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Bi-Strictly Cyclic Operators

John Froelich and Ben Mathes

To the Memory of D.A. Herrero and His Pioneering Work on Algebras of Finite Strict
Multiplicity.

Abstract. The genesis of this paper is the construction of a new operator
that, when combined with a theorem of Herrero, settles a question of Herrero.
Herrero proved that a strictly cyclic operator on an infinite dimensional Hilbert
space is never triangular. He later asks whether the adjoint of a strictly cyclic
operator is necessarily triangular. We settle the question by constructing an
operator T for which both T and T ∗ are strictly cyclic. We make a detailed
study of this bi-strictly cyclic operator which leads to theorems about general
bi-strictly cyclic operators. We conclude the paper with a comparison of the
operator space structures of the singly generated algebras A(S) and A(T ),
when S is strictly cyclic and T is bi-strictly cyclic.
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1. Introduction

In this paper H will denote a complex infinite dimensional separable Hilbert
space and B(H) will denote the algebra of operators on H . With p denoting a
complex polynomial, we say an operator R ∈ B(H) is strictly cyclic if there exists
a vector e ∈ H for which the evaluation map

p(R)
εe7→ p(R)e

is bounded below and has dense range (as a mapping from the algebra generated by
R into H). In this situation we will say that e is a strict cyclic vector for R. This
definition originated in A. Lambert’s thesis [13] and was motivated by examples of
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weighted shift operators. A beautiful survey of weighted shift operators was written
by A.L. Shields [20] and there you will find several of Lambert’s results.

D.A. Herrero quickly became interested in the idea of strict cyclicity and was
soon publishing myriad results on the subject, notable among which are the works
[7], [8], and [9]. In a later paper titled triangular strictly cyclic operators (see [10])
Herrero proves that “the title refers to an empty class of operators”. In remark
(iii) of this paper one sees an example of a strictly cyclic operator R for which R∗

fails to be triangular. In a private correspondence with the first author Herrero
points out that this example is based on an error that appears in a preprint version
of [11]. Thus the question of whether such an operator exists remained unresolved
and Herrero asks “does T strictly cyclic imply that T ∗ is triangular?”

We will say that an operator T is bi-strictly cyclic if both T and T ∗ are strictly
cyclic. After constructing such an operator we have that the answer to Herrero’s
question is “no”, since there are no triangular strictly cyclic operators.

2. Two Operators

Let x be the column matrix with entries (1, 1
2 ,

1
3 , . . . ) and let D be the diagonal

matrix

D =


1 0 0 0 · · ·
0 1

2 0 0 · · ·
0 0 1

3 0 · · ·
0 0 0 1

4 · · ·
...

...
...

...
. . .

 .
The element of B(C⊕H) (relative to a chosen basis of H) with the matrix

S =

[
0 0
x D

]
was given in [12] as an example of a strictly cyclic operator that is semitriangular;
it is an extension of a triangular operator by a finite rank operator. A bi-strictly
cyclic operator is obtained by extending S one more dimension as follows. Let xτ

denote the transpose of x and let T be the element of B(C⊕ C⊕H) given by the
matrix

T =

 0 0 xτ

0 0 0
0 x D

 .
Theorem 2.1. The operator T is bi-strictly cyclic.

Proof. Our proof of strict cyclicity is a modification of the argument given in [12]
that S is strictly cyclic. If p is a polynomial, and we write p(t) = a + q(t) with
q(0) = 0, then

p(T ) =

 a 0 0
0 a 0
0 0 a

+

 0 b wτ

0 0 0
0 w q(D)

 ,
where w is the column matrix with entries (q(1), q(1

2 ), q(1
3 ), . . . ). Let || · ||2 denote

the Hilbert-Schmidt norm of an operator, and let e ∈ C ⊕ C ⊕ H be the vector
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e = (0, 1, 0). It follows that p(T )e = (b, a, w) and using the Cauchy Schwartz
inequality we have

||p(T )|| ≤ |a|+ ||q(T )||2

= |a|+

√√√√3
∞∑
i=1

|q(
1

i
)|2 + |b|2

≤ |a|+
√

3
√
|w|2 + |b|2

≤
√

4
√
|a|2 + |w|2 + |b|2

= 2||p(T )e||.

Thus evaluation at e is bounded below.
We must now show that

M≡ {p(T )e | p a polynomial }

is dense in C ⊕ C ⊕H. Assume that (α, β, v) ∈ M⊥. Since e ∈ M we know that
β = 0. Assume via contradiction that α 6= 0. Then the vector (−1, 0, −1

α
v) is

orthogonal to Tne = (xτDn−2x, 0, Dn−1x) for all n ≥ 2. It follows that

〈Dn−2x,D(
−1

α
v)− x〉 = 〈Dn−1x,

−1

α
v〉 − 〈Dn−2x, x〉 = 0

for all n ≥ 2. Since x is a cyclic vector for D we have D(−1
α
v) = x which contradicts

the fact that x is not in the range of D. Thus α = 0 and v ⊥ Dnx for all n ≥ 0,
from which we see that v = 0.

To see that T ∗ is strictly cyclic, note that T is unitarily equivalent to T ∗ via the
unitary

U =

 0 1 0
1 0 0
0 0 I

 ,
where I denotes the identity operator on H. �

The hypothesis of bi-strict cyclicity forces a lot of structure on an operator,
structure that can be seen by comparing S and T . As a first illustration we will
prove that it is no accident T is equivalent to T ∗. If E is a basis of H we will write
τE to indicate the transpose operator relative to E .

Theorem 2.2. Assume that R is a strictly cyclic operator. The following are equiv-
alent:

1. R is bi-strictly cyclic
2. R is conjugate similar to R∗

3. For any basis E of H we have R similar to τE(R)

Proof. Assume that R is bi-strictly cyclic; we will construct a conjugate linear
invertible operator K : H → H such that R∗ = KRK−1. Let e be a strict cyclic
vector for R, let f be a strict cyclic vector for R∗, and let A(R) be the weakly
closed algebra generated by R. It follows that the evaluation maps εe : A(R)→ H
and εf : A(R)∗ → H are invertible operators (see [20]). Given x ∈ H define K by

Kx = εf (ε−1
e x∗).
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(The quantity in the parenthesis is intended to indicate the adjoint of the operator
ε−1
e x.) It follows that for every B ∈ A(R) one has KBe = B∗f . Since A(R) is

commutative we have

KR(Ae) = K(RA)e = (RA)∗f = R∗A∗f = R∗K(Ae)

for all A ∈ A(R). Thus KR = R∗K and R is conjugate similar to R∗.
Assume that R is conjugate similar to R∗ and let K be a conjugate linear in-

vertible operator with R∗ = KRK−1. Let E be any basis of H and let κE : H → H
be the map defined by

〈κEx, y〉 = 〈y, x〉

for all y ∈ E ; thus κEx is the vector whose Fourier coefficients relative to E are
the conjugates of the Fourier coefficients of x. Note that κE is a conjugate linear
symmetry that behaves like the identity map on E . These observations let us see
that for any operator A

τE(A) = κEA
∗κE .

If G = κEK, then G is an invertible linear operator and

GRG−1 = κEKRK
−1κE = τE(R),

so R is similar to τE(R).
Assume that R is strictly cyclic and R is similar to τE(R) for some basis E .

Then τE(R) must also be strictly cyclic, as must be κEτE(R)κE . It follows that R∗

is strictly cyclic since R∗ = κEτE(R)κE . �

3. Invariant Subspaces

In finite dimensions any cyclic operator is automatically bi-strictly cyclic, since
an n×n complex matrix is similar to its transpose. Our previous result shows that
a bi-strictly cyclic operator mimics the behavior of operators on finite dimensional
spaces, which the next corollary further illustrates. The proof proceeds exactly like
the case when R is an operator on a finite dimensional space (see [18] Theorem 4.6).
Let LatR denote the lattice of invariant subspaces of R.

Corollary 3.1. If R is bi-strictly cyclic, then LatR is self dual.

We will call an operator R hereditarily strictly cyclic if the restriction of R to
each invariant subspace is strictly cyclic (we take this definition from [19]). An
example of a hereditarily strictly cyclic operator is the Donoghue operator (see [18]
page 66 and [20]).

Theorem 3.2. An operator on H cannot be both bi-strictly cyclic and hereditarily
strictly cyclic.

Proof. Assume by way of contradiction that R is bi-strictly cyclic and hereditarily
strictly cyclic. It follows from Theorem 2.1 of [5] that LatR has the ascending
chain condition. By our previous corollary LatR must also have the descending
chain condition. It follows that a maximal chain of invariant subspaces has the
form

M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn,

and since H is infinite dimensional at least one of the spaces Mi 	 Mi−1 has
dimension greater than one. But the compression of R to Mi 	 Mi−1 is also
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strictly cyclic (since the restriction toMi is strictly cyclic and by Lemma 1 of [19])
and hence has a non-trivial invariant subspace, which contradicts the maximality
of the chain. �

We will now make a detailed analysis of the invariant subspaces of S and of T ,
with the intention of revealing more secrets about bi-strictly cyclic operators. With
this goal in sight we begin with a matricial characterization of A(S) and A(T ), the
weakly closed algebras generated by S and T (respectively). The following theorems
will be stated for both S and T but only proved for T , since the proofs for S are
the same.

We will think of elements of `2 as column vectors. Given x ∈ `2 we will denote
the transpose by xτ and we let Dx denote the diagonal operator with x on its
diagonal. We use I to denote an identity operator and rely on context to identify
the space on which it acts.

Theorem 3.3. We have

A(S) =

{
aI +

[
0 0
x Dx

] ∣∣∣∣ a ∈ C, x ∈ `2 }
and

A(T ) =

aI +

 0 b xτ

0 0 0
0 x Dx

 ∣∣∣∣∣∣ a, b ∈ C, x ∈ `2
.

Proof. Let A denote the set above that we intend to prove equals A(T ). It follows
immediately that A is a commutative strictly cyclic algebra with strict cyclic vector
(0, 1, 0). Thus A is maximal abelian ([20] page 92) and weakly closed. Since T ∈ A
it follows that A(T ) ⊂ A. But A(T ) is also a commutative strictly cyclic algebra,
hence maximal abelian. Thus equality follows. �

Many invariant subspaces are now visible; for example the range and kernel of
any operator in A(T ). This algebra has an abundance of rank one operators. Let
E0 be the nilpotent element with b = 1 and all other entries 0, and for i ≥ 1 let

Ei =

 0 1 eτi
0 0 0
0 ei Dei

 ,
where e1, e2, . . . is the standard basis of `2.

Theorem 3.4. Both S and T are reflexive operators.

Proof. Assume that A ∈ algLatT . Since the range of Ei is in LatA for all i ≥ 0
the matrix of A must look like

a b y1 − a y2 − a y3 − a
0 c 0 0 0
0 x1 y1 0 0 . . .
0 x2 0 y2 0
0 x3 0 0 y3

...
. . .


.
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Since the kernel of Ei is also invariant, using this fact with i ≥ 1 gives us −c =
xi − yi. It follows that

A− cI =



a− c b y1 − a y2 − a y3 − a
0 0 0 0 0
0 x1 x1 0 0 . . .
0 x2 0 x2 0
0 x3 0 0 x3

...
. . .


.

Now yi − a = xi + c − a is in the row of a bounded operator so it must be a null
sequence, and similarly xi is a null sequence, so it must be that a = c. It now
follows from the previous theorem that A ∈ A(T ). �

The reader has probably noticed that the nilpotent element appearing in A(T )
is missing in A(S) (which is a clue foreshadowing a forthcoming theorem about
general bi-strictly cyclic operators). It is possible to have ignored E0 in the proof
above since the range of E0 may be obtained by intersecting the kernels of Ei and
the kernel of E0 is the span of the ranges of the Ei (for i ≥ 1). The reader may
verify that the operators Ei with i ≥ 1 constitute all the rank one idempotents in
A(T ).

Theorem 3.5. The lattice of invariant subspaces for T (resp. S) is the lattice
generated by the ranges and kernels of rank one idempotents in A(T ) (resp. A(S)).
Moreover, every invariant subspace of T may be obtained by spanning ranges of Ei
or by intersecting kernels of Ei (i ≥ 0).

Proof. By the remark preceding the theorem it suffices to prove the latter state-
ment of the theorem. Assume that M ∈ LatT . Let M+ be the intersection of all
kernels of Ei for which M ⊂ Kernel(Ei), and let M− be the span of all ranges
of Ei for which Range(Ei) ⊂ M. We will prove that M+ 	M− is at most one
dimensional, in which case M must be either M+ or M−.

Since M ∈ LatT and Ei ∈ A(T ) we have M ∈ LatEi for all i ≥ 0. Since
Ei has rank one and M is invariant we must have either M ⊂ Kernel(Ei) or
Range(Ei) ⊂ M; thus the non-negative integers are partitioned into two subsets
I = { i |M ⊂ Kernel(Ei) } and J = { i |Range(Ei) ⊂M }.

It will be convenient now to let f1, f2, f3, ... denote a basis relative to which
the matrix of an element of A(T ) has the form given in Theorem 3.3. With this
notation and i ≥ 1 we have w ∈ Kernel(Ei) if and only if 〈w, f2〉 = −〈w, fi+2〉, and
w is orthogonal to the range of Ei if and only if 〈w, f1〉 = −〈w, fi+2〉.

Assume that w ∈ M+ 	 M−. If both I and J are infinite then 〈w, f2〉 =
−〈w, fi+2〉 for all i ∈ I and 〈w, f1〉 = −〈w, fi+2〉 for all i ∈ J . Since I and J
partition the non-negative integers and the Fourier coefficients of w form a null
sequence we conclude that the Fourier coefficients all vanish, thus w = 0 and
M+ = M−. If I is infinite but J is finite and non-empty we conclude that
〈w, f2〉 = −〈w, fi+2〉 for all i ∈ I, whence 〈w, f2〉 = 0 = 〈w, fi+2〉 for all i ∈ I, and
〈w, f1〉 = −〈w, fi+2〉 for all i ∈ J , soM+	M− is one dimensional. The remaining
case is dealt with similarly. �

If R has a strict cyclic vector e then the evaluation map εe establishes a one to
one correspondence between the closed ideals in A(R) and the elements of LatR.
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Thus knowing the maximal elements of LatR allows one to compute the radical of
A(R). It is clear from the previous theorem that A(S) is semisimple and the radical
of A(T ) is the one dimensional span of E0. (Note that the reflexivity of A(S) can
now be deduced from the semisimplicity and from Theorem 5.2 of [14].) Thus the
presence of the nilpotent in A(T ) is a reflection of a non-empty radical, which is a
property every bi-strictly cyclic operator shares.

Theorem 3.6. Assume that R is a strictly cyclic operator and A(R) is semisimple.
Then R∗ is triangular.

Proof. If A(R) is semisimple, then the set of eigenvectors for R∗ spans H (see page
722 of [14]). It follows that the set of algebraic vectors of R∗ is dense, hence R∗ is
triangular (see page 477 of [12]). �

Corollary 3.7. If R is a bi-strictly cyclic operator on H then the radical of A(R)
is non-zero. In particular, A(R) contains a non-zero quasinilpotent element.

4. Singly Generated Strictly Cyclic Algebras

In this section we will investigate where strictly cyclic algebras reside in the
category of operator spaces. We will assume the reader is familiar with the basic
ideas of operator spaces and completely bounded maps. We refer the reader to the
preliminary chapter of [2] for a recent exposition of the basics.

The notion of equivalence that is relevant to this discussion is that of complete
isomorphism. We will say that the operator space X is completely isomorphic to
the operator space Y if there exists a linear bijection ϕ : X → Y for which both ϕ
and ϕ−1 are completely bounded.

Column Hilbert space is an object that plays a central role in the emerging
theory of abstract operator spaces (see [1], [2], [3], and [17]). Its central role arises
from the ad hoc manner that one assigns matrix norms on B(H); by identifying
an n × n matrix of operators as an operator on the n-fold direct sum of H via
matrix multiplication on the left. Given e ∈ H one obtains the evaluation map
εe : B(H) → H and is eventually confronted with the question of which operator
norm assignments on H have the property that

||e|| = ||εe||cb

for all e ∈ H. The answer is that there are many; indeed, having found one matrix
norm assignment that works any smaller system of norms will also work. However,
there is a unique largest system of operator matrix norms one can endow on H so
that ||e|| = ||εe||cb for all e ∈ H, and the resulting Hilbertian operator space is what
we call column Hilbert space.

One obtains the column Hilbert space matrix norms by embedding H into B(H)
in the following way; with x, e ∈ H let x⊗ e denote the rank one operator defined
by

x⊗ e (y) = 〈y, e〉x.

Now if ||e|| = 1, then the map x 7→ x⊗ e is an isometry; the column Hilbert matrix
norms are inherited from this embedding, i.e.

||(xij)||col = ||(xij ⊗ e)||.
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If one writes an orthonormal basis of H using e as the first basis vector and xi are
the corresponding Fourier coefficients of x, then the preceding embedding takes the
matricial form

x 7→


x1 0 0
x2 0 0 . . .
x3 0 0

...
. . .

 ,
which is where the terminology arises from. The reader will verify that the matrix
norms do not depend on the choice of the unit vector e.

If Aij are operators on H and e ∈ H is a unit vector, then

||(εeAij)||col = ||(Aije⊗ e)|| = ||(Aij)


e⊗ e 0 . . . 0

0 e⊗ e . . . 0
...

. . .
...

0 . . . 0 e⊗ e

 || ≤ ||(Aij)||,
so εe is completely contractive. If one took another system of matrix norms on H
that was larger than the column Hilbert space norms, so that

||(xij)||col < ||(xij)||

for some choice of vectors xij ∈ H, then one sees that

||(Aij)|| < ||(εeAij)||

when Aij = xij ⊗ e, so the column matrix norm assignments are indeed the largest
norms that ensure εe is completely contractive.

If R is a strictly cyclic operator with strict cyclic unit vector e, then we see that
εe : A(R) → Hcol is a complete contraction. We are interested in when ε−1

e is
completely bounded, i.e. when A(R) is completely isomorphic to column Hilbert
space. By definition one obtains the cb norm of an operator ϕ : Hcol → B(H) by

sup ||(ϕ(xij))||

where one takes the supremum over matrices of all sizes and dimensions subject
to ||(xij)||col ≤ 1. It is a noteworthy property of Hcol that one obtains the cb
norm of ϕ by just taking the supremum over row matrices, and better still, if the
Hilbert space is finite dimensional with orthonormal basis {e1, e2, . . . , en}, then the
cb norm is attained:

||ϕ||cb = ||(ϕ(e1) ϕ(e2) ϕ(e3) · · ·ϕ(en))||.

The proof of this fact is implicit in the proof of Theorem 3.11 in [1]. We feel it
is an important and useful fact so we state the corresponding fact for an infinite
dimensional Hilbert space and reproduce the proof below.

Theorem 4.1. Let {e1, e2, . . . } be any orthonormal basis of H. Assume that ϕ :
Hcol → B(H) and let A = (ϕ(e1) ϕ(e2) ϕ(e3) · · · ). Then

||ϕ||cb = ||A||,

where the norm on the right is the operator norm on B(H∞,H) if A ∈ B(H∞,H),
and it is ∞ if A is not the matrix of a bounded operator.
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Proof. Since for every natural number n we have

||(e1 e2 e3 . . . en)||col = 1

it follows from the definition of the cb norm that

||A|| ≤ ||ϕ||cb,

so if A is not the matrix of a bounded operator we are done. Assume then that
A ∈ B(H∞,H). Given x ∈ Hcol with Fourier coefficients xi, and letting I denote
the identity operator on H, note that the map

x 7→


x1I
x2I
x3I

...

 ∈ B(H,H∞)

is a complete isometry. Since ϕ can be viewed as multiplication on the left by A,
i.e.

ϕ(x) = (ϕ(e1) ϕ(e2) · · · )


x1I
x2I
x3I

...

 .
It follows that ||ϕ||cb ≤ ||A||. �

Corollary 4.2. If R is strictly cyclic with strict cyclic vector e, and if {e1, e2, . . . }
is an orthonormal basis, then A(R) is completely isomorphic to column Hilbert
space if and only if

(ε−1
e (e1) ε−1

e (e2) ε−1
e (e3) · · · )

is the matrix of a bounded operator.

Corollary 4.3. We have that A(S) is completely isomorphic to Hcol.

Proof. The matrix


1 0 0
0 1 0 . . .
0 0 1

...
. . .




0 0 0
1 1 0 . . .
0 0 0

...
. . .




0 0 0
0 0 0 . . .
1 0 1

...
. . .

 · · ·


can be realized as a sum of three partial isometries, and thus it is the matrix of a
bounded operator. �

Let R be an injective unilateral weighted shift with positive weight sequence
w0, w1, . . . relative to the basis {e0, e1, e2, e3, . . . }, and let

β(0) = 1, β(1) = w0, β(2) = w0w1, β(3) = w0w1w2, . . .

be the associated β sequence (we follow the notation in [20]). Since e = e0 is a cyclic
vector for any injective unilateral weighted shift, the question of strict cyclicity is
equivalent to the question of whether εe is bounded below on the algebra generated
by R. This is equivalent to ε−1

e being bounded on the linear span of the basis {ei},
which is the point of view that contrasts well with our next theorem. Thus, by
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Proposition 32 of [20], one has that ε−1
e is bounded on the linear span of the basis

{ei} if and only if

∞∑
n=0

∣∣∣∣∣
n∑
k=0

a(k)b(n− k)
β(n)

β(k)β(n− k)

∣∣∣∣∣
2

<∞

for all a, b ∈ `2.
A sufficient condition that R be strictly cyclic appears as equation (61) in Propo-

sition 32 of [20], and that condition is

sup
n

n∑
k=0

(
β(n)

β(k)β(n− k)

)2

<∞.

It was known at the time that (61) is necessary and sufficient for strict cyclicity
if the weight sequence is monotone decreasing, but it was briefly an open question
whether equation (61) was necessary and sufficient for general weight sequences.
An example due to Fricke showed it not to be necessary [4].

Theorem 4.4. With the notation of the previous paragraph we have

||ε−1
e ||

2
cb = sup

n

n∑
k=0

(
β(n)

β(k)β(n− k)

)2

,

so A(R) is completely isomorphic to column Hilbert space if and only if equation
(61) of [20] is satisfied.

Proof. For brevity let us write

βn,k =
β(n)

β(k)β(n− k)
.

If W denotes the forward shift operator

Wei = ei+1

and Dn is the diagonal operator with diagonal sequence (βn,0, βn+1,1, βn+2,2, . . . )
for n ≥ 0 , then the reader will verify that

ε−1
e (en) = WnDn

for all n ≥ 0, with e = e0. A moment’s thought convinces us that

||(D0 WD1 W 2D2 · · · )|| = sup
n

√√√√ n∑
k=0

(βn,k)
2
.

�

Corollary 4.5. If R is a strictly cyclic weighted shift with a monotonically de-
creasing weight sequence, then A(R) is completely isomorphic to column Hilbert
space.

Fricke’s result may now be interpreted as the following statement.

Corollary 4.6. There exists a unilateral strictly cyclic weighted shift such that
A(R) is not completely isomorphic to column Hilbert space.
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The corollaries and the fact that equation (61) is equivalent to A(R) being
completely isomorphic to column Hilbert space are not new results; both are implicit
in [15]. However, the proof given above and the exact value for ||ε−1

e ||
2
cb are new.

In the highly referenced unpublished manuscript [6] Haagerup proves that con-
tractive Shur product maps on B(H) are automatically completely contractive. Us-
ing the techniques in [16] one may construct examples of subspaces L ⊂ B(H) and
Shur multipliers that are bounded when restricted to L but whose restrictions are
not completely bounded. The preceding result provides us with another example.

Corollary 4.7. There exist unilateral strictly cyclic weighted shifts R1 and R2 and
a Shur multiplier

φ : A(R1)→ A(R2)

such that φ is a bounded bijection but φ is not completely bounded.

Proof. Let R1 be the Donoghue operator, i.e. the shift with weights (1/2)i, let R2

be the shift in Fricke’s example, and let e = e0. It follows that A(R1) is completely
isomorphic to column Hilbert space via the evaluation map εe, while A(R2) is not.
Recall the matrix forms for the operators ε−1

e (ei) and use that to convince yourself
that both algebras can be realized as the set of all matrices of the form


x0β0,0 0 0 0
x1β1,0 x0β1,1 0 0 . . .
x2β2,0 x1β2,1 x0β2,2 0
x3β3,0 x2β3,1 x1β3,2 x0β3,3

...
. . .


as {xi} varies over all square summable sequences, while the βi,j for R1 is different
than that for R2. Denote the doubly indexed β sequence for R1 by β1

i,j and that

for R2 by β2
i,j . Define a lower triangular matrix by setting aij = 0 if j > i and

aij =
β2
i,j

β1
i,j

when i ≥ j. Then the Shur multiplier corresponding to the lower triangular ma-
trix (aij) is a bounded bijection of A(R1) onto A(R2). Indeed, if we denote the
restriction of εe to A(Ri) by εi then the indicated Shur multiplier is simply the com-
position ε−1

2 ◦ε1. This map cannot be completely bounded; otherwise ε−1
2 ◦ε1 would

be a complete isomorphism since we know that ε−1
1 ◦ ε2 is completely bounded.

�

The reader may wonder what any of this has to do with the title of the paper.
While we know that there exists a strictly cyclic operator R such that A(R) is
not column Hilbert space, we have no idea what space A(R) is. One glance at S
is enough to guess that A(S) is completely isomorphic to column Hilbert space.
One glance at T also suggests which Hilbertian operator space it is completely
isomorphic to. It is the only example known of a strictly cyclic operator for which
A(T ) is identifiable and different from Hcol.
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The dual of column Hilbert space is row Hilbert space Hrow, which acquires its
matrix norms from the embedding

x 7→ e⊗ x.

Note that it is impossible for a strictly cyclic operator to generate an algebra com-
pletely isomorphic to row Hilbert space. Indeed, if R is strictly cyclic and

ϕ : A(R)→ Hcol

is any bounded map, then we may factor ϕ as (ϕ◦ε−1
e )◦εe viewing ϕ◦ε−1

e as a map
from column Hilbert space into itself. Now column Hilbert space is homogeneous;
every bounded map from column Hilbert space into itself is completely bounded
(the terminology comes from [17]). It follows that we have ϕ ◦ ε−1

e completely
bounded, and hence ϕ is completely bounded as a composite of completely bounded
maps. Thus every bounded map from A(R) into Hcol is completely bounded. The
transpose map takes row Hilbert space isometrically onto column Hilbert space and
it fails to be completely bounded, so A(R) cannot be row Hilbert space.

Looking at A(T ) one sees a combination of row and column Hilbert space. Let
|| · ||col∨row denote the smallest family of operator matrix norms that dominate both
the column and the row matrix norms, and let Hcol ∨ Hrow denote the resulting
Hilbertian operator space. That is, given xij ∈ H define

||(xij)||col∨row = max {||(xij)||col, ||(xij)||row} .

We like to think of this as the join of Hcol and Hrow, which accounts for our
notation. The reader will find other authors using different notation to describe
the same space; for example, the same space is denoted by R ∩ C in [17].

We leave the proof of the following to the reader.

Theorem 4.8. We have that A(T ) is completely isomorphic to Hcol ∨Hrow.

Once again we are led to a general theorem about bi-strictly cyclic operators.
The discussion prior to the previous theorem shows that for any strictly cyclic
operator R the operator space A(R) dominates column Hilbert space in the sense
that every bounded map ϕ : A(R) → Hcol is automatically completely bounded.
Using the same reasoning and the homogeneity of Hcol ∨Hrow, one sees that every
bounded map ϕ : A(T )→ Hcol ∨Hrow is completely bounded.

Theorem 4.9. If R is a bi-strictly cyclic operator, then every bounded map from
A(R) into either Hcol or Hrow is completely bounded. Equivalently, every bounded
map into Hcol ∨Hrow is completely bounded.

Proof. Let e be a strict cyclic unit vector for R. In view of the discussion preceding
this theorem we need only prove that bounded maps from A(R) into Hrow are
completely bounded, and since Hrow is homogeneous it suffices to show that the
evaluation map εe : A(R) → Hrow is completely bounded. By Theorem 2.2 there
exists a conjugate linear invertible mapK such that A∗ = KAK−1 for all A ∈ A(R).
It follows that given Aij ∈ A(R) we have

||(A∗ij)|| ≤ ||K|| ||K
−1|| ||(Aij)||.
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We have

||(εeAij)||row = ||(e⊗Aije)||

= ||(e⊗ e A∗ij)||

= ||


e⊗ e 0 . . . 0

0 e⊗ e . . . 0
...

. . .
...

0 . . . 0 e⊗ e

 (A∗ij)||

≤ ||(A∗ij)||

≤ ||K|| ||K−1|| ||(Aij)||.

�
Corollary 4.10. If R is bi-strictly cyclic, then A(R) cannot be completely isomor-
phic to Hcol.

Proof. Bounded maps from column Hilbert space to row Hilbert space need not
be completely bounded (e.g. the transpose map). �
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