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A Non�quasiconvex Subgroup of a

Hyperbolic Group with an Exotic Limit Set

Ilya Kapovich

Abstract� We construct an example of a torsion free freely indecomposable �nitely
presented non�quasiconvex subgroup H of a word hyperbolic group G such that the
limit set of H is not the limit set of a quasiconvex subgroup of G� In particular

this gives a counterexample to the conjecture of G� Swarup that a �nitely presented
one�ended subgroup of a word hyperbolic group is quasiconvex if and only if it has
�nite index in its virtual normalizer�
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�� Introduction

A subgroup H of a word hyperbolic group G is quasiconvex �or rational� in G if
for any �nite generating set A of G there is � � 
 such that every geodesic in the
Cayley graph ��G�A� of G with both endpoints inH is contained in ��neighborhood
of H � The notion of a quasiconvex subgroup corresponds� roughly speaking� to that
of geometric �niteness in the theory of classical hyperbolic groups �see �Swa�� �KS��
�Pi��� Quasiconvex subgroups of word hyperbolic groups are �nitely presentable
and word hyperbolic and their �nite intersections are again quasiconvex� Non�
quasiconvex �nitely generated subgroups of word hyperbolic groups are quite rare
and there are very few examples of them� We know only three basic examples of
this sort� The �rst is based on a remarkable construction of E� Rips �R�� which
allows one� given an arbitrary �nitely presented group Q� to construct a word
hyperbolic group G and a two�generator subgroup H of G such that H is normal
in G and the quotient is isomorphic to Q� The second example is based on the
existence of a closed hyperbolic ��manifold �bering over a circle� provided by results
of W� Thurston and T� Jorgensen� The third example is obtained using the result
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of M� Bestvina and M� Feign �BF� who proved that if F is a non�abelian free group
of �nite rank and � is an automorphism of F without periodic conjugacy classes
then the HNN�extension of F along � is word hyperbolic�

If G is a word hyperbolic group then we denote the boundary of G �see �Gr��
�GH� and �CDP�� by �G� For a subgroup H of G the limit set �G�H� of H is the
set of all limits in �G of sequences of elements of H �

In this note we construct an example of a non�quasiconvex �nitely presented
one�ended subgroup H of a word hyperbolic group G such that the limit set of
H is exotic� By exotic we mean that the limit set of H is not the limit set of a
quasiconvex subgroup of G� This result is of some interest since in the previously
known examples non�quasiconvex subgroups were normal in the ambient hyperbolic
groups and thus �see �KS�� had the same limit sets� Our subgroup H also provides
a counter�example to the conjecture of G� A� Swarup �Swa� which stated that a
�nitely presented freely indecomposable subgroup of a torsion�free word hyperbolic
group is quasiconvex if and only if it has �nite index in its virtual normalizer �this
statement was known to be true for ��dimensional Kleinian groups�� The subgroup
H � constructed here� coincides with its virtual normalizer� Here� by the virtual
normalizer of a subgroup H of a group G we mean the subgroup

V NG�H� � fg � G j jH � H � gHg��j ��� jgHg�� � H � gHg��j ��g�

�� Some De�nitions and Notations

A geodesic in a metric space �X� d� is an isometric embedding 	 � �
� l� � X
where l � 
 and �
� l� is a segment of the real line� We say that a metric space
�X� d� is geodesic if any two points of X can be joined by a geodesic path in X � A
path 
 � �
� l� � X is called ��quasigeodesic if it is parametrized by its arclength
and for any t�� t� � �
� l�

jt� � t�j � � 	 d�
�t��� 
�t��� � ��

If x� y and z are points in a metric space �X� d� we set

�x� y�z �
�

�
�d�z� x� � d�z� y�� d�x� y���

The quantity �x� y�z is called the Gromov inner product of x and y with respect to
z�

Let � be a triangle in a metric space �X� d� with geodesic sides 	� 
 and � and
vertices x� y� z� �See Figure ���

We say that the points p� q� r on 	� 
 and � are the vertices of the inscribed

triangle for � if d�x� p� � d�x� r� � �y� z�x� d�y� p� � d�y� q� � �x� z�y and d�z� r� �
d�z� q� � �x� y�z� In this situation � is called 
�thin if for each t � �
� d�x� p��

d�p�� r�� � 


where p�� r� are points on 	� � with d�x� p�� � d�x� r�� � t and if the symmetric
condition holds for y and z�

A geodesic metric space �X� d� is called 
�hyperbolic if there is 
 � 
 such that
all geodesic triangles are 
�thin�
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If G is a �nitely generated group and G is a �nite generating set for G� we
denote the Cayley graph of G with respect to G by ��G�G� and denote by dG the
word metric on ��G�G�� Also� for any g � G we de�ne the word length of g as
lG�g� � dG��� g�� It is easy to see that ���G�G�� dG� is a geodesic metric space� If w
is a word in the generators G� we denote by w the element of G which w represents�

A �nitely generated group G is called word hyperbolic if for each �nite generating
set G for G there is 
 � 
 such that the Cayley graph ��G�G� with the word metric
dG is 
�hyperbolic�

A subgroup H of a word hyperbolic group G is called quasiconvex in G if for
some �and therefore for any� �nite generating set G of G there is � � 
 such that
every geodesic in the Cayley graph ��G�G� of G with both endpoints in H lies in
the ��neighborhood of H �

If G is a word hyperbolic group with a �nite generating set G� we say that a
sequence of points fgn � G jn � Ng de�nes a point at in�nity if

lim
n��

inf
i�j�n

�gi� gj�� ��

where the Gromov inner product is taken in dG�metric� Two sequences �an�n�N
and �bn�n�N de�ning points at in�nity are called equivalent if

lim
n��

inf
i�j�n

�ai� bj�� ���

The boundary �G of G is de�ned to be the set of equivalence classes of sequences
de�ning points at in�nity� If a � �G is the equivalence class of a sequence �an�n�N�
we say that �an�n�N converges to a and write lim

n��
an � a� The boundary �G can

be endowed with a natural topology which makes it a compact �and metrizable�
space� It turns out that the de�nition of �G and the topology on it are independent
of the choice of the word metric for G� Moreover�G acts on �G by homeomorphisms
and the action is given by g 	 limn�� an � limn�� gan where g � G and �an�n�N
de�nes a point at in�nity� If S is a subset of G �e�g�� a subgroup of G�� we de�ne
the limit set �G�S� to be the set of limits in �G of sequences of elements of S�
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�� The Proofs

Proposition A� Let F be the fundamental group of a closed hyperbolic surface S�
Let � be an automorphism of F induced by a pseudo�anosov homeomorphism of S�
Take G to be the mapping�torus group of �� that is

G � hF� t j tft�� � ��f�� f � F i�

Let x � F be an element which is not a proper power in F �and so� obviously� x is

not a proper power in G�� Let G� be a copy of G� The group G� contains a copy

F� of F and a copy x� of x� Set

M � G 

x�x�

G� ���

and H � sgp�F� F���

Then

�� M is torsion�free and word hyperbolic�

�� H is �nitely presented� freely indecomposable and non�quasiconvex in M �

Proof� The group G is torsion free and word hyperbolic since it is the fundamental
group of a closed ��manifold of constant negative curvature �see �Th��� Thus� M
is word hyperbolic by the combination theorem for negatively curved groups �see
�BF�� �KM��� Notice that H � sgp�F� F�� �� F 


x�x�
F� and so H is torsion�free�

�nitely presentable and freely indecomposable� Moreover� H is word hyperbolic by
the same combination theorem�

Suppose H is quasiconvex in M � It is shown in �BGSS� that F is rational with
respect to some automatic structure on H since H � F 
C F� where C � hxi � hx�i
is cyclic� Therefore� F is quasiconvex in H �see� for example� �Swa��� Thus� since
H is quasiconvex in M and F is quasiconvex in H � the subgroup F is quasiconvex
in M � However� F is in�nite and has in�nite index in its normalizer in M � which
�see �KS�� implies that F is not quasiconvex in M � This contradiction completes
the proof of Proposition A� �

Theorem B� Let G� G�� M � and H be as in Proposition A� Let K be the limit set

�M �H� of H in the boundary �M of M � Then

H � StabM �K� � ff �M j fK � Kg�

Before proceeding with the proof� we choose a �nite generating set G for G and
its copy G�� Then G de�nes the word length lG and the word metric dG for G�
Analogously� G � G� is a �nite generating set for M � G 
C G� which de�nes the
word length lM and the word metric dM on M � Fix a 
 � 
 such that all dM�
geodesic triangles are 
�thin� We also denote by C the subgroup of M generated
by x � x�� The element x � x� will sometimes be denoted by c� Thus M � G 


C
G�

and H � F 

C
F�� We need to accumulate some preliminary information before

proceeding with the proof of Theorem B�
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Lemma �� Let A be a word hyperbolic group with a �xed �nite generating set S�
Let H and K be quasiconvex subgroups of A such that for every a � A

aHa�� �K � f�g

Then there is a constant r� � 
 such that for every h � H and k � K

lA�hk� � r� 	 lA�k�

Proof� Fix a �nite generating set H for H and a �nite generating set K for K�
Since K and H are quasiconvex in A� there is � � 
 such that every geodesic ��� h��
h � H in the Cayley graph of A lies in the ��neighborhood of H and every geodesic
��� k�� k � K lies in the ��neighborhood of K� Also� there is � � 
 such that every
dH�geodesic �dK�geodesic� word de�nes a ��quasigeodesic in the Cayley graph of
A�

Let h � H and k � K� Fix dG�geodesic representatives u� v� w of h� k and
hk respectively� Also� �x a dH�geodesic representative U of h and a dK�geodesic
representative V of k� Consider the geodesic triangle � in the Cayley graph of A
with sides u� v� w �see Figure ���

Consider the inscribed triangle xyz in the triangle � �see Figure ��� It has the
following properties�

�� dA��� x� � dA��� z�� dA�h� x� � dA�h� y�� dA�hk� y� � dA�hk� z�
�� the segment ��� u� of U is 
�uniformly close to the segment ��� z� of w

and similar conditions hold for the other two corners of �� in particular�
dA�x� y�� dA�x� z�� dA�y� z� � 
�

We claim that dA�x� h� � dA�y� h� is small� More precisely� let N be the num�
ber of words in the generating set of A of length at most 
 � �� � �� Suppose
dA�h� u� � ��� � ���N � ��� Then there is a sequence of vertices u�� � � � � uN�� on
the segment of u between x and h such that dA�uk� us� � ��� � ��jk � sj� For
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each k � �� � � � � N � � there is a vertex Uk on U such that dA�Uk� uk� � � � ��
Note that when k 
� s� dA�Uk� Us� � ���� ��jk � sj � ���� �� � ���� �� � 
 and
therefore all the vertices U�� � � � � UN�� represent di�erent elements of A� Also� for
every k � �� � � � � N � � there is a unique vertex vk on the segment of V between
h and y such that dA�h� uk� � dA�h� vk�� Note that since the triangle � is 
�thin�
we have dA�uk� vk� � 
� k � �� � � � � N ��� Finally� for every k � �� � � � � N �� there
is a vertex Vk of V such that dA�vk � Vk� � �� �� Thus dA�Uk� Vk� � 
 � ���� ���
k � �� � � � � N ��� For each k we choose a dA�geodesic path 	k from Uk to Vk in the
Cayley graph of A� By the choice of N there are i � j such that 	i � 	j � 	� Put
a � 	� Then a��h�a � k� where h� � H is the element represented by the segment
of U from Uj to Ui and k� � K is the element represented by the segment of V
from Vi to Vj � Since h

� 
� �� this contradicts our assumption that any conjugate of
H intersects K trivially� Thus we have established that

dA�h� u� � ���� ���N � �� � r

Therefore l�w� � dA�z� kh� � dA�v� kh� � l�v� � r and lA�hk� � l�w� �
min����� ��r� 	 l�v� � min����� ��r� 	 lA�k� which concludes the proof of Lemma
�� �

Corollary �� Let A be a word hyperbolic group with a �xed �nite generating set A
and let a� b be elements of in�nite order in A such that no nontrivial power of a is

conjugate in A to a power of b� Then there is a constant r� � 
 such that for every

m�n � Z
lA�a

mbn� � jnj 	 r�

Proof� This directly follows from Lemma � and the fact that cyclic subgroups of
word hyperbolic groups are quasiconvex �ABC�� �

Lemma �� Assume that conditions of Theorem B are satis�ed� Let p � C or

p � p� � � � ps be a strictly alternating product of elements of G � C and G� � C�

where ps � G� � C� Let y � G be such that no power of y is conjugate in G to a

power of x� Then there is a constant D � 
 such that for every n � Z

lM�pyn� � D 	 jnj

Proof� Note that if p � C� then� since every conjugate of C in G intersects hyi
trivially� Corollary � implies that

lG�py
n� � r� 	 jnj

for some constant r� � 
 independent of p� n� Theorem D of �BGSS� implies that
G and G� are quasiconvex in M � Therefore there is a constant r � 
 such that for
every g � G

lM�g� � r 	 lG�g�

and therefore

lM�pyn� � r 	 r� 	 jnj
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From now on we assume that p 
� C that is p � p� � � � ps is a strictly alternating
product of elements of G � C and G� � C with ps � G� � C� To prove Lemma �
in this case� recall that by the theorem of G� Baumslag� S� Gersten� M� Shapiro�
and H� Short �BGSS�� cyclic amalgamations of hyperbolic groups are automatic� In
the proof of this theorem they construct an actual automatic language for a cyclic
amalgam of two hyperbolic groups� which� therefore� consists of quasigeodesic words
�see �ECHLPT�� Theorem ������� We will explain how their procedure works in the
case of the group M � G 
C G� �we use the fact that dG jC� dG� jC�� Fix a
lexicographic order on the generating set G of G and a copy of this order on the
generating set G� of G�� We will say that a dG�geodesic word u is minimal in the
coset class uC if lG�u� � lG�u 	 c� for every c � C and whenever l�u� � l�u�� for
some dG�geodesic word u

� with u� � uC then u is lexicographically smaller than u��
It is clear that any coset class gC� g � G has a unique minimal representative u�
Similarily� one de�nes minimal representatives for coset classes g�C� g� � G��

Theorem D of �BGSS� provides an explicit construction of an automatic language
L in the alphabet M � G � G� for M such that every e � M has a unique repre�
sentative in L� Note that� in general� Theorem D of �BGSS� gives a construction of
such an automatic language forM in a bigger alphabet than G�G�� More precisely�
they need to �nd �rst a generating set G� containing G for G and a generating set
G�
� containing G� for G� such that for some constant �� � 


jlG��c�� lG���c�j � ��� for every c � C�

Then they construct the automatic language for M in the alphabet G� � G�
�� How�

ever� by the choice of M we already have

lG�c� � lG��c� for every c � C

and so the �BGSS� procedure gives us an automatic language L with uniqueness
in the alphabet G � G�� �Although an automatic group has an automatic language
over every �nite generating set of this group� in this particular case we need not
just the fact that M is automatic and possesses an automatic language over M
but� rather� the fact that M has an automatic language over M with some very
particular properties given by the �BGSS� construction�� We will now describe how�
given an element e �M � one can �nd its representative in L�

Suppose e �M � If e � C� then e � xk and we take a dG�geodesic representative
of xk to be the representative of e in the automatic language L for M � Suppose
e 
� C� First� write e as a strictly alternating product of elements from

e � e� � � � ej

of elements from G�C and G��C� Then express e� as e� � w�c
n� where w� is the

minimal representative in the coset class e�C� Then express cn�e� as c
n�e� � w�c

n�

where w� is the minimal representative in the coset class cn�e�C� And so on for
i � �� �� � � � � j � �� Finally� we express cnj��ej�� as wj��c

nj�� where wj�� is the
minimal representative in the coset class cnj��ej��C�

We put wj to be the lexicographically minimal among all dG�geodesic �dG� �
geodesic� representatives of cnj��ej � As a result we obtain the word w � w� � � � wj
such that w � e� This word w is the required representative of e in L�
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Note that in the case e 
� C we have w�C � e�C� Cwj � Cej and CwiC � CeiC
for � � i � j� Note also that there is � � 
 such that all words in L de�ne ��
quasigeodesics in the Cayley graph of M � This� in particular� means that for every
w � L

l�w� � � 	 lM�w� � ��

Suppose now that p and y are as in Lemma � and n � Z� n 
� 
� We will �nd
the representative w of pyn in the automatic language L on M using the procedure
described above� Note that hyi � hxi � f�g and so yn � G � C since C � hxi�
Therefore p� � � � psy

n is a strictly alternating product of elements of G � C and
G� � C� It is clear from the construction that w has the following form�

w � q� � � � qsv

where

�� qi is a dG�geodesic word when pi � G � C and qi is a dG� �geodesic word
when pi � G� � C�

�� q�C � p�C and CqiC � CpiC when i � ��
�� v is a dG�geodesic word and v � cyn for some c � C
�� w � p� � � � psy

n � pyn

Corollary � implies that l�v� � lG�cy
n� � r� 	 jnj for some r� � 
 depending only

on x� y and independent of n�
Therefore l�w� � l�q� � � � qsv� � l�v� � r� 	 jnj� Since the language L consists

of ��quasigeodesics with respect to dM� we conclude that lM�pyn� �
l�w�

�
� � �

r�
�
	 jnj � � which implies the statement of Lemma �� �

Lemma �� Suppose conditions of Theorem B are satis�ed� Let u� � � � um 
� H
be a strictly alternating product of elements from G � C and G� � C such that

um � G� � C� Let p� � � � ps be a strictly alternating product of elements of F � C
and F��C� Let q� belong to G� if p� � F �C and q� belong to G when p� � F��C
�we allow q� � C��

Then either q�p� � � � psu� � � � um ends �when rewritten in the normal form with

respect to ���� in the element of G� � C or q�p� � � � psu� � � � Aum � C�

Proof� Indeed� um � G� � C and so q�p� � � � psu� � � � um ends �when rewritten in
the normal form with respect to ���� in the element of G��C unless u��m � � � u��� is
a terminal segment of q�p� � � � ps that is either m � s and

ps�m�� � � � psu� � � � um � C ���

or
q�p� � � � psu� � � � um � C ���

It is clear that ��� is impossible since ps�m�� � � � ps � H � gp�F� F��� C � H
and u� � � � um 
� H � If ��� holds� we have q�p� � � � psu� � � � um � C as required� Thus
Lemma � is established� �
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Lemma �� Let z � u� � � � um 
� H be a strictly alternating product of elements of

G � C and G� � C such that um � G� � C� Let y � G be such that no nontrivial

power of y is conjugate in G to a power of x � c� Then there is a constant K� � 

with the following property�

Let n � Z and h � H� Let v be a dM�geodesic from � to h and let u be a dM�

geodesic from � to zyn� Take the vertex v�N� of v at the distance N from � and

the vertex u�N� of u at the distance N from � �see Figure ��� Then

dM�u�N�� v�N�� � K� 	N�

Proof� Recall that H � sgp�F� F�� � F 
C F� �M � G 
C G�� Let � � 
 be such
that any word from the automatic language L on M de�nes a ��quasigeodesic in
the Cayley graph of M �

Let �ui be a dG�geodesic �dG� �geodesic� representative of ui� i � m� Let Y be a
dG�geodesic representative of y� Since the element z is �xed and the cyclic subgroup
hyi is quasiconvex in M � there is a constant �� � 
 such that for every k � Z the
word �u� � � � �um���umY

k is a ���quasigeodesic with respect to dM� In particular�
U � �u� � � � �um���umY

n is a ���quasigeodesic representative of zy
n with respect to

dM� Put �� � max��� ���� Let � � 
 be such that any two ���quasigeodesics with
common endpoints in the Cayley graph of M are ��Hausdor��close� We will also
assume that � is such that for every k � Z and every point x� on a dM�geodesic
from � to zyk there is k� � Z� k� � �
� k�� such that dM�x�� zy

k�� � ��

If h � C and h�� � xm� put p� � h�� and let w� be a dG�geodesic representative
of p��

If h 
� C let h�� � p�p� � � � ps be the strictly alternating product of elements of
F � C and F� � C� Note that p�p� � � � ps is also a strictly alternating product of
elements of G � C and G� � C� We then can �nd the representative w of h�� in
the automatic language L on M which was described in Lemma ��

Clearly� w � w�w� � � � ws� where

�� w�C � p�C and w� is minimal in the coset w�C
�� for j � s CwjC � CpjC and wj is minimal in the coset wjC
�� Cws � Cps that is ws � cps for some c � C
�� each wi is a dG or dG��geodesic word�

Note that since pj � F � F� and C � F � C � F�� the conditions above imply that
wj � F � F� for j � �� � � � � s�

Let v be a dM geodesic from � to h and let u be a dM geodesic from � to zyn�
Assume N is a positive number such that N � l�v� and N � l�u��

Let v�N� be the point on the geodesic v at the distance N from �� Let u�N� be
the point on the geodesic u at the distance N from � �see Figure ���

Recall that z � u� � � � um and y are �xed� um � G��C� Recall further that Y is
a dG�geodesic representative of y� By the choice of � there is a vertex V �N� of w and
a vertex U�N� � zyk of U such that dM�u�N�� U�N�� � �� dM�v�N�� V �N�� � �
�see Figure ��� The segment S� of w from V �N� to � is a terminal segment of
w � w� � � � ws� and it has the form

S� � qiwi�� � � � ws
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where i � s and qi is a nonempty terminal segment of wi� The segment S� of U
from � to U�N� is an initial segment of U � �u� � � � �um���umY

n of the form

S� � �u� � � � �um���umY
k

for some integer k � �
� n�� Notice that dM��� u� � � � um���umy
k� � N � � and

therefore
jkjlM�y� � lA�y

k� � N � l��u� � � � �um���um�� �

and
jkj � ���lA�y���N � l��u� � � � �um���um�� ���

Thus� for some constant K� � 
 independent of h� n� we have

jkj � K� 	N�

By Lemma �� either qiwi�� � � � wsu� � � � um � C or qiwi�� � � � wsu� � � � um ends
in the element of G� � C� when rewritten in normal form with respect to ����
Therefore� by Lemma �� there is a constant D � 
 independent of h� n such that

lM�qiwi�� � � � wsu� � � � umy
k� � lM�S�S�� � Djkj

and hence lM�qiwi�� � � � wsu� � � � umy
k� � K� 	 D 	 N � It remains to recall that

jdM�u�N�� v�N�� � lM�qiwi�� � � � wsu� � � � umy
k�j � �� to conclude that there is a

constant K� � 
 independent of h� n such that dM�u�N�� v�N�� � K� 	 N � This
completes the proof of Lemma �� �



�
� Ilya Kapovich

Proof of Theorem B� Suppose z � StabM �K�� We will show that z � H by
induction on the syllable length of z with respect to presentation ���� When the
syllable length of z is 
� that is z � C� the statement is obvious� Suppose now
that z � StabM �K� � H � the syllable length of z is m � 
 and the statement
has been proved for elements of StabM �K� of smaller syllable length� Write z as
a strictly alternating product z � u� � � � um of elements from G � C and G� � C�
If um � F � F�� then um � H � StabM �K�� and so u� � � � um�� � StabM �K��
Therefore� u� � � � um�� � H by the inductive hypothesis� um � H � and so z � H �
Thus� um � �G�F �� �G� �F��� Assume for de�niteness that um � G� �F�� that

is� um � f�t
j
� for some j 
� 
� f� � F��

Choose y � F so that no power of y is conjugate in G to a power of x� Fix a
dG�geodesic representative Y of y�

Let y� � lim
n��

yn � �M � By de�nition of K we have y� � K and therefore

zy� � K� This means that for any N � 
 there is an element h � H and a positive
power yn of y such that �h� zyn�� � N � the Gromov inner product taken in the dM�
metric� This means that lM�h� � N � lM�zyn� � N and dM�h�N�� �zyn��N�� � 

where h�N� and �zyn��N� are elements of M represented by initial segments of
length N of dM�geodesic representatives of h and zyn�

Then lM�h�N�� �zyn��N�� � K� 	N where K� is the constant independent of h�
n which is provided by Lemma �� Thus�


 � lM�h�N�� �zyn��N�� � K� 	N

and therefore N � ���K�� 	 
� This contradicts the fact that N can be chosen
arbitrarily big�

Therefore� z 
� StabM �K�� which completes the proof of Theorem B� �

Corollary �� Let M � G� G�� C and H be as in Theorem B� Then

�a� the limit set of H is not the limit set of a quasiconvex subgroup of M �

�b� the virtual normalizer V NM �H� of H in M is equal to H�

Proof�

�a� Suppose there is a quasiconvex subgroup Q� of M such that �M�H� �
�M�Q�� � K� Clearly� Q� is in�nite since K is nonempty� Set

Q � StabM�K� � fy �M jyK � Kg�

Since Q� is in�nite and quasiconvex in M and Q � StabM ��M�Q���� it follows
from Lemma ��
 of �KS� that Q contains Q� as a subgroup of �nite index and
therefore Q is also quasiconvex in M � On the other hand� Theorem B implies that
H � StabM �K�� and soH � Q� This contradicts the fact that H is not quasiconvex
in M by Proposition A�

�b� It is not hard to see that A � V NB�A� � StabB��B�A�� when A is an
in�nite subgroup of a word hyperbolic group B� Indeed� if g � V NB�A�� then
A� � A � gAg�� has �nite index n in A� Let A � A� � A�c� � 	 	 	 � A�cn���
and let D � maxflA�ci� j i � �� � � � � n � �g� Suppose p � �B�A�� Then there is
a sequence am � A such that p � lim

m��
am� For each m there is b � B with
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lB�b� � D � lB�g� such that gamb � a�m � A�� Therefore gp � �B�A�� � �B�A��
Since p � �B�A� was chosen arbitrarily� we have g�B�A� � �B�A�� Since by the
same argument g���B�A� � �B�A�� we conclude that g�B�A� � �B�A�� Thus�
A � V NB�A� � StabB��B�A���

For the subgroup H of M we have H � V NM �H� � StabM ��M�H��� On the
other hand� StabM��M�H�� � H by Theorem B� Therefore� H � V NM �H�� �
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