coset class gC, g ∈ G has a unique minimal representative u.
Similarily, one defines minimal representatives for coset classes g1C, g1 ∈ G1.

Theorem D of [BGSS] provides an explicit construction of an automatic language
L in the alphabet M = G ∪ G1 for M such that every e ∈ M has a unique repre-
sentative in L. Note that, in general, Theorem D of [BGSS] gives a construction of
such an automatic language for M in a bigger alphabet than G∪G1. More precisely,
they need to find first a generating set G′ containing G for G and a generating set
G1
′ containing G1 for G1 such that for some constant ε1 > 0

|lG′(c)− lG1
′(c)| ≤ ε1, for every c ∈ C.

Then they construct the automatic language for M in the alphabet G′ ∪ G1
′. How-

ever, by the choice of M we already have

lG(c) = lG1
(c) for every c ∈ C

and so the [BGSS] procedure gives us an automatic language L with uniqueness
in the alphabet G ∪ G1. (Although an automatic group has an automatic language
over every finite generating set of this group, in this particular case we need not
just the fact that M is automatic and possesses an automatic language over M
but, rather, the fact that M has an automatic language over M with some very
particular properties given by the [BGSS] construction). We will now describe how,
given an element e ∈M , one can find its representative in L.

Suppose e ∈M . If e ∈ C, then e = xk and we take a dG-geodesic representative
of xk to be the representative of e in the automatic language L for M . Suppose
e 6∈ C. First, write e as a strictly alternating product of elements from

e = e1 . . . ej

of elements from G − C and G1 − C. Then express e1 as e1 = w1@, cn1 where
w1 is the minimal representative in the coset class e1C. Then express cn1e2 as
cn1e2 = w2@, cn2 where w2 is the minimal representative in the coset class cn1e2C.
And so on for i = 1, 2, . . . , j − 1. Finally, we express cnj−2ej−1 as wj−1@, cnj−1

where wj−1 is the minimal representative in the coset class cnj−2ej−1C.
We put wj to be the lexicographically minimal among all dG-geodesic (dG1-

geodesic) representatives of cnj−1ej . As a result we obtain the word w = w1 . . . wj
such that w = e. This word w is the required representative of e in L.
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Note that in the case e 6∈ C we have w1@, C = e1C, Cwj = Cej and CwiC =
CeiC for 1 < i < j. Note also that there is λ > 0 such that all words in L define
λ-quasigeodesics in the Cayley graph of M . This, in particular, means that for
every w ∈ L

l(w) ≤ λ · lM(w) + λ.

Suppose now that p and y are as in Lemma 3 and n ∈ Z, n 6= 0. We will find
the representative w of pyn in the automatic language L on M using the procedure
described above. Note that 〈y〉 ∩ 〈x〉 = {1} and so yn ∈ G − C since C = 〈x〉.
Therefore p1 . . . psy

n is a strictly alternating product of elements of G − C and
G1 − C. It is clear from the construction that w has the following form:

w = q1 . . . qsv

where

1. qi is a dG-geodesic word when pi ∈ G − C and qi is a dG1
-geodesic word

when pi ∈ G1 − C;
2. q1C = p1C and CqiC = CpiC when i > 1;
3. v is a dG-geodesic word and v = cyn for some c ∈ C
4. w = p1 . . . psy

n = pyn

Corollary 2 implies that l(v) = lG(cyn) ≥ r1 · |n| for some r1 > 0 depending only
on x, y and independent of n.

Therefore l(w) = l(q1 . . . qsv) ≥ l(v) ≥ r1 · |n|. Since the language L consists

of λ-quasigeodesics with respect to dM, we conclude that lM(pyn) ≥
l(w)

λ
− λ ≥

r1

λ
· |n| − λ which implies the statement of Lemma 3. �

Lemma 4. Suppose conditions of Theorem B are satisfied. Let u1 . . . um 6∈ H
be a strictly alternating product of elements from G − C and G1 − C such that
um ∈ G1 − C. Let p1 . . . ps be a strictly alternating product of elements of F − C
and F1−C. Let q0 belong to G1 if p1 ∈ F −C and q0 belong to G when p1 ∈ F1−C
(we allow q0 ∈ C).

Then either q0p1 . . . psu1 . . . um ends (when rewritten in the normal form with
respect to (1)) in the element of G1 − C or q0p1 . . . psu1 . . . Aum ∈ C.

Proof. Indeed, um ∈ G1 − C and so q0p1 . . . psu1 . . . um ends (when rewritten in
the normal form with respect to (1)) in the element of G1−C unless u−1

m . . . u−1
1 is

a terminal segment of q0p1 . . . ps that is either m ≥ s and

ps−m+1 . . . psu1 . . . um ∈ C (2)

or
q0p1 . . . psu1 . . . um ∈ C (3)

It is clear that (2) is impossible since ps−m+1 . . . ps ∈ H = gp(F, F1), C ≤ H
and u1 . . . um 6∈ H. If (3) holds, we have q0p1 . . . psu1 . . . um ∈ C as required. Thus
Lemma 4 is established. �
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Lemma 5. Let z = u1 . . . um 6∈ H be a strictly alternating product of elements of
G − C and G1 − C such that um ∈ G1 − C. Let y ∈ G be such that no nontrivial
power of y is conjugate in G to a power of x = c. Then there is a constant K0 > 0
with the following property.

Let n ∈ Z and h ∈ H. Let v be a dM-geodesic from 1 to h and let u be a dM-
geodesic from 1 to zyn. Take the vertex v(N) of v at the distance N from 1 and
the vertex u(N) of u at the distance N from 1 (see Figure 3). Then

dM(u(N), v(N)) ≥ K0 ·N.

Proof. Recall that H = sgp(F, F1) = F ∗C F1 ≤M = G ∗C G1. Let λ > 0 be such
that any word from the automatic language L on M defines a λ-quasigeodesic in
the Cayley graph of M .

Let ûi be a dG-geodesic (dG1
-geodesic) representative of ui, i ≤ m. Let Y be a

dG-geodesic representative of y. Since the element z is fixed and the cyclic subgroup
〈y〉 is quasiconvex in M , there is a constant λ1 > 0 such that for every k ∈ Z the
word û1 . . . ûm−1ûmY

k is a λ1-quasigeodesic with respect to dM. In particular,
U = û1 . . . ûm−1ûmY

n is a λ1-quasigeodesic representative of zyn with respect to
dM. Put λ2 = max(λ, λ1). Let ε > 0 be such that any two λ2-quasigeodesics with
common endpoints in the Cayley graph of M are ε-Hausdorff-close. We will also
assume that ε is such that for every k ∈ Z and every point x0 on a dM-geodesic
from 1 to zyk there is k′ ∈ Z, k′ ∈ [0, k], such that dM(x0, zy

k′) ≤ ε.
If h ∈ C and h−1 = xm, put p1 = h−1 and let w1 be a dG-geodesic representative

of p1.

If h 6∈ C let h−1 = p1p2 . . . ps be the strictly alternating product of elements of
F − C and F1 − C. Note that p1p2 . . . ps is also a strictly alternating product of
elements of G − C and G1 − C. We then can find the representative w of h−1 in
the automatic language L on M which was described in Lemma 3.

Clearly, w = w1w2 . . . ws, where

1. w1C = p1C and w1 is minimal in the coset w1C
2. for j < s CwjC = CpjC and wj is minimal in the coset wjC
3. Cws = Cps that is ws = cps for some c ∈ C
4. each wi is a dG or dG1-geodesic word.

Note that since pj ∈ F ∪ F1 and C ≤ F , C ≤ F1, the conditions above imply that
wj ∈ F ∪ F1 for j = 1, . . . , s.

Let v be a dM geodesic from 1 to h and let u be a dM geodesic from 1 to zyn.
Assume N is a positive number such that N ≤ l(v) and N ≤ l(u).

Let v(N) be the point on the geodesic v at the distance N from 1. Let u(N) be
the point on the geodesic u at the distance N from 1 (see Figure 3).

Recall that z = u1 . . . um and y are fixed, um ∈ G1−C. Recall further that Y is
a dG-geodesic representative of y. By the choice of ε there is a vertex V (N) of w and
a vertex U(N) = zyk of U such that dM(u(N), U(N)) ≤ ε, dM(v(N), V (N)) ≤ ε
(see Figure 3). The segment S1 of w from V (N) to 1 is a terminal segment of
w = w1 . . . ws, and it has the form

S1 = qiwi+1 . . . ws
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where i ≤ s and qi is a nonempty terminal segment of wi. The segment S2 of U
from 1 to U(N) is an initial segment of U = û1 . . . ûm−1ûmY

n of the form

S2 = û1 . . . ûm−1ûmY
k

for some integer k ∈ [0, n]. Notice that dM(1, u1 . . . um−1ûmy
k) ≥ N − ε and

therefore
|k|lM(y) ≥ lA(yk) ≥ N − l(û1 . . . ûm−1ûm)− ε

and
|k| ≥ (1/lA(y))(N − l(û1 . . . ûm−1ûm)− ε).

Thus, for some constant K1 > 0 independent of h, n, we have

|k| ≥ K1 ·N.

By Lemma 4, either qiwi+1 . . . wsu1 . . . um ∈ C or qiwi+1 . . . wsu1 . . . um ends
in the element of G1 − C, when rewritten in normal form with respect to (1).
Therefore, by Lemma 3, there is a constant D > 0 independent of h, n such that

lM(qiwi+1 . . . wsu1 . . . umy
k) = lM(S1S2) ≥ D|k|

and hence lM(qiwi+1 . . . wsu1 . . . umy
k) ≥ K1 · D · N . It remains to recall that

|dM(u(N), v(N)) − lM(qiwi+1 . . . wsu1 . . . umy
k)| ≤ 2ε to conclude that there is a

constant K2 > 0 independent of h, n such that dM(u(N), v(N)) ≥ K2 · N . This
completes the proof of Lemma 5. �
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Proof of Theorem B. Suppose z ∈ StabM (K). We will show that z ∈ H by
induction on the syllable length of z with respect to presentation (1). When the
syllable length of z is 0, that is z ∈ C, the statement is obvious. Suppose now
that z ∈ StabM (K) − H, the syllable length of z is m > 0 and the statement
has been proved for elements of StabM (K) of smaller syllable length. Write z as
a strictly alternating product z = u1 . . . um of elements from G − C and G1 − C.
If um ∈ F ∪ F1, then um ∈ H ∩ StabM (K), and so u1 . . . um−1 ∈ StabM (K).
Therefore, u1 . . . um−1 ∈ H by the inductive hypothesis, um ∈ H, and so z ∈ H.
Thus, um ∈ (G−F )∪ (G1 −F1). Assume for definiteness that um ∈ G1 −F1, that

is, um = f1t
j
1 for some j 6= 0, f1 ∈ F1.

Choose y ∈ F so that no power of y is conjugate in G to a power of x. Fix a
dG-geodesic representative Y of y.

Let y+ = lim
n→∞

yn ∈ ∂M . By definition of K we have y+ ∈ K and therefore

zy+ ∈ K. This means that for any N > 0 there is an element h ∈ H and a positive
power yn of y such that (h, zyn)1 > N , the Gromov inner product taken in the dM-
metric. This means that lM(h) ≥ N , lM(zyn) ≥ N and dM(h(N), (zyn)(N)) ≤ δ
where h(N) and (zyn)(N) are elements of M represented by initial segments of
length N of dM-geodesic representatives of h and zyn.

Then lM(h(N), (zyn)(N)) ≥ K0 ·N where K0 is the constant independent of h,
n which is provided by Lemma 5. Thus,

δ ≥ lM(h(N), (zyn)(N)) ≥ K0 ·N

and therefore N ≤ (1/K0) · δ. This contradicts the fact that N can be chosen
arbitrarily big.

Therefore, z 6∈ StabM (K), which completes the proof of Theorem B. �

Corollary 6. Let M , G, G1, C and H be as in Theorem B. Then

(a) the limit set of H is not the limit set of a quasiconvex subgroup of M ;
(b) the virtual normalizer V NM (H) of H in M is equal to H.

Proof.
(a) Suppose there is a quasiconvex subgroup Q1 of M such that ∂M(H) =

∂M(Q1) = K. Clearly, Q1 is infinite since K is nonempty. Set

Q = StabM (K) = {y ∈M |yK = K}.

Since Q1 is infinite and quasiconvex in M and Q = StabM (∂M(Q1)), it follows
from Lemma 3.9 of [KS] that Q contains Q1 as a subgroup of finite index and
therefore Q is also quasiconvex in M . On the other hand, Theorem B implies that
H = StabM (K), and so H = Q. This contradicts the fact that H is not quasiconvex
in M by Proposition A.

(b) It is not hard to see that A ≤ V NB(A) ≤ StabB(∂B(A)) when A is an
infinite subgroup of a word hyperbolic group B. Indeed, if g ∈ V NB(A), then
A0 = A ∩ gAg−1 has finite index n in A. Let A = A0 ∪ A0c1 ∪ · · · ∪ A0cn−1,
and let D = max{lA(ci) | i = 1, . . . , n − 1}. Suppose p ∈ ∂B(A). Then there is
a sequence am ∈ A such that p = lim

m→∞
am. For each m there is b ∈ B with
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lB(b) ≤ D + lB(g) such that gamb = a′m ∈ A0. Therefore gp ∈ ∂B(A0) = ∂B(A).
Since p ∈ ∂B(A) was chosen arbitrarily, we have g∂B(A) ⊆ ∂B(A). Since by the
same argument g−1∂B(A) ⊆ ∂B(A), we conclude that g∂B(A) = ∂B(A). Thus,
A ≤ V NB(A) ≤ StabB(∂B(A)).

For the subgroup H of M we have H ≤ V NM (H) ≤ StabM (∂M(H)). On the
other hand, StabM (∂M(H)) = H by Theorem B. Therefore, H = V NM (H). �
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