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Characterizations of Embeddable 3×3 Stochastic
Matrices with a Negative Eigenvalue

Philippe Carette

Abstract. The problem of identifying a stochastic matrix as a transition
matrix between two fixed times, say t = 0 and t = 1, of a continuous-time
and finite-state Markov chain has been shown to have practical importance,
especially in the area of stochastic models applied to social phenomena. The
embedding problem of finite Markov chains, as it is called, comes down to
investigating whether the stochastic matrix can be expressed as the exponential
of some matrix with row sums equal to zero and nonnegative off-diagonal
elements. The aim of this paper is to answer a question left open by S. Johansen
(1974), i.e., to characterize those stochastic matrices of order three with an
eigenvalue λ < 0 of multiplicity 2.
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1. Introduction

Let the stochastic process (X(t))t≥0 on a probability triple (Ω,A,P) be a con-
tinuous time Markov chain with a finite number N of states and time-homogeneous
transition probabilities

Pij(t) = P[X(t+ u) = j |X(u) = i ], i, j = 1, . . . , N,

i.e., which are independent of the time u ≥ 0. Under the assumption

lim
t
>
→0

Pii(t) = 1, i = 1, . . . , N,
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the transition probabilities Pij(t) are gathered into stochastic N × N matrices
P(t) , t ≥ 0, which satisfy

P(0) = I, the identity matrix,(1)

P(t+ s) = P(t)P(s), t, s ≥ 0.(2)

It is a well-known result (see e.g., [Fre71], p. 148) that in this case

d

dt
P(0) = R and P(t) = exp (Rt), t ≥ 0,(3)

where R is a N ×N matrix satisfying

Rij ≥ 0, for i 6= j,

N∑
j=1

Rij = 0, i = 1, . . . , N.(4)

The (i, j)-th element of the matrix R represents the transition intensity from state
i to state j. In general, any matrix R that satisfies (4) will be called an intensity
matrix. Thus, the Markov chain is completely determined by its intensity matrix.

Now, an interesting problem emerges as follows. Suppose (Y (t))t=0,1,2,... is a
discrete time Markov chain with N states and time-homogeneous transition prob-
ability matrix P, i.e., the elements of P

Pij = P[Y (u+ 1) = j |Y (u) = i ], i, j = 1, . . . , N(5)

are independent of the time u = 0, 1, 2, . . . . Then, one can ask the question whether
or not this process is a discrete manifestation of an underlying time-homogeneous
and continuous N -state Markov chain (X(s))s≥0, or equivalently, under what cir-
cumstances P has the form

P = exp R(6)

for some intensity matrix R. If this occurs, we say that {Y (t) | t = 0, 1, 2, . . . } is
embeddable into a continuous and time-homogeneous Markov chain, or briefly that
P is embeddable and that R generates P.

This problem has been acknowledged to have practical relevance when mathe-
matical modelling of social phenomena is concerned (see [Bar82, SS77]).

From a purely mathematical point of view however, the question has already
been investigated by Kingman ([Kin62]), who published a simple necessary and
sufficient condition (due to D. G. Kendall) for the two state case: det P > 0.
He gave also necessary and sufficient conditions for embeddability of any N × N
stochastic matrix, but they are not applicable in practice. At the time, it was
already known that for N ≥ 3 more than one intensity matrix could generate the
same P ([Spe67]).

However, for the three state case, some simplifications do also occur. Papers
[Joh74, Cut73] have shown that necessary and sufficient conditions were in a critical
sense dependent upon the nature of the eigenvalues of P. In both of them such
conditions were given, except for the case when P has a negative eigenvalue of
multiplicity two.

Since then, the problem has mainly been dealt with in the more general context
of time-inhomogeneous Markov chains. (See [FS79, JR79, Fry80, Fry83].)
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The purpose of this paper is to fill the gap for 3 × 3 stochastic matrices with
a negative eigenvalue of multiplicity 2, by providing a method to check whether
or not they are embeddable and giving an explicit form of the possible intensity
matrices that generate them (Theorem 3.3). Another interesting characterization
involving a lower bound for the negative eigenvalues is contained in Theorem 3.7.

2. Notations and preliminaries

The set of positive integers will be denoted by N, the set of real numbers by R and
the set of complex numbers by C. The sets of real (resp. complex) m× n matrices
is denoted by Rm×n (Cm×n) and matrices by bold face capital letters. We shall

use the notation diag(p, q, r) for the diagonal matrix

p 0 0
0 q 0
0 0 r

 , p, q, r ∈ C.

Finally, the (i, j)-th element of the n-th power Mn of a square matrix M shall be

written as M
(n)
ij , n = 2, 3, . . .

It was already remarked in [Joh74] that a negative eigenvalue of an embeddable
stochastic matrix has to be of even algebraic multiplicity. Indeed, in our case, if P
is a 3 × 3 stochastic matrix with an eigenvalue λ < 0, then R has an eigenvalue
θ ∈ C with eθ = λ. But then θ must also be an eigenvalue of R (R is real), hence
the three distinct eigenvalues of R are 0, θ and θ forcing R to be diagonalizable:

R = Udiag(0, θ, θ)U−1,(7)

where U is a nonsingular 3× 3-matrix. We have then

P = exp R = Udiag(e0, eθ, eθ)U−1

= Udiag(1, λ, λ)U−1.

Consequently, λ has algebraic multiplicity 2 and − 1
2 < λ < 0, because 1 + 2λ =

trace P ≥ 0. Now P∞ = limn→+∞Pn certainly exists (as is the case for every
embeddable stochastic matrix P, see [Kin62]) and

P∞ = Udiag(1, 0, 0)U−1, since |λ| < 1.(8)

This leads to the following useful relation between P and P∞ (see also [Joh74])

P = P∞ + λ(I−P∞).

More can be said about the nature of P∞. Indeed, since P∞ is a diagonalizable
stochastic matrix with eigenvalues 1 and 0 (the latter of algebraic multiplicity 2),
P∞ must consist of identical rows, equal to say

(
p1 p2 p3

)
. Furthermore, none

of the pi can be equal to 0: Otherwise, if pi = 0 for some i, then Pii = λ < 0.
Thus, in seeking characterizations for embeddability of P, we only need to focus

our attention on these matrices that have the form P = P(λ,P∞), where

P(λ,P∞) = P∞ + λ(I−P∞),(9)
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with

P∞ =

1
1
1

(p1 p2 p3

)
,

p1 + p2 + p3 = 1, pi > 0, i = 1, 2, 3,

and λ < 0, λ ≥ κ := −min
i

pi

1− pi
,(10)

the last condition being a regularity one ensuring that P(λ,P∞) has nonnegative
entries.

3. Characterizations of embeddability

A characterization involving the generating intensity matrix. The idea
behind this approach is to seek an explicit form of a general matrix R with exp R =
P and then to submit the elements Rij to the constraints (4). We begin with a few
properties of matrix square roots of P∞ − I, which we shall need in the proof of
our main result (Theorem 3.3).

Lemma 3.1. Let X be a real square matrix with X2 = P∞ − I. Then

(a) XP∞ = P∞X = 0

(b) exp
(

(2k + 1)πX
)

= 2P∞ − I (k ∈ N)

(c)
∑
j Xij = 0 for all i.

Proof. (a) Using (8), we have

P∞ − I = Udiag(0,−1,−1)U−1,

and so (see [Gan60])

X = UVdiag(0, i,−i)V−1U−1,

where V is a real nonsingular matrix that commutes with diag(0,−1,−1). But
then V commutes also with diag(1, 0, 0), and

P∞X = UVdiag(1, 0, 0)V−1U−1UVdiag(0, i,−i)V−1U−1

= UV 0 V−1U−1

= 0.

Analogously XP∞ = 0.
(b) By X = UVdiag(0, i,−i)V−1U−1, we get

exp
(

(2k + 1)πX
)

= UVdiag(1, e(2k+1)πi, e−(2k+1)πi)V−1U−1

= UVdiag(1,−1,−1)V−1U−1

= 2 UVdiag(1, 0, 0)V−1U−1 −UVdiag(1, 1, 1)V−1U−1

= 2P∞ − I.
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(c) By (a), we have XP∞

1
1
1

 =

0
0
0

. Hence

X

1
1
1

 =

0
0
0

 .

This concludes the proof. �
Corollary 3.2. If R = ln |λ|(I−P∞) + (2k+ 1)πX with X2 = P∞− I and k ∈ N,
then

exp R = P∞ + λ(I−P∞).

Proof. Statement (a) of Lemma 3.1 implies that X commutes with I − P∞, in
which case we have

exp R = exp
(

ln |λ|(I−P∞)
)
· exp

(
(2k + 1)πX

)
.

We now calculate exp
(

ln |λ|(I−P∞)
)

and use the same notations as in the proof

of (a), Lemma 3.1:

exp
(

ln |λ|(I−P∞)
)

= exp
(
Udiag(0, ln |λ|, ln |λ|)U−1

)
= Udiag(1, |λ|, |λ|)U−1

= (1 + λ)Udiag(1, 0, 0)U−1 − λUdiag(1, 1, 1)U−1

= (1 + λ)P∞ − λI.

Hence

exp R =
(
(1 + λ)P∞ − λI

)
(2 P∞ − I)

= (1− λ)P∞ + λI,

as (P∞)2 = P∞. �
Theorem 3.3. Let P(λ,P∞) be as in (9) and (10). Then the following conditions
are equivalent:

(a) P(λ,P∞) is embeddable.
(b) There exist k ∈ N and X ∈ R3×3 such that X2 = P∞ − I and

R = ln |λ|(I−P∞) + (2k + 1)πX is an intensity matrix.

(c) There exists X ∈ R3×3 such that X2 = P∞ − I and

Xij ≥
1

π
ln |λ| pj , i 6= j.

Proof. (a ⇒ b) Let P = exp R, where R is an intensity matrix. As remarked in
the preliminaries section, the eigenvalues of R are in this case 0, θk, and θk, where
θk is a complex number satisfying eθk = λ, i.e.,

θk = ln |λ|+ (2k + 1)πi (k ∈ N)

and

R = Udiag(0, θk, θk)U−1 with U nonsingular

= ln |λ|Udiag(0, 1, 1)U−1 + (2k + 1)πi Udiag(0, 1,−1)U−1.(11)
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Using (8) and Equation (11), and putting X = i Udiag(0, 1,−1)U−1, we obtain the
desired result.
(b ⇒ c) Because R is an intensity matrix, we must have Rij ≥ 0, i 6= j. This
means that, by (b), for i 6= j

ln |λ|(−pj) + (2k + 1)πXij ≥ 0,

which yields

Xij ≥
1

(2k + 1)π
ln |λ|pj ≥

1

π
ln |λ|pj .

(c ⇒ a) In this case, by Lemma 3.1 (b) and (c), ln |λ|(I − P∞) + πX defines an
intensity matrix, say R, which has the property exp R = P∞ + λ(I − P∞) =
P(λ,P∞). The proof is now complete. �

A connection with embeddable stochastic matrices with complex conju-
gated eigenvalues. Another approach can be given starting from the following
observation, which is valid for all stochastic matrices.

Lemma 3.4. A stochastic matrix P is embeddable if and only if it is the square of
a stochastic matrix Q that is also embeddable.

Proof. If P is embeddable, then an intensity matrix R exists with exp R = P.
Now, 1

2R is also an intensity matrix, hence the matrix Q = exp 1
2R is stochastic

(see [Fre71], p. 125), embeddable, and has the property Q2 = P.
Conversely, suppose that an embeddable stochastic matrix Q exists with Q2 =

P. Then Q = exp R for some intensity matrix R and

P = Q2 = (exp R)2 = exp(2 R),

so P is embeddable. �

This is interesting, because any stochastic ‘square root’ Q of P(λ,P∞) must have

eigenvalues 1, i
√
|λ| and −i

√
|λ|. The following characterization of embeddable

stochastic matrices of order three with complex conjugate eigenvalues, has been
proven in [Joh74].

Theorem 3.5. [Joh74]. A stochastic matrix P of order three with eigenvalues
eα+iβ and eα−iβ , 0 < β < π, can be embedded if and only if one of the following
conditions holds.

(12) P
(2)
ij

(
β(eα cosβ − 1)− αeα sinβ

)
≥ Pij

(
β(e2α cos 2β − 1)− αe2α sin 2β

)
for all i 6= j

(13) P
(2)
ij

(
(β − 2π)(eα cosβ − 1)− αeα sinβ

)
≥ Pij

(
(β − 2π)(e2α cos 2β − 1)− αe2α sin 2β

)
for all i 6= j

A direct application of this result now yields the following characterization.
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Theorem 3.6. P(λ,P∞) is embeddable if and only if there exists a stochastic ma-
trix Q of order three such that Q2 = P(λ,P∞) and one of the following conditions
holds.

Qij ≥ (1 +

√
|λ|

π
ln |λ|)pi for all i 6= j(14)

Qij ≤ (1−

√
|λ|

3π
ln |λ|)pi for all i 6= j(15)

Proof. In view of Theorem 3.5, Lemma 3.4 and the observations made about
the eigenvalues of any stochastic square root Q of P(λ,P∞), we have, with the

notations used in Theorem 3.5, α = ln
√
|λ|, β = π

2 , and Q
(2)
ij = (1−λ)pi. Inequality

(12) then becomes

Qij ≥
1 +

√
|λ|

π
ln |λ|

1 + |λ|
(1− λ)pi = (1 +

√
|λ|

π
ln |λ|)pi, i 6= j,

and inequality (13)

Qij ≤
1−
√
|λ|

3π ln |λ|

1 + |λ|
(1− λ)pi = (1−

√
|λ|

3π
ln |λ|)pi, i 6= j. �

It may be interesting for the sake of consistency to remark the equivalence of
the characterizations in Theorems 3.3 and 3.6.
Suppose (14) holds. Then for i 6= j,

Qij ≥ (1 +

√
|λ|

π
ln |λ|)pi

m

1√
|λ|

(Qij − pi) ≥
1

π
ln |λ|pi.

Consequently, the matrix X defined as

X =
1√
|λ|

(Q−P∞)(16)

is the one that satisfies (c) of Theorem 3.3, for it has also the property X2 = P∞−I,
which remains to be shown:

X2 =
1

|λ|
(Q−P∞)2

=
1

|λ|
(Q2 − 2QP∞ + (P∞)2) (Q and P∞ commute)

=
1

|λ|
(P(λ,P∞)− 2P∞ + P∞)

=
1

|λ|
(P(λ,P∞)−P∞)

= P∞ − I by (9) and λ < 0.
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If (15) holds, however, we’ll have to put

X = −
1√
|λ|

(Q−P∞)

to arrive at the same conclusion.
On the other hand, one can easily show using the power series definition

exp(A) =

∞∑
p=0

1

p!
Ap

that, starting from (c) Theorem 3.3, the relation (16) defines a matrix Q that is
stochastic since it can be written as the exponential of an intensity matrix 1 :

Q =
√
|λ|X + P∞ = exp

(1

2
(ln |λ|(I−P∞) + πX)

)
.

Furthermore, Q2 = P(λ,P∞) by Corollary 3.2. Finally, Q satisfies (14) by its very
definition.

A characterization involving a lower bound for the negative eigenvalue.
Instead of seeking R, we put the following question. For a fixed P∞ that has the
property (10), what are the possible values of λ < 0 that make the stochastic matrix
P(λ,P∞) embeddable? As a consequence of Theorem 3.3 among other things, the
following result emerges. Recall the definition of κ from (10).

Theorem 3.7. Let P∞ be defined by (10), then there exists Λ ∈ ]κ, 0[, depending
on P∞, such that

P(λ,P∞) embeddable ⇔ Λ ≤ λ < 0.

Proof. Define the map F : [κ, 0[→ M : λ 7→ P(λ,P∞), where M is the set
of 3 × 3 stochastic matrices with positive determinant. Let P be the set of all
embeddable stochastic 3×3 matrices. We have then by the nature of the condition
(c) of Theorem 3.3

λ ∈ F−1(P) ⇒ [λ, 0[⊂ F−1(P).(17)

Also, if we take an arbitrary real square root X of P∞ and a λ0 such that ln |λ0| ≤

mini6=j
πXij
pj

, then P(λ0,P
∞) is embeddable, so

F−1(P) 6= ∅.(18)

In addition, it was proven in [Kin62] that P is closed in M, so by continuity of
F , we have that F−1(P) is closed in [κ, 0[. Hence, in conjunction with (17) and
(18), F−1(P) = [Λ, 0[ , for some Λ ∈ [κ, 0[. We still have to show that Λ 6= κ.
Suppose Λ = κ. Then κ ∈ F−1(P) and P(κ,P∞) is embeddable. But then there
exists k such that Pkk(κ,P∞) = 0, so we can apply Ornstein’s Theorem ([Chu67],
II.5, Theorem 2) which states that whenever a stochastic matrix Q, with Qij = 0

for some i and j, is embeddable, then Q
(n)
ij = 0, n ≥ 1 and in particular Q∞ij = 0.

Consequently limn→+∞ P
(n)
kk (κ,P∞) = pk = 0, giving a contradiction. �

1The exponential of an intensity matrix is always stochastic. For a proof, see [Fre71], p. 151.
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4. Illustration of the results

Let p1 = p2 = p3 = 1/3, then κ = −1/2. For P(λ,P∞) with −1/2 < λ < 0
to be embeddable, there must exist by Theorem 3.3 a matrix X ∈ R3×3 satisfying
X2 = P∞ − I such that

Xij ≥
1

3
cλ, i 6= j, with cλ =

ln |λ|

π
.(19)

By [Gan60], such a matrix X assumes the form

X = X(u, v) = V

0 0 0

0 u − 1+u2

v

0 v −u

V−1, u, v ∈ R, v 6= 0,(20)

where V is a nonsingular matrix satisfying

P∞ − I = Vdiag(0,−1,−1)V−1.

It is easy to check that we can take

V =

1 1/3 1/3
1 −1/3 0
1 0 −1/3

 ,

whence

X(u, v) =
1

3

−u2−v2+1
v

−u
2+2v2+3uv+1

v
2u2+v2+3uv+2

v
u2−uv+1

v
u2+2uv+1

v
− 2u2+uv+2

v

u− v u+ 2v −2u− v

 .(21)

We shall now show that P(λ,P∞) cannot be embeddable for values of λ with

−2/
√

5 < cλ < 0.
Suppose P(λ,P∞) is embeddable. Then according to (19), there exist real num-

bers u and v, v 6= 0 such that

Xij(u, v) ≥
1

3
cλ, i 6= j.

Using (21), these conditions become algebraic inequalities in u and v. Among
others:

(a) −u+ v ≤ −cλ for (i, j) = (3, 1)
(b) u+ 2v ≥ cλ for (i, j) = (3, 2)
(c) X12(u, v) +X21(u, v) ≥ 2cλ/3, yielding −2u− v ≥ cλ
(d) |v| ≥ 2cλ + 2

√
1 + c2λ for (i, j) = (1, 2) and (2, 1)

It is a straightforward matter to see that (a), (b), (c) and (d) together imply

2cλ + 2
√

1 + c2λ ≤ −cλ.

The contradiction lies in the fact that this inequality cannot be satisfied if −2/
√

5 <
cλ < 0. Hence for P(λ,P∞) to be embeddable, one must necessarily have cλ ≤

−2/
√

5 or λ ≥ −e−2π/
√

5. In this case, the lower bound Λ from Theorem 3.7 must

satisfy Λ ≥ −e−2π/
√

5. In fact, Λ = −e−π
√

3, which is a consequence of the following
more general result that provides a formula to express Λ in terms of p1, p2 and p3:( ln |Λ|

π

)−2

=

{
4p/s2 − 1 if pm(1− pm) > s/2
pm/(1− pm) otherwise
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where m is an index such that pm = mini pi, p = p1p2p3 and s = p1p2 +p1p3 +p2p3.
The proof uses the characterization in Theorem 3.3 and is very technical, so it will
be omitted here.
Acknowledgement. The author is indebted to the referee for his suggestions resulting
in an enhancement of the manuscript.
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