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The Index of Discontinuous Vector Fields

Daniel H� Gottlieb and Geetha Samaranayake

Abstract� The concept of the index of a vector 
eld is one of the oldest in Algebraic
Topology� First stated by Poincare and then perfected by Heinz Hopf and S� Lefschetz
and Marston Morse� it is developed as the sum of local indices of the zeros of the
vector 
eld� using the idea of degree of a map and initially isolated zeros� The vector

eld must be de
ned everywhere and be continuous� A key property of the index is
that it is invariant under proper homotopies�

In this paper we extend this classical index to vector 
elds which are not required
to be continuous and are not necessarily de
ned everywhere� In this more general
situation� proper homotopy corresponds to a new concept which we call proper otopy�
Not only is the index invariant under proper otopy� but the index classi
es the proper
otopy classes� Thus two vector 
elds are properly otopic if and only if they have the
same index� This allows us to go back to the continuous case and classify globally
de
ned continuous vector 
elds up to proper homotopy classes� The concept of otopy
and the classi
cation theorems allow us to de
ne the index for space�like vector 
elds
on Lorentzian space�time where it becomes an invariant of general relativity�
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A� The results� We generalize the notion of homotopy of vector �elds to that of
otopy of vector �elds� Using otopy we can�

�� Classify the proper homotopy classes of vector �elds� The index is a proper
homotopy class invariant but two vector �elds with the same index may not be
proper homotopic� �See ��� in Section ���

�� Show that two vector �elds are properly otopic if and only if they have the same
index� �See �����

�� Extend the de�nition of index to any vector �eld� without hypotheses� �See
Subsection C in the Introduction��

�� De�ne a local index for any connected set of defects for any vector �eld instead
of merely for isolated zeros� �See the penultimate paragraph of C or Section ���
Under an otopy these defects move and interact� The following conservation law
holds� The sum of the indices of the incoming defects is equal to the sum of the
indices of the outgoing defects� �See �����

�� Demonstrate that the concept of the index of a vector �eld depends only on
elementary di�erential topology� the concept of pointing inside� and the Euler	
Poincare number� This is done in Sections �� �� �� �� The classical approach
depends on the degree of a map� In this paper we show how the degree of a map
might be de�ned via the index of a vector �eld by using �����


� We can study vector �elds along the �bre on �bre bundles� An otopy generalizes
to a vector �eld V along the �bre restricted to an open set� For a proper V � only
certain values of the index of V restricted to a �bre are possible� �See ������ For
example� the Hopf �brations of spheres admit only the index zero�


� We can study space	like vector �elds on a Lorentzian space	time� M � The con	
cept of otopy generalizes to a space	like vector �eld restricted to an open set of
M � For a proper space	like vector �eld V � the index of V restricted to a space	
like slice is independent of the slice� Thus� the index is an invariant of General
Relativity� Hence it should be used to describe physical phenomena� For example�
the Coulomb electric vector �eld E of an electron or a proton has index �� or �
respectively� This remains true no matter what what coordinate system is used to
describe the �eld�

B� Organization of the paper� There are a few features to be explicitly noted�
First� we are actually de�ning two types of indices� These are usually denoted
IndU �V �� and ind�P �� The �rst takes values in the integers and � and the last
takes on the value �� as well� Second� there are two di�erent de�nitions of these
indices� The advanced de�nition is based on the de�nition of index already de�ned
for continuous vector �elds and is found in Subsection C of the Introduction� The
elementary de�nition is given inductively in Sections �� �� �� �� This de�nition
is equivalent to the �rst� and the proof that it is well	de�ned is completely self
contained� using only pointset topological methods� The only algebraic topological
notion is that of the Euler Poincare number�

Subsection C of the Introduction establishes notation and the formal concept
of proper otopy as well as the key example of otopy which forces the concept on
us� If the reader draws a few pictures and understands what is to be formalized�
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the formal de�nitions will be obvious except for a few small details� The formal
de�nition of otopy is in Subsection C along with the advanced de�nition of index�

Subsection D of the Introduction contains guides for three di�erent ways for
reading the paper� Especially contained in D is a simpli�ed description of the
index which if combined with the list of key properties of Section � should give the
reader the essence of the subject without the technicalities of the proof�

The main burden of the paper is the development of the elementary de�nition
of the index� It is here that the two di�erent types of index� IndU �V �� and ind�P ��
are carefully de�ned� The de�nition is made inductively on the dimension of the
manifolds and is shown to be well	de�ned� This takes up Sections �� �� �� and ��

In Section � we write a list of �� properties of the index� There are short proofs
of them� It is hoped that this list will be easy to use for the mathematician or
physicist who needs to apply the idea of index in their work�

C� De�nition of otopy and index� The concept of otopy arises from homotopy
in a natural way� Consider a smooth compact manifoldM with boundary �M � Let
V be a continuous vector �eld de�ned onM � There is an associated vector �eld �V
on �M given by projecting the vectors of V on �M to vectors which are tangent to
�M � �See the paragraph above Lemma ��� for the de�nition of projection�� Denote
by ��M the open set of �M where the vectors of V point inside� Let ��V denote
�V restricted to ��M � For outward pointing vectors we de�ne ��M and ��V � Let
��M denote the closed set of �M where the vectors of V are tangent to �M �

Now consider a homotopy Vt� It induces a homotopy �Vt on �M � Now ��Vt
is varying with t� but it is not a homotopy� We say it is an otopy� It is the key
example of an otopy�

The key observation about otopies� Consider a zero of �V which passes from
��M to ��M in �M � As it passes over ��M it coincides with a zero of V which is
passing through �M �

Thus there is a connection between the zeros of Vt which pass inside and outside
of M through �M and the zeros of �Vt which pass inside and outside of ���M�t�
The concepts of proper homotopies and proper otopies and proper vector �elds are
introduced so that no zeros appear on �M or ��M �

De�nition of continuous otopy� Let N be a manifold and let V be a continuous
vector �eld de�ned on N � I so that V is tangent to the slices N � t� Then we
say that V is a continuous homotopy and that V� � V �m� �� and V� � V �m� ��
are homotopic vector �elds� Suppose that T is an open set on N � I and V is a
continuous vector �eld de�ned on T so that V is tangent to the slices N � t� Then
we say that V is a continuous otopy and that V� and V� are otopic� Note that V�
or V� are vector �elds de�ned only on the open sets in M given by the intersection
of T with M � i for i � � or �� Thus V� or V� can be �empty� vector �elds� Also
note that �otopy� gives an equivalence relation on the set of vector �elds de�ned
on open sets in N � This follows just as in the homotopy case� But it is a trivial
equivalence relation� since every vector �eld is homotopic to the zero vector �eld
and every vector �eld �eld de�ned on an open set is otopic to the empty vector
�eld�

De�nition of proper continuous otopy� If U is an open set in a manifold with
boundary we will adopt the convention that the Frontier of U includes that part of
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the boundary �M of M which lies in U � as well as the usual frontier� The capital F
will distinguish these two di�erent notions of Frontier and frontier� We say that V
de�ned on an open set U in N is a proper vector �eld on the domain U if the zeros
of V form a compact set in U and if V extends continuously to a vector �eld on
U with no zeros on the Frontier of U � Thus if V is de�ned on a compact manifold
M with boundary �M � we say V is proper if there are no zeros on �M � A proper

otopy with domain T is an otopy V de�ned on the open set T with a compact set
of zeros whose restriction to any slice is a proper vector �eld� A proper homotopy

is an proper otopy V de�ned on all of N � I �

Now the index for proper continuous vector �elds on a compact manifold with or
without boundary� as well as the index for proper continuous vector �elds de�ned
on an open set U � were de�ned in �BG�� If V is a continuous proper vector �eld
de�ned on a compact manifold M with boundary �M and Euler	Poincare number
��M�� then ��V is also proper and the index satis�es

IndV � ��M�� Ind���V �

Now we consider any arbitrary� possibly discontinuous� vector �eld V on N � We
assume we are in a smooth manifold N � A vector �eld is an assignment of tangent
vectors to some� not necessarily all� of the points of N � We make no assumptions
about continuity� We consider the set of defects of a vector �eld V in N � that is
the set D which is the closure of the set of all zeros� discontinuities and unde�ned
points of V � That is we consider a defect to be a point of N at which V is either
not de�ned� or is discontinuous� or is the zero vector� or which contains one of those
points in every neighborhood�

We extend the notion of proper to arbitrary tangent vector �elds by replacing
the word zero by defect�

De�nition of discontinuous proper otopy� We say that V is a proper vector
�eld on an open set U if the defects of V in U form a compact set and if V can
be extended to U so that there are no defects on the Frontier of U � Thus for N a
compact manifold with boundary we say that V is a proper vector �eld if there are
no defects on the boundary� A proper otopy W with domain T is an otopy in N � I
whose defects form a compact set and whose restriction to every slice is a proper
vector �eld for that slice� A globally de�ned otopy is still called a homotopy� We
will modify the word homotopy to discontinuous homotopy if needed�

Remarks� �� As before� the concept of proper discontinuous otopy is an equiva	
lence relation on the locally de�ned vector �elds of N � It is a simple exercise of
pointset topology to show that every discontinuous vector �eld is otopic to a con	
tinuous vector �eld� Also� if two continuous locally de�ned vector �elds are otopic�
they are continuously otopic� So the extension of index theory from continuous to
discontinuous vector �elds is not mathematically challenging� But discontinuous
vector �elds arise very naturally in mathematics and physics and now the results
of index theory can be applied to them without any mental anguish�

�� In order to avoid confusion between points at which the vector �eld V is unde	
�ned inside the open set U and outside the open set U we can restrict our attention
without loss of generality to vector �elds which are de�ned everywhere on U � but
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are not necessarily continuous� Any vector �eld on U which is not de�ned at some
points in U can be replaced by the same vector �eld returning the zero vector at
those unde�ned places� In fact� for those readers who are uncomfortable with the
notion of discontinuous vector �elds� Remark � o�ers a way to proceed by thinking
of only continuous vector �elds�

�� Note that a defect of an otopy need not be a defect of the vector �eld de�ned
on the slice� For example� consider the unit vector �eld pointing to the right on
the real line and otopy it to the unit vector �eld pointing to the left by letting the
�eld reverse direction when t � �� The vector �eld at t � � has no defects thought
of as a vector �eld on the real line� but the otopy defects are located at all the
points of the t � � slice� Thus this otopy is not proper since the set of defects is not
compact� Replacing the line by a closed interval� the above example has a compact
set of defects� but it still is not a proper otopy because defects are on the Frontier
of the t � � slice� If we replace the real line by a circle in our example� we again
get defects on the top circle� but they form a compact set and there is no Frontier�
so we consider this as a proper otopy� indeed a proper discontinuous homotopy�

The advanced definition of index� If V is a proper discontinuous vector �eld
de�ned on a compactM with boundary� then ��V is continuously de�ned on ��M �
So Ind���V � is de�ned� Then Ind�V � is de�ned by IndV � ��M� � Ind���V �� If
V is a proper discontinuous vector �eld �de�ned� on the open domain U � we can
�nd a compact manifold M which contains the compact set of defects of V and
has none on �M � Then IndUV �� IndMV where IndM �V � means the index of V
restricted to M �

If V is not a proper vector �eld on U � then we de�ne IndU �V � �� � � We
introduce � to avoid saying that the index is unde�ned� since there is information
when V is not proper�

Now let P be a connected component of the set of defects D of a vector �eld V
on N � We will de�ne the local index of P � which we denote by ind�P �� as follows�
Let U be an open set containing P and no other defects� so that V is proper on U �
Then ind�P � �� IndU �V �� If there is no such U � but P is contained in an open set
on which V is proper� then ind�P � �� ��� If there is no open set U containing P
on which V is proper� then ind�P � ����

The relationship between IndU �V � and ind�P � is very striking� If all the indices
involved are �nite� then

IndU �V � �
X

ind�P �� where the sum is over all connected components P of D�

D� Guides�

�� The intuitive picture� Consider the defects of a vector �eld as �topological
particles� Pi endowed with a �charge� denoted ind�Pi�� These Pi move and interact
as the vector �eld evolves in time �that is under otopy and homotopy�� These
�charges� are preserved under collisions just as electric charge is� See ���� the
conservation law� Then for a region of space U orM � we have IndU �V � �

P
ind�Pi�

for Pi contained in U � ����� the summation equation�� The list of properties ����
in Section � can then be used to calculate the index� Particularly useful is the Law
of Vector Fields� ���� The classi�cation of otopy by index means that any set of
defects Pi can be transformed to any other set of Pj �s if and only if the sum of
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the indices of the Pi is equal to sum of the indices of the Pj � Note that ind�Pi� in
dimension one can only take on the values� ��� �� ������� In higher dimensions
ind�Pi� can be any integer and � and ��� The value �� will most probably not
appear in a physical application�

�� The elementary definition� This is the only modern complete account of
indices that the authors are aware of� In Section � are listed 
 lemmas� The
IndM �V � and IndU �V � are assumed to be de�ned in dimension n � � and satisfy
the 
 lemmas� Then for M a compact manifold we de�ne IndM �V � �� ��M� �
Ind��M ���V �� In Section � we show that this is well	de�ned� Then for U an
open set� we de�ne in Section � IndU �V � �� IndM �V � where M � U contains the
defects of V in U � In Section � and Section � we prove the lemmas in Section � for
dimension n� The most subtle property to prove is the �existence of defects� �
��
The lemmas for dimension � are proved in Section �� After IndM �V � and IndU �V �
are established� we de�ne in Section � the local index for a �topological particle��
that is a connected component P of the set of defects of V � then ind�P � �� IndU �V �
where U is an open set containing P and no other defects� The two cases where
such a U cannot exist are given by ind�P � � ��� In the rest of the paper IndU
and IndM will frequently be shortened to Ind�

The prerequisites for this development of index are elementary topology and
di�erential topology� The only �sophisticated� results used are� The Tietze Exten	
sion Theorem� the existence of triangulations for smooth manifolds� transversality�
smooth approximation to continuous cross	sections� the additivity of the Euler	
Poincare number� Most of these can be found in �GP��

In Section � all the key properties of the index are listed� Properties ��� to ���
are basically proved in the earlier sections� Properties ��� and ����� the product
and sign rules� are proved as simple consequences of properties ��� to ���� Property
���� requires knowledge of the degree of a map� It is this result which shows that
the index de�ned this way agrees with the other de�nitions as in �BG� or �M�� It
should be mentioned that property ���� could stand as a de�nition of the degree�
and presumably most of the properties of degree could be proved from properties
��� to ����� The main point is this� The index is independent of degree� and also
intersection number� �xed point index� and coincidence number� Properties �����
����� ���� are proved elsewhere� The proofs employ the previous properties and
sophisticated algebraic topology� Each one is a generalization of a famous theorem�

�� The advanced definition� For the Expert who knows homotopy theory and
di�erential topology well� �BG� will be accessible� The concept of otopy was in	
troduced in that paper� and the invariance of index under otopy was established�
�Although otopy was �rst published there� its actual discovery came from the un	
derlying motivation of this paper� To de�ne the index by means of the Law of
Vector Fields�� One should read the de�nition in Subsection C in the Introduction
to extend the de�nition of the index for discontinuous vector �elds� Then to prove
the classi�cation theorems� ��� and ���� use the properties of �BG� where needed
and the otopy extension property� which is proved in Section ��

�� An advantage for the elementary definition� The elementary de�nition
is based directly on the vector �eld� unlike the other de�nitions� In �BG� a map is
constructed and the degree of the map is the index� In Hopf�s de�nition the vector
�eld must be deformed until there are only a �nite set of zeros� G� Samaranayake
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makes use of this advantage in her thesis �S�� She has a computer program which
estimates the index of a zero using the Law of Vector Fields� ���� It works well
because she does not need to prepare the vector �eld in any substantial way� Using
this program she can search for zeros of a static coulomb electric �eld generated
with a �nite number of electrons and protons whose index is not ��� �� or ��
Placing protons at the vertices of the Platonic solids� tetrahedron� octahedron�
cube� icosahedron� and dodecahedron� she estimates the index of the central zero
to be ��� ��� �� ���� and �� respectively�

�� The De�nition for One�dimensional Manifolds

First we describe the organization of the de�nition of index and the way we
will show it is well	de�ned� In most situations M will denote a compact smooth
manifold with boundary �M which is possibly empty� N will usually denote an
arbitrary smooth manifold with or without boundary� and U will denote an open
set in N or M � We usually consider vector �elds V as globally de�ned over M or
locally de�ned over N � If V is locally de�ned it is associated to an open set U in
N on which it is globally de�ned� We say U is the domain of V �

The inductive de�nition of index� Let � denote the empty domain� De�ne
Ind��V � �� �� If M is a compact connected manifold and V is globally de�ned on
M with no zeros on �M � then de�ne IndM �V � by

��� IndM �V � �� ��M�� IndU ���V � where U � ��M�

Let M be a smooth manifold with a globally de�ned V � Then IndM �V � ��
sum of indices on each path component� Let V be a proper vector �eld on the
open set U in N � De�ne IndU �V � �� IndM �V � where M is a compact manifold in
U containing the defects of V �

remark� It will be clear that by Lemma ��
� the equation ��� will hold for non	
connected manifolds also� We shall refer below to ��� without the connectedness
hypothesis�

We begin the induction at dimension ��� the empty manifold� Here the index
is zero� For dimension �� the connected manifold is a point and the vector �eld
V consists of the zero vector� Applying ��� we see that IndM �V � equals �� Thus
IndU �V � equals the number of points in U �

In dimension � there are two compact connected manifolds� The circle and the
closed interval� Let V be a vector �eld globally de�ned on a circle M � Then
IndM �V � � � follows from ���� Note that if V were the zero vector �eld� it is
proper when N is a circle� This contrasts to the fact that a zero vector �eld can
never be proper on an M or a U with non empty Frontier�

Let M be a closed interval and let V be a proper vector �eld� Then IndM �V � �
���number of points on the boundary where V points inside�� Thus IndM �V � can
take on the values �� �� ���

Let M be a general compact �	dimensional manifold with a globally de�ned
V � Then M is a �nite union of closed intervals and circles and IndM �V � ��
sum of indices on each path component�

So we have a de�nition for IndM �V � which is obviously well	de�ned in one dimen	
sion� It will be necessary� however� to prove that IndM �V � is well	de�ned beginning
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with dimension � for each step of the induction� We must show in dimension � al	
ready that IndU is well	de�ned� We prove three lemmas about the M case and
then after Lemma ��� we can show that IndU �V � is well	de�ned� We state the
lemmas in this Section for general manifolds� The proofs will be for dimension one�
Frequently Ind will stand for either IndM or IndU �

Lemma ���� Two vector �elds V and V � globally de�ned on M are properly ho�

motopic if and only if

Ind���V � � Ind���V
�� on each component of the boundary�

Proof� We may assume thatM is connected� IfM is a circle� every globally de�ned
V is properly otopic to any other globally de�ned V �� On the other hand� there is
no path component of the circle�s empty boundary� So the result is trivially true for
the circle� Next assume that M is a closed interval� Let W be a vector �eld so that
W �m� � V �m��kV �m�k for m on the boundary of M � Assume that W �m� � �
outside a collar of the boundary� and assume that W continuously decreases in size
from the unit vectors on the boundary to the zero vectors at the other end of the
collar� Then we de�ne the homotopy tV � �� � t�W � This is a proper homotopy�
since at any point m on the boundary V �m� and W �m� both point either inside
or outside so no zero can arise on the boundary� Now both V and V � are properly
homotopic to W � hence they are properly homotopic to each other� �

remark� Note that if V and V � are continuous vector �elds� there is a continuous
proper homotopy between them� If they are smooth� then there is a smooth proper
homotopy between them� Also note that for a vector �eld V globally de�ned on an
interval� there are only four proper homotopy classes� In higher dimensions there
are in�nitely many proper homotopy classes� The corresponding result in higher
dimensions is Theorem ����

Lemma ���� If M is a compact manifold di�eomorphic to M � and the vector �eld

related to V by the di�eomorphism f is denoted by V �� then

IndM �V � � IndM ��V ��

Proof� Pointing inside is preserved under di�eomorphism� �

Lemma ���� If V has no defects� then Ind�V � � ��

Proof� We may assume that M is connected� Let M be an interval� Since V has
no defects on this interval� V must point outside on one end and inside on the other�
Thus Ind�V � � � � � � � on this interval� For M a circle the globally de�ned V
must always have index zero� �

Now we can show that IndU �V � is well	de�ned� If M and M � are two compact
manifolds containing the defects� and contained in U � there is a compact manifold
M �� also contained in U and containing both M and M �� The vector �eld V
restricted to M �� � int�M� is a nowhere zero vector �eld� and the previous lemma
and the fact that the index is additive proves that IndU �V � is well	de�ned for those
vector �elds for which the defects sit inside a compact manifold with boundary�
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Lemma ���� Given a connected N � two proper locally de�ned �continuous� vector
�elds are properly otopic �by a continuous otopy� if and only if they have the same

index� For every integer n there is a vector �eld whose index equals that integer

�provided N has positive dimension��

Proof� Suppose we have a proper otopyW with domain T on N�I � Let Vt denote
W restricted to N � t� We show that there is some interval about t such that Vs
has the same index for all s in the interval� Since the set of defects of the otopy is
compact we can �nd a compact manifold M so that M�J � for some closed interval
J � lies in T and contains the defects inside �M � J � Thus the proper homotopy Vt
onM�J preserves the index onM � and hence the proper otopy on N�J preserves
the index on N as t runs over J � Thus we have a �nite sequence of vector �elds
each having the same index as the previous vector �eld� Hence the �rst and last
vector �elds have equal indices�

Conversely� for any integer n� let Wn be the vector �eld consisting of jnj vector
�elds de�ned on disjoint open intervals in N � each one of index � if n � � and of
index �� if n 	 �� Thus Ind�Wn� � n� Now if V has index n� we must show that
V is properly homotopic to Wn� Now the domain of V consists of open connected
intervals� and only a �nite number of them contain defects� Each of these intervals
has index equal to �� ��� or �� Now V is properly otopic to the same vector �eld
V whose domain is restricted to only those intervals which have nonzero indices�
Now if two adjacent intervals have di�erent indices� there is a proper otopy which
leaves the rest of the vector �eld �xed� and removes the two intervals of opposite
indices� After a �nite number of steps we are left with either an empty vector �eld�
if n � �� or a Wn� The empty vector �eld is W�� Thus V is properly otopic to
Wn� �

Lemma ���� IndU �V � on N is invariant under di�eomorphism�

Proof� Immediate from Lemma ��� and the de�nition of index for locally de�ned
vector �elds� �

Lemma ��	� Let V be a vector �eld over a domain U and suppose that U is the

disjoint union of U� and U�� Then if V� and V� denote V restricted to U� and U�

respectively� we have

Ind�V � � Ind�V�� � Ind�V���

�

�� The Index De�ned for Compact n�Manifolds

The otopy extension property� Let V be a continuous vector �eld on a closed

manifold N � Let U be an open set in N � Any continuous proper otopy of V on the

domain U can be extended to a continuous homotopy of V on all of N � In fact�

if V and W are continuous vector �elds with a proper continuous otopy between

restrictions of them to open sets� then the otopy can be extended to a continuous

homotopy of V to W �
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Proof� The continuous proper otopy implies there is a continuous vector �eld W
on an open set T in N � I which extends to the closure of T with no zeros on
the Frontier and which is V when restricted to N � �� This vector �eld W can
be thought of as a cross	section to the tangent bundle over N � I de�ned over a
closed subset� It is well known that cross	sections can be extended from closed sets
to continuous cross	sections over the whole manifold� �

We assume that the index is de�ned for �n���	manifolds and that all the lemmas
of Section � hold�

First we consider the case of connected compact manifolds M We suppose that
V is a globally de�ned proper vector �eld on such a manifold M � We choose a
vector �eld N on the boundary �M which points outside of M � Every vector v at
a point m on �M can be uniquely written as v � t � kN�m� where t is a vector
tangent to �M and k is some real number� We say t is the projection of v tangent
to �M � Then �V is the vector �eld obtained by projecting V tangent to �M � Now
we de�ne ��V by restricting �V to ��M � the set of points such that V is pointing
inward� Then we de�ne

��� IndM �V � � ��M�� IndU ���V � where U � ��M�

Lemma ���� IndM �V � is well�de�ned�

Proof� We assume already de�ned the index on �n � ��	dimensional manifolds
with open domains for proper vector �elds� Note that ��V is proper on �M if V is
proper on M � because the Frontier of ��M is a subset of ��M � the subset where V
is tangent to �M � So a defect of ��V on the Frontier must come from a defect of V
on �M � Hence IndU ���V � is de�ned� Now the vector �eld ��V obviously depends
upon the outward pointing N � If we had another outward pointing vector �eld N �

we would project down to a di�erent ��V � call it W � Now the homotopy of vector
�elds Nt � tN ��t� ��N � always points outside of M for every t� Hence it induces
a homotopy from ��V to W and this homotopy is proper� Thus Ind���V � �
Ind�W � by Lemma ���� Hence IndM �V � is well	de�ned for connected manifolds
with boundary� If M has empty boundary� then IndM �V � � ��M� by ���� Hence
IndM �V � is well	de�ned for all connected manifolds� and hence is well	de�ned for
all N 	manifolds� �

remark� The above lemma is also true in the case where the normal vector �eld
N is not de�ned on a closed set of �M which is disjoint from the Frontier of ��M �
Then �V is not everywhere de�ned� but ��V is still proper� A homotopy between
N and N �� as in the lemma� still induces a proper otopy between ��V and W �
so the Ind�V � is still well	de�ned in this case also� This case arises when M is
embedded as a co	dimension zero manifold in such a way that it has corners� Then
the natural outward pointing normal in this situation is not de�ned on the corners�
But we still have the index de�ned if none of the corners is on the Frontier of ��M �
This point arises in Theorem ��
�

Now our goal is to prove that non	zero vector �elds have index equal to zero on
compact manifolds with boundary�
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Theorem ���� On M the globally de�ned vector �eld V is properly homotopic to

W if and only if

Ind���V � � Ind���W �

for every connected component of �M � So as a corollary in the case that �M is

connected� we have that V is properly homotopic to W if and only if Ind�V � �
Ind�W ��

If V and W are both continuous� then �homotopic� can be replaced by �contin�

uously homotopic� in the statements above�

Proof� We may assume that M is connected� If M has empty boundary� the
theorem is true since every globally de�ned vector �eld is properly otopic to any
other globally de�ned vector �eld� So assume that M has non	empty boundary�
The theorem is true for manifolds one dimension lower by Lemma ���� A proper
homotopy of V to W induces a proper otopy from ��V to ��W in the manifold
�M � Hence Ind���V � � Ind���W �� Hence Ind�V � � Ind�W � from ����

Conversely� we can �nd a smooth collar �M � I of the boundary so that V
restricted to this collar has no defects� Then we homotopy V to V � where V � is
de�ned by V ��m� t� � tV �m� for a point in the collar and V � � � outside the collar�
Now since Ind���V � � Ind���W � for each connected component of the boundary�
we can �nd a proper otopy from ��V to ��W � Now this otopy can be extended to
a homotopy of �V to �W by the otopy extension property� This homotopy in turn
can be used to de�ne a proper homotopy from V � to W �� Here we assume W � has
the same de�nition relative to W as V � has to V � Thus W is properly homotopic
to V � �

Lemma ���� Suppose V is a proper vector �eld on a compact manifold M � Let

�M � I be a collar of the boundary so small so that V has no defects on the collar�

Then V restricted to M minus the open collar �M � ��� �� has the same index as

V �

Proof� Let �Vt denote the projection of V tangent to the submanifold �M � t for
every t in I � Let W be the vector �eld on the collar de�ned by W �m� t� � ��Vt if
�m� t� is a point in ��M�t� ThenW can be regarded as a proper otopy� proper since
V has no defects on the collar� Thus Ind���V � � Ind���V�� and hence Ind�V � �
��M��Ind���V � equals the index of V restricted toM � �M�open collar� because
the indices of the �� vector �elds are the same on their respective boundaries and
��M� � ��M ��� �

Lemma ���� Let V be a proper continuous vector �eld on M � Suppose that ��V
is properly otopic to some locally de�ned vector �eld W on �M � Then there is a

proper homotopy of V to a proper continuous vector �eld X so that ��X �W and

the zeros of each stage of the homotopy Vt are equal�

Proof� Use the otopy extension property to �nd a homotopy Ht from �V to a
vector �eld on �M � which we shall call �X � Let n�m� t� be a continuous real valued
function on �M � I which is positive on the open set T of the otopy between ��V
and W � zero on the Frontier of T � and negative in the complement of the closure of
T � and so that n�m� �� � n�m� where V �m� � n�m�N�m� � �V �m� de�nes n�m��
Such a function exists by the Tietze extension theorem� Using n�m� t�� we de�ne
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a vector �eld X � on �M � I by X ��m� t� � n�m� t�N�m� �Ht�m�� We adjoin the
collar to M as an external collar and extend the vector �eld V by X � to get the
continuous vector �eld X � Now M with the external collar is di�eomorphic to M �
Under this di�eomorphism X becomes a vector �eld which we still denote by X �
We may assume this di�eomorphism was so chosen that X � V outside of a small
internal collar� Then the homotopy tX � ��� t�V is the required homotopy which
does not change the zeros of V � �

Lemma ���� If V is a vector �eld with no defects on an n�ball B� then IndB�V � �
��

Proof� For the standard n	ball of radius � and center at the origin� we de�ne the
homotopy Wt�r� � V �tr�� This homotopy introduces no zeros and shows that V is
homotopic to the constant vector �eld� The constant vector �eld has index equal
to zero� as can be seen by using ���� If we have a ball di�eomorphic to the standard
ball� then the index of the vector �eld under the di�eomorphism is preserved by
Lemma ���� and hence it has the zero index� If the ball is embedded with corners so
that the corners are not on the Frontier of the set of inward pointing vectors of V �
then the index is de�ned and by Lemma ��� it is equal to the index of V restricted
to a smooth ball slightly inside the original ball� This index is zero� �

Theorem ��	� If V is a vector �eld with no defects on a compact manifold M �

then IndM �V � � ��

Proof� Now M can be triangulated and suppose we have proved the theorem for
manifolds triangulated by k � � n	simplices� The previous lemma proves the case
k � �� We divideM by a manifold L of one lower dimension into manifoldsM� and
M� each covered by fewer than k n	simplices so that the theorem holds for them�

We arrange it so that L is orthogonal to �M � We use Lemma ��� to homotopy V
to a vector �eld with no defects so that the new V is pointing outside orthogonally
to �M at L � �M � Then a simple counting argument shows that IndM �V � � �
since the restrictions of V to M� and M� have index zero� This argument works if
M has no corners� If M has corners we �nd a collar of M which gives a smooth
embedding of �M � t for all t but the last t � �� Then by Lemma ��� above� we
�nd that V � restricted to the manifold bounded by �M � t for t close enough to ��
has the same index as V � That is zero�

The counting argument follows� By induction� Ind�V jM�� � Ind�V jM�� � ��
Thus Ind���V�� � ��M�� and Ind���V�� � ��M��� Now we have the following
equation Ind���V � � Ind���V�� � Ind���V��� Ind�W � where W is the projection
of V on the common part of the boundary of M� and M�� that is L� This follows
from repeated applications of Lemma ��
� Now Ind�W � � ��L� since W points
outwards at the boundary of L� Hence

Ind���V � � Ind���V�� � Ind���V��� Ind�W � � ��M�� � ��M��� ��L� � ��M��

Hence IndM �V � � � from ���� �
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�� The Index for Locally De�ned Vector Fields

Let N be an n	manifold and let V be a proper vector �eld on N with domain U �
Then the set of defects of V in U is compact� Thus we can �nd a compact manifold
M which contains the defects of V � We de�ne

���� IndU �V � �� IndM �V ��

Lemma ���� IndU �V � is well�de�ned�

Proof� If M and M � are two compact manifolds containing the defects� there is a
compact manifold M �� containing both M and M �� The vector �eld V restricted
to M �� � int�M� is a nowhere zero vector �eld� Then Theorem ��
 implies that the
index of V restricted to M ��� int�M� is zero� Now the index of V restricted to M ��

equals the index of V restricted to M by the following lemma� �

Lemma ���� Suppose M is the union of two manifolds M� and M� where the three

manifolds are compact manifolds so that the intersection of M� and M� consist of

part of the boundary of M� and is disjoint from the boundary of M � Suppose that

V is a proper vector �eld de�ned on M which has no defects on the boundaries of

M� and M�� Then IndM �V � � IndM�
�V�� � IndM�

�V�� where Vi � V jMi�

Proof�

Ind�V � � ��M�� Ind���V �

� ��M�� �Ind���V�� � Ind���V��� Ind���V�jL�� Ind���V�jL��

by Lemma ��
 where L �M� �M�� Now

Ind���V�jL� � Ind���V�jL� � Ind���V�jL� � Ind���V�� � ��L��

Thus

Ind�V � � ��M�� � ��M��� Ind���V��� Ind���V�� � Ind�V�� � Ind�V���

as was to be proved� �

Lemma ���� Let V be a proper vector �eld with domain U � Suppose U is the union

of two open sets U� and U� such that the restriction of V to each of them and to

U� � U� is a proper vector �eld denoted V� and V� and V�� respectively� Then

����� IndU �V � � IndU�
�V�� � IndU�

�V��� IndU��
�V����

Proof� We choose disjoint compact manifolds M�� M�� and M�� containing the
zeros of V which lie in U��U�� and U��U�� and U�� respectively� Then the index
of V is equal to the index of V restricted to the union of M�� M�� and M��� But
the index of V� is the index of V restricted to M� and M��� and the index of V� is
the index of V restricted to M� and M��� and the index of V�� is the index of V
restricted to M��� Hence counting the index gives the equation ������ �
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Corollary ���� The index of a vector �eld V on a closed manifold M whose domain

is the whole of M is equal to ��M��

Proof� This is true by ��� a priori� We note that Lemma ��� implies that any
other way to calculate the index of V will give the same answer� We illustrate�
using Lemma ��� twice� Let V be a vector �eld which is non	zero on a small n	ball
B about a point� Now let V� be V on the n	ball and let V� be V on the complement�
Then Ind�V�� � �� so Ind���V�� � �� Now Ind���V�� � ����n��� So

Ind�V�� � ��M �B�� ����n�� � ��M�� ����n � ����n�� � ��M��

Hence Ind�V � � Ind�V�� � Ind�V�� � � � ��M�� �

Theorem ���� Given a connected manifold N � two locally de�ned �continuous�
proper vector �elds are properly otopic �by a continuous otopy� if and only if they

have the same index� For every integer n there is a vector �eld whose index equals

that integer �provided N has positive dimension��

Proof� Suppose we have a proper otopyW with domain T on N�I � Let Vt denote
W restricted to N � t� We show that there is some interval about t such that Vs
has the same index for all s in the interval� Since the set of defects of the otopy is
compact we can �nd a compact manifold M so that M�J � for some closed interval
J � lies in T and contains the defects so that the defects avoid �M � J � Thus by
Theorem ���� the proper homotopy Vt on M � J preserves the index on M � and
hence the proper otopy on N � J preserves the index on N as t runs over J � Thus
we have a �nite sequence of vector �elds each having the same index as the previous
vector �eld� Hence the �rst and last vector �elds have equal indices�

Conversely� for any integer k� letWk be the locally de�ned vector �eld consisting
of jkj vector �elds de�ned on disjoint open balls in N � each one of index � if k � �
or of index �� if k 	 �� Thus Ind�Wk� � k� Now if V has index k� we must show
that V is properly otopic to Wk � Now the defects of V form a compact set which is
contained in a compact manifold with boundary M so that V is proper and has no
defects on the boundary� We may proper otopy V �rst to a continuous vector �eld�
and then to a smooth vector �eld� Then we consider V as a cross	section to the
tangent bundle ofM � Using the transversality theorem� we can smoothly homotopy
the cross	section so that it is transversal to the zero section of the tangent bundle
keeping the cross	section �xed over the boundary� The dimensions are such that
the intersection consists of a �nite number of points� Thus we proper otopy V to
a vector �eld with only a �nite number of zeros� Now we put small open balls
around each of these zeros� The index of the vector �eld on the ball around each
of these zeros is either � or ��� Classically this follows from transversality� but we
do not need that fact� We may �nd a di�eomorphic n	ball which contains exactly
jkj zeros so that around these zeros the vector �eld restricts to Wk� The two vector
�elds have the same index on the n	ball and thus are properly homotopic� since
from ��� the index on the boundary of the inward pointing �� vector �elds is the
same� and so by induction they are properly otopic� hence by the otopy extension
property the � vector �elds are homotopic� This homotopy can be extended to a
homotopy of the two vector �elds originally on the n	ball� Then using the sequence
of homotopies and otopies� we can piece together a proper otopy of V to Wk� �
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remark� Note that this proof is more complicated than it need be because it does
not use the concept of degree of a map or of intersection number�

Corollary ��	� The proper homotopy classes of continuous proper vector �elds on

a compact manifold with connected non�empty boundary is in one�to�one correspon�

dence with the integers via the index� Of course� the manifold must have dimension

greater than one for this to hold� �

Lemma ��
� The index of a locally de�ned vector �eld on a manifold N is invari�

ant under di�eomorphism� �

�� The Index of a Defect

Let V be a vector �eld on an manifold N � Let D be the set of defects of V �
Then D breaks up into a set of connected components Di� If a component Di is
compact and is an open set in the subspace topology of D� we can de�ne an index
denoted ind�Di�� Note the lower case �i� here as opposed to the upper case �I� in the
de�nition of the global and local indices� We call ind�Di� the index of the defect

�or zero� Di�

De�nition� If the defect set D is connected� compact and isolated� then we can
�nd a open set U of N containing D and no other defects of V � Then we de�ne the
index of D by

������ ind�D� �� IndU �V ��

If D is not isolated� then every open set containing D must contain another defect
of V � In this case we say ind�D� �� ��� If D is not compact� we say ind�D� ����

Now if the set of defects of V on N consists of a �nite number of compact Di�
then IndN �V � �

P
i ind�Di�� However it is possible that V is a proper vector �eld

and there are an in�nite number of Di� Then at least one of the Di is not isolated
in D� But the index of V is still de�ned� A one dimensional example occurs when
M is the interval ���� �� and the vector �eld V is de�ned by V �x� � x sin���x� for
x �� � and V ��� � �� Then � is a connected component of the defects which is not
open in the set of defects of V � Thus ind��� �� ��� whereas IndM �V � � ��

If we have an otopy Vt� we imagine the components of the defects Dt as changing
under time� We can say that Dti at time t transforms without topological radiation
into Dsj at time s if there is a compact connected component T of the defects of
the otopy from time t to time s so that T intersects N � t in exactly Dti and T
intersects N � s exactly at Dsi� The index of Dti is the same as the index of Dsj

if T is compact� In other words if a �nite number of �particles� Di at time t are
transformed into a �nite number of particles Cj at time s by a compact T � the sum
of the indices are conserved�

��� Conservation Law�

X
ind�Ci� �

X
ind�Dj��

Thus the idea of otopy allows us to make precise the concept of defects moving
with time and changing with time and undergoing collisions� The index is conserved
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under these collisions as long as the �world line� T of the component is compact�
That is� as long as there are is no �topological radiation�� that is as long as the
relevant component in the otopy is compact�

As we mentioned in Subsection A of the Introduction� the concept of otopy can
be thought of as a space	like vector �eld in a space time� So if a physicist wants to
model something by defects of a vector �eld� there is a conservation law preserving
an invariant of General Relativity which automatically comes along with the model�

	� Properties of the Index

��� Law of Vector Fields�

Ind�V � � Ind ��V � ��M��

This is in fact the equation ��� which de�nes the index� We remark here that
any theory of index in which the Law of Vector Fields holds must agree with our
de�nition�

��� Classification of proper otopy by the index� Let N be a connected
manifold� V is properly otopic to W if and only if Ind V � Ind W � If V and W
are continuous vector �elds� then the otopy can be continuous� For any integer n
there is a continuous vector �eld W so that n � Ind W �

��� Classification of proper homotopy� Suppose M is a compact connected
manifold with non	empty connected boundary �M � and suppose V andW are con	
tinuous globally de�ned proper vector �elds on M � Then V is properly homotopic
to W if and only if Ind V � Ind W � For any integer n there is a continuous proper
vector �eld W so that n � Ind W � provided the dimension of M is greater than
one�

In general forM compact� V is proper homotopic toW if and only if Ind ���V � �
Ind ���W � on every connected component of �M �

�	� Poincare
Hopf Theorem� If M is a closed compact manifold and V is a
vector �eld whose domain is all of M � then Ind V � ��M��

Proofs� Property ��� is Theorem ���� Property ��� is Corollary ��
� Property
��� follows from Theorem ��� and Lemma ���� along with the Otopy Extension
Property� �

��� Additivity� Let A and B be open sets and let V be a proper vector �eld on
A 	 B so that V jA and V jB are also proper� Then Ind�V jA 	 B� � Ind�V jA� �
Ind�V jB�� Ind�V jA � B��

Proof� Lemma ���� �

��� Existence of defects� If Ind V �� � then V has a defect�

Proof� Theorem ��
 for compact manifolds with boundary� �

�
� Summation equation� Suppose V is a proper vector �eld and the set of
defects consists of a �nite number of connected components Di� Then Ind V �P
i

ind�Di��
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Proof� This follows from the de�nition of Ind�Di� and ���� �

��� Product rule� Let V andW be proper vector �elds on A and B respectively�
Let V �W be a vector �eld on A�B de�ned by V �W �s� t� � �V �s��W �t��� Then
Ind�V �W � � �Ind V � 
 �Ind W ��

Proof� We can assume that A and B are open sets in their respective manifolds�
Then V is otopic to Vn where Vn is restricted to a �nite set of open sets in A
homeomorphic to the interior of Jk when k � dim A and J � ���� ��� so that
Vn�t�� � � � � tk� � ��t�� t�� � � � � tk� where the �t� is taken if Ind V is positive and �t�
is taken if Ind V is negative� The index of the VnjJ

k is �� respectively by ���� So
Ind �V �W � � Ind�Vn �Wn� �

P
i�j

Ind�VnjJ
k
i � � �WnjJ

�
j �� Now it is easy to see

that Ind��VnjJ
k
i �� �WnjJ

�
j �� � Ind�VnjJ

k
i � 
 Ind�WnjJ

k
j �� �

���� Sign rule�

����nInd�V � � Ind��V � where n � dim M �

Proof� The theorem is true for n � �� Assume it is true for �n � ��	manifolds�
Now using ��� we have

Ind��V � � ��M�� Ind�����V �� by ���

� ��M�� Ind����V � by de�nition of ��V and ��V

� ��M�� ����n��Ind����V �� by induction

� ��M� � ����n����M�� Ind���V ��

since

���M� � Ind���V � � Ind���V ��

If n is even then

Ind��V � � ��M� � ��� Ind���V �� � Ind V by ����

If n is odd then

Ind��V � � ��M�� ����M�� Ind���V ��

� ����M�� Ind���V �� � �Ind V by ����

�

���� Index defines degree� Suppose M is a compact sub	manifold of Rn of
codimension �� Let f � M � R

n be a map so that f��M� does not contain the
origin� De�ne a proper vector �eld V f on M by V f �m� � f�m�� Then Ind V f �

deg f �� where f � � �M � Sn�� is given by f ��m� � f�m�
kf�m�k �
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Proof� We homotopy f if necessary so that 
� is a regular value� Then f���
��
is a �nite set of points� There is a neighborhood of f����� of small balls so that
f � ��ball�� R

n � � �� Sn��� Now� in each of these small balls� f has either degree
� or ��� If degree equals �� then f j��ball� is homotopic to the identity� If degree
� ��� then f j��ball� is homotopic to re�ection about the equator� In these cases
Ind�V f jball� � �� � deg f j��ball�� Now

Ind�V f � �
X

Ind V f j�balls� by proper otopy

�
X

deg f j��balls� � deg f ��

�

���� Brouwer Fixed Point Theorem� Suppose f �M � R
n where M � R

n is
a codimension zero compact manifold� De�ne Vf �m� � m� f�m�� Then Ind Vf �
�xed point index of f �assuming no �xed points on �M��

Proof� The �xed point index is de�ned to be the degree of the mapm� m�f�m�
km�f�m�k

from �M � Sn��� Hence by ���� we have the result� �

���� Gauss
Bonnet Theorem� Let f �M � N whereM andN are Riemannian
manifolds and f is a smooth map� Let V be a vector �eld onM � De�ne the pullback
vector �eld f��V � by

hf�V �m�� 
vmi � hV �f�m��� f��
vm�i�

Then if f � Mn � R
n so that f�j�M has maximal rank and f��M� contains no

zeros of V � then

Ind f�V �
X

viwi � ���M�� deg �N�

where vi � Ind�xi� where xi is the i
th zero of V � wi is the winding number of f j�M

about xi� and �N � �M � Sn�� is the normal �or Gauss� map�

Proof� In paper �G��� �

���� Transfer Theorem� Let F
i
�� E

p
�� B be a smooth �bre bundle with F a

compact manifold and B a closed manifold� Let V be a proper vector �eld on E
with vectors tangent to the �bres� Then there is an S	map � � B� � E� so that
in ordinary homology p� 
 �� �cohomology �� 
 p�� is multiplication by the index of
V restricted to a �bre� Ind�V jF ��

Proof� In paper �BG�� �
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