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The Canonical Class and the C∞ Properties of
Kähler Surfaces

Rogier Brussee

Abstract. We give a self contained proof that for Kähler surfaces with non-
negative Kodaira dimension, the canonical class of the minimal model and the
(−1)-curves are oriented diffeomorphism invariants up to sign. This includes
the case pg = 0. It implies that the Kodaira dimension is determined by the
underlying differentiable manifold. We then reprove that the multiplicities
of the elliptic fibration are determined by the underlying oriented manifold,
and that the plurigenera of a surface are oriented diffeomorphism invariants.
We also compute the Seiberg Witten invariants of all Kähler surfaces of non-
negative Kodaira dimension. The proof uses a set up of Seiberg Witten theory
that replaces generic metrics by the construction of a localised Euler class
of an infinite dimensional bundle with a Fredholm section. This makes the
techniques of excess intersection available in gauge theory.
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A compact complex surface X with non-negative Kodaira dimension κ has
a unique minimal model Xmin. The pullback of the canonical line bundle of
the minimal model ωmin is in some ways the most basic birational invariant of
the surface, if only because it is the polarisation O(1) of the canonical model
Proj(⊕H0(nK)). It was conjectured by Friedman and Morgan that the cohomo-
logy class, Kmin = c1(ωmin) ∈ H2(X,Z) is determined by the underlying oriented
smooth manifold if κ(X) ≥ 0 [FM1, Conj. 3]. Recently, Kronheimer, Mrowka and

Received October 1, 1996.
Mathematics Subject Classification. Primary: 14J, 57N13. Secondary: 58B, 57R20.
Key words and phrases. Surfaces, 4-manifolds, Seiberg Witten-theory, ∞-dimensional inter-

section theory.

c©1996 State University of New York
ISSN 1076-9803/96

103

http://nyjm.albany.edu:8000/nyjm.html
http://nyjm.albany.edu:8000/j/v2/Vol2.html
http://nyjm.albany.edu:8000/j/v2/Brussee.html


104 Rogier Brussee

Tian, Yau proved this for minimal surfaces of general type with pg > 0 [Ste]. While
completing this manuscript, Friedman and Morgan posted a proof for the case
pg = 0 [FM3]. In the case of elliptic surfaces it was already known to be true by
the joint effort of many people, as it is a direct consequence of the invariance of the
multiplicities of the elliptic fibration.

The difference between minimal and non minimal surfaces is measured by the
(−1)-curves. If pg > 0, it is not hard to show using a little Donaldson theory
that the invariance of ±Kmin implies that the homology classes of the (−1)-curves
can be characterised up to sign as the ones which are represented by (−1)-spheres,
i.e., smoothly embedded spheres with self intersection (−1) (the ex (−1)-curve
conjecture [FM1, Conj 2,3, Prop. 4]).

Theorem 1. If X is a Kähler surface of non-negative Kodaira dimension then

1. The class Kmin ∈ H2(X,Z) is determined by the underlying smooth oriented
manifold up to sign,

2. every (−1)-sphere in X is Z-homologous to a (−1)-curve up to sign.

Corollary 2. If a Kähler surface X has non-negative Kodaira dimension then ev-
ery smooth sphere S with S2 ≥ 0 is Z-homologous to 0.

Corollary 3. A Kähler surface is rational or ruled if and only if it contains a
smooth sphere S 6= 0 ∈ H2(X,Z) with S2 ≥ 0.

Corollary 4. The Kodaira dimension of a Kähler surface is determined by the
underlying differentiable manifold.

The proof of Theorem 1 is based on fundamental work of Witten and Seiberg
[Wit], who introduced a new set of non linear equations, the monopole equations.
Using these equations allow one to define Seiberg Witten (SW) invariants, new
oriented diffeomorphism invariants, similar in spirit to the Donaldson invariants,
but much easier to handle both in practice and in theory. The simplest SW invari-
ants are just the signed number of solutions to the monopole equations for generic
values of the parameters (metric and some canonical perturbation). The mono-
pole equations and the SW invariants, once specialised to the Kähler case, give
exactly the right information to apply the method in [Br2] to prove the invariance
of Kmin. Previously this required many strong and technical assumptions and relied
on formidable technical machinery [KM1].

From the point of view of classification of surfaces, it is rather satisfactory that
the nefness of Kmin is what makes the proof work for Kodaira dimension κ ≥ 0,
what makes it fail for the rational and ruled case, and that the various levels of
nefness (nef and big, nef but not big, torsion) is what makes for the difference in the
different Kodaira dimensions. If pg = 0, the higher plurigenera, and in particular
P2, play an essential role.

While proving the invariance of Kmin, we have to prove the invariance of (−1)-
curves as well. This leads directly to the differentiable characterisation Corollary 3
of rational and ruled surfaces which are characterised algebraically by the existence
of a smooth rational curve l with l2 ≥ 0 [BPV, Prop. V.4.3]. The invariance of the
Kodaira dimension (the ex Van de Ven conjecture [VdV]) and the invariance of the
plurigenera for surfaces of general type is then an immediate consequence of the
invariance of ±Kmin. The Van de Ven Conjecture had already been proved using
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Donaldson theory (see [FM2] for all surfaces but rational surfaces and surfaces of
general type with pg = 0, and Friedman Qin [FQ] and Pidstrigatch [P-T],[Pi2] for
the remaining case, see also [OT1] for an easy proof of the remaining case with
Seiberg Witten theory).

To prove Theorem 1 we get away with a simple but useful ad hoc computation of
the SW-invariants of classes “close to KX” (Corollaries 31 and 32). Using an elegant
argument of Stefan Bauer (Proposition 41), this is also enough to give yet another
proof that for elliptic surfaces with finite cyclic fundamental group, the multiplicities
of the elliptic fibration are determined by the underlying oriented manifold. The
oriented homotopy type determines the multiplicities for other elliptic surfaces (see
the first two chapters of [FM2], in particular Theorem S.7. Although these chapters
consist of “classical” homotopy theory and algebraic geometry largely going back
to Kodaira and Iitaka, this is now perhaps the most difficult and deepest part of
the story). Together this implies:

Theorem 5. Let X → C be an elliptic Kähler surface. Then the multiplicities of
the elliptic fibration are determined by the underlying oriented smooth manifold. In
particular, for Kähler elliptic surfaces, deformation type and oriented diffeomor-
phism type are the same notions.

This theorem has been well established with Donaldson theory by the work
of Bauer, Donaldson, Fintushel, Friedman, Iitaka, Kodaira, Kronheimer, Lisca,
Morgan, Mrowka, O’Grady, Okonek, Pidstrigatch, Stern, Van de Ven and probably
others. (See e.g., Chapter VII of [FM2] for a sample algebraic geometric, and e.g.,
[FS1]) for a sample cut and paste computation.)

Corollary 6. The plurigenera of a Kähler surface are determined by the underlying
oriented manifold.

This corollary has been conjectured by Okonek and Van de Ven [OV]. Let me
remark that it seems to be known that in the non-Kähler case, with the exception
of the equivalence of deformation and diffeomorphism type of non Kähler elliptic
surfaces, (where there can be a two to one discrepancy) all the previous statements
are true as well, but seemingly for “classical” reasons like the homotopy type.

Inspired by results in the preprint of Friedman and Morgan, I realised how the
results in this article give an easy proof of:

Corollary 7. No Kähler surface of non-negative Kodaira dimension admits a met-
ric of positive scalar curvature.

For Kähler metrics the monopole equations reduce to the vortex equation which
has been studied extensively by Bradlow [B1] and Garćıa Prada [Gar], and the
moduli space of solutions can be completely described in algebraic geometric terms.
However, Kähler metrics are not generic, and if we try to use this description to
compute all the SW invariants of elliptic or ruled surfaces we encounter positive
dimensional moduli spaces of solutions even if the virtual or expected dimension
is zero. Following Pidstrigatch and Tyurin, we will define the SW invariant as
a localised Euler class of an infinite rank bundle with a section with Fredholm
derivative. Using this technique we will compute the SW invariants of elliptic
surfaces and a SW blow up formula. The localised Euler class seems to be a useful
and powerful notion which should be of independent interest.
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In Section 1, we prove most of the corollaries and slightly abstract and generalise
the relevant part of [Br2]. In Section 2 we introduce the localised Euler class.
Logically it is needed for the definition of the SW invariants, but in practice it
is largely independent of Sections 3, 4 and 5. In Section 3 we define the SW
invariants. In Section 4 we study the monopole equations and SW invariants for
Kähler manifolds. In Section 5 we then prove the main Theorem 1 and Corollary 7.
Finally in Section 6 we compute the SW invariants of elliptic surfaces and prove a
blow up formula.

While working on this article, a flood of information on the Seiberg Witten classes
came in. The holomorphic interpretation of the monopole equations is already in
Witten’s paper [Wit], and it seems that several people have remarked that his
work implies that the canonical class is invariant for minimal surfaces of general
type with pg > 0 because of the numerical connectedness of the canonical divisor.
Kronheimer informed me that he, Fintushel, Mrowka,Stern and Taubes are working
on a note containing among many other things the mentioned proof of the invariance
of Kmin. The results and methods of the before mentioned paper [FM3] of Friedman
and Morgan are rather similar to the present one. The main difference seems to
be that they deal mostly with the case pg = 0, and that they rely on chamber
changing formulas and a detailed analysis of the chamber structure. They also use
a stronger version of the blow up formula which allows them to prove a stronger
version of Theorem 1.2: If a surface of Kodaira dimension κ ≥ 0 has a connected
sum decomposition X ∼= X ′#N , where N is negative definite, then H2(N,Z) ⊂
H2(X,Z) is spanned by (−1)-curves. We will indicate how this result follows from
the present methods. Finally, Taubes shows that the results for Kähler surfaces
are but the top of the iceberg. It seems that most results can be generalised to
symplectic manifolds [Ta1],[Ta2].
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serious mistake in my original treatment of the case pg = 0.

1. Preparation

We first prove the corollaries from the Main Theorems 1 and 5.

Proof. Corollary 2. Let S be a positive smooth sphere in a surface X with κ(X) ≥
0. Let X̃ be the blow up in n = S2+1 points, thenH2(X̃,Z) = H2(X,Z)⊕⊕ni=1ZEi.
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Now e = S+E1 + · · ·+En is represented by a (−1)-sphere. Hence there is a (−1)-

curve E0 on X̃ such that e = ±E0 ∈ H2(X̃,Z). Since (−1)-curves on a surface
with κ ≥ 0 are either equal or disjoint (cf. [BPV, prop. III.4.6]), either n = 0 and
S = ±E0 , or n = 1, S = 0 ∈ H2(X,Z), and E0 = E1, say. But the first possibility
leads to the contradiction E2

0 ≥ 0. (Reducing non-negative spheres to (−1)-spheres
is a well known trick, but I forgot where I read it precisely.)

Corollary 3 follows directly from Corollary 2.
Corollary 4. By the above, a Kähler surface is of Kodaira dimension −∞ if it

contains a non trivial (0)-sphere. Clearly all ruled surfaces contain one. To deal
with P2, note that there is no surface with b+ = b1 = 0 [BPV, Thm. IV.2.6]. Thus
diffeomorphisms between surfaces with b2 = 1, b1 = 0 are automatically orientation
preserving. Then a surface diffeomorphic to P2 must contain a (+1)-sphere, and is
therefore of Kodaira dimension −∞. Since b2 = 1 it must in fact be equal to P2.
(Alternatively, use Yau’s result that P2 is the only surface with the homotopy type
of P2 [BPV, Theorem 1.1], but this is a deep theorem). We conclude that Kodaira
dimension −∞ can be characterised by just diffeomorphism type. Without loss of
generality, we can therefore assume that κ ≥ 0.

If K2
min > 0, then X is of general type. If K2

min = 0 and Kmin is not torsion,
then κ(X) = 1. Finally, if Kmin is torsion, κ(X) = 0. This proves that Kodaira
dimension is determined by the oriented diffeomorphism type. If X and Y are
orientation reversing diffeomorphic, both are minimal: Otherwise, one of them
would contain a positive sphere. Then necessarily either K2

X = K2
Y = 0, or both

have K2
X ,K

2
Y > 0, i.e., X and Y are of general type. Now copy the argument

of [FM2, Lemma S.4]: For minimal surfaces with κ = 0, 1, the signature σ =
1

3
(K2 − 2e) ≤ 0. Thus σ(X) = −σ(Y ) = 0, and e(X) = e(Y ) = 0. In Kodaira

dimension 0, this leaves only tori and hyperelliptic surfaces, which can fortunately
be recognised by homotopy type [FM2, Lemma 2.7].

Corollary 6. Since P1 = pg is an oriented topological invariant, we will hence-
forth assume that n ≥ 2. We have to distinguish between the different Kodaira
dimensions. For surfaces of general type (i.e., κ = 2), we argue as follows. The
plurigenera Pn and χ(OX) are birational invariants. Then by Ramanujan vanishing
and Riemann Roch (cf. [BPV, corollary VII.5.6]) we have

Pn(X) = Pn(Xmin) = 1
2n(n− 1)K2

min + χ(OX)(1)

Since χ(OX) is an oriented topological invariant the Pn are oriented diffeomorphism
invariants in this case. For surfaces with Kodaira dimension 0 or 1 with a funda-
mental group that is not finite cyclic, we simply quote [FM2, S.7]. For surfaces
with finite cyclic fundamental group, it follows from the invariance of the multiplic-
ities and the canonical bundle formula which gives an explicit formula for Pn(X)
in terms of the multiplicities and χ(OX). (See [FM2, Lemma I.3.18, Prop. I.3.22].)
Finally, by definition, Pn(X) = 0 if κ = −∞. �

Here is an other easy corollary.

Corollary 8. Every (−2)-sphere τ is orthogonal to Kmin. If there is a (−1)-curve
E1 such that τ · E1 6= 0, then there is a (−1)-curve E2 such that τ = ±E1 ± E2 ∈
H2(X,Z).
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Proof. Let Rτ be the reflection in τ . It is represented by a diffeomorphism with
support in a neighborhood of τ . By the invariance of Kmin up to sign, RτKmin =
Kmin + (τ ·Kmin)τ = ±Kmin. But if Kmin 6= 0 ∈ H2(X,Q), then τ and Kmin are
independent, since τ2 = −2 and K2

min ≥ 0. Thus in either case (τ,Kmin) = 0.
Moreover if E1 is a (−1)-curve then either RτE1 = E1, RτE1 = −E1, or there
is a different (−1)-curve E2 such that Rτ (E1) = ±E2. The first possibility gives
τ ·E1 = 0, the second (τ ·E1)2 = 2 i.e., is impossible, and the third (τ ·E1) = ±1.
The statement follows. �

It will be convenient to first prove the main Theorem 1 with (co)homology groups
with Q coefficients, and later mop up to prove the theorem over Z. Let X be a
smooth oriented compact 4-manifold with b+ ≥ 1. Theorem 1 mod torsion is a
formal consequence of the existence of a set of basic classes

K(X) = {K1,K2 . . . } ⊂ H
2(X,Z)

functorial under oriented diffeomorphism and having the following properties:

Properties (∗). If X is a Kähler surface of non-negative Kodaira dimension then

1. the Ki are of type (1, 1) i.e., represented by divisors,
2. if X is minimal, then for every Kähler form Φ, degΦ(KX) ≥ |degΦ(Ki)|,

3. if X̃
σ
−→ X is the blow-up of a point x ∈ X, then σ∗

(
K(X̃)

)
⊂ K(X).

4. every Ki is characteristic i.e., Ki ≡ w2(X) (mod 2),
5. KX ∈ K.

In case X is an algebraic surface we could replace item 2 by the weaker and more
geometric requirement that 2g(H)− 2 ≥ H2 + |Ki ·H| for every very ample divisor
H without changing the results. We will see later that Seiberg Witten theory will
give property 2 for all Kähler surfaces with κ ≥ 0, minimal or not. This should
not be confused with a Thom conjecture type of statement, since our methods do
not give information about the minimal genus for arbitrary smooth real surfaces
in a homology class. It is also clearly impossible to have a degree inequality like
property 2 for all Kähler forms if X is rational or ruled.

Recall that for algebraic surfaces, the Mori cone NE(X) ⊂ H2(X,R) is the closure
of the cone generated by effective curves. It is dual to the nef (or Kähler) cone. In
other words, the numerical equivalence class of a curve D lies in NE(X) if and only
if H · D ≥ 0 for all H ample. For a Kähler surface (X,Φ), it will be convenient
to define the nef cone as the closure of the positive cone in H1,1(X) ⊂ H2(X,R)
spanned by all Kähler forms, and containing Φ. The Mori cone NE is then just the
dual cone in H2(X,R) ∩H1,1∨ i.e.,

NE = {C ∈ H1,1∨ ⊂ H2(X,R) |

∫
C

ω ≥ 0, for all Kähler forms ω }.

(With this definition, a line bundle is nef iff for all ε > 0, it admits a metric such

that the curvature form F has

√
−1

2π
F ≥ −εΦ. A class ω ∈ NE if there exists a

sequence of closed positive currents of type (1, 1) converging to the dual of ω, i.e
NE is dual to Npsef in [Dem, Proposition 6.6]. We will freely identify homology and
cohomology by Poincaré duality.
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Lemma 9. If a class L ∈ H1,1(X) satisfies degΦ(KX) ≥ | degΦ(L)| for all Kähler
forms Φ, then there is a unique decomposition of the canonical divisor KX = D+ +
D− with D+, D− ∈ NE(X) such that L = D+ −D−.

Proof. Define D± =
1

2
(KX ± L). Then KX = D+ + D−, L = D+ − D−, and

D± ∈ NE. �

The following simple lemma is a minor generalisation of the fact that the canon-
ical divisor of a surface of general type is numerically connected [BPV, VII.6.1].

Lemma 10. Let X be a minimal Kähler surface with κ(X) ≥ 0. Suppose there
is a decomposition KX = D+ + D− with D+, D− ∈ NE(X) ↪→ H1,1(X). Then
D+ ·D− ≥ 0, with equality if and only if say KX ·D+ = D2

+ = 0. More precisely,
upon equality, we have the following identities in H2(X,R): D+ = 0 if X is of
general type, D+ = λKX with 0 ≤ λ ≤ 1 if κ(X) = 1, and finally D+ = D− = 0 if
κ(X) = 0.

Proof. First assume that D2
+ ≤ 0. Since KX is nef, D+ ·D− = (KX −D+) ·D+ ≥

−D2
+ ≥ 0, with equality if and only if KX ·D+ = D2

+ = 0. If D2
+ > 0 and D2

− > 0,
then using the Kähler form Φ, we can write D+ = αΦ + C+ and D− = βΦ + C−
with α, β > 0 and C± ∈ Φ⊥. By the Hodge index theorem,

D+ ·D− = αβΦ2 + C+ · C− ≥ αβΦ2 −
√
−C2

+

√
−C2
− > 0.

The statement for surfaces of general type follows directly from Hodge index and
the fact that K2

X > 0. If κ(X) = 1, then KX is a generator of the unique isotropic
subspace of K⊥X , so D+ = λKX , and D− = (1 − λ)KX . Since KX , D+ and

D− ∈ NE(X), λ is bounded by 0 ≤ λ ≤ 1. Finally if κ(X) = 0, KX is numerically
trivial, and D+ and D− must be zero as well. �

Lemma 11. Let X be a surface of non-negative Kodaira dimension with (−1)-
curves E1, . . . Em. Assume that K has properties (∗). Then K2

i ≤ K2
X for all

Ki ∈ K(X), and upon equality

Ki = λKmin +
m∑
j=1

±Ej ∈ H
2(X,Q)

where λ = ±1 if X is of general type, λ is a rational number with |λ| ≤ 1 if
κ(X) = 1, and where λ = 0 if κ(X) = 0.

Proof. By property (3), and (4), Ki = Ki,min +
∑
j(2aij + 1)Ej , with Ki,min ∈

K(Xmin). Thus

K2
i ≤ K

2
i,min −#(−1)-curves,

with equality if and only if aij = 0, or −1 for all i, j. Since K2
X = K2

min −
#(−1)-curves, we can assume that X is minimal. Using property (1), (2) and
Lemma 9, we can write KX = D+ +D− and Ki = D+ −D−, with D± ∈ NE(X).
Then by Lemma 10, K2

i = K2
X − 4D+ ·D− ≤ K2

X with equality under the stated
condition. �

We can now prove the main theorem mod torsion assuming the existence of
suitable basic classes.
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Proposition 12. Assume that for all smooth oriented 4-manifolds M with b+ ≥ 1
there is a set of basic classes K(M) = {K1,K2, . . . } ⊂ H2(M,Z) functorial under
oriented diffeomorphism, having properties (∗). Then Theorem 1 holds with Q
coefficients.

Proof. In this proof all cohomology classes will be rational classes, and X is a
Kähler surface with κ(X) ≥ 0. Using Lemma 11 we will first reduce the invariance
of Kmin up to sign and torsion (part 1⊗Q of Theorem 1) to showing that (−1)-
spheres are represented by (−1)-curves up to sign and torsion (part 2⊗Q).

Since KX ∈ K, there is a nonempty subset K0 = {Kj} ⊂ K with K2
j = K2

X =

2e(X) + 3σ(X). By assumption, the subspace H2(Xmin,Q) ⊂ H2(X,Q) is the
orthogonal complement of the (−1)-spheres. Now consider the projection Kj,min of
Kj to H2(Xmin,Q). By Lemma 11 we know that Kj,min = λKmin, and there are
only 3 possibilities.

If K2
j,min > 0, then X is of general type, and Kmin = ±Kj,min. If Kj,min = 0 for

all j, then X is of Kodaira dimension 0 and Kmin = 0 ∈ H2(X,Q). If K2
j,min = 0

but not all Kj,min = 0, then κ(X) = 1, and if j0 is chosen such that Kj0,min 6= 0
has maximal divisibility then Kmin = ±Kj0,min.

Now let e be the class of a (−1)-sphere in H2(X,Q). Without loss of generality,
we can assume that KX · e < 0. Consider Re the reflection generated by a (−1)-
sphere e. It is represented by an orientation preserving diffeomorphism. Since K is
invariant under oriented diffeomorphisms, the characterisation of basic classes with
square K2

X tells us that

ReKX = Kmin +
∑

Ei + 2(KX · e)e(2)

= λKmin +
∑
±Ei(3)

with |λ| ≤ 1. Since κ(X) ≥ 0, we know that (−1)-curves are orthogonal or equal.
Hence taking intersection with Ei we find that (Ei · e)(e · KX) = 0 or 1. Since
KX · e ≡ e2 is odd, e is either orthogonal to all (−1) curves (i.e., e ∈ H2(Xmin,Q))
or there is a (−1)-curve, say E1, such that KX · e = E1 · e = −1. However,
e ∈ H2(Xmin) implies that e = λ−1

2KX ·e
Kmin, which is impossible because K2

min ≥ 0.

Thus, after renumbering the (−1)-curves, (2) and (3) can be rewritten to

e = 1
2 (1− λ)Kmin +

N∑
i=1

Ei(4)

with N =
1

4
(1− λ)2K2

min + 1.

Now reflect e in E⊥1 . RE1e is also a (−1)-sphere, so it has a representation as
in Equation (4), except possibly for an overall sign because we cannot assume that
KX ·RE1

e < 0:

RE1
e = 1

2 (1− λ)Kmin − E1 +
N∑
i=2

Ei

= ±
(

1
2 (1− µ)Kmin +

M∑
j=1

Eij
)
.
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Upon comparison, we see that the sign is minus, that N = M = 1, and that
0 ≤ 1− λ = µ− 1 ≤ 0 unless Kmin = 0. In other words e = E1 ∈ H2(X,Q). �

2. The Localised Euler Class of a Banach Bundle.

This section is needed for the technical definition of the Seiberg Witten invari-
ants. However we will actually avoid using the full definition in Section 5 when we
prove the main Theorem 1 and Theorem 5 so some readers may want to skip to
Section 3. The results in this section are used in an essential way in Section 6.

Consider an infinite dimensional bundle E over an infinite dimensional manifold
M with a section s with Fredholm derivative. In practice this situation occurs
whenever we have system of PDE’s which are elliptic when considered modulo some
gauge group action. The zero set Z(s) is then the moduli space of solutions modulo
gauge, and the index of the derivative is the virtual dimension. The localised Euler
class of the pair (E, s) is a homology class with closed support on the zero set
of the section. Its dimension is the index of the derivative. When the section is
transversal, the class is just the fundamental class of the zero set with the proper
orientation. The class is well behaved in one parameter families and therefore
defines the “right” fundamental cycle even if the section is no longer transversal.

Its construction was pioneered by Pidstrigatch and Pidstrigatch Tjurin [Pi1],
[P-T, §2]. Unfortunately their construction is not quite in the generality we will
need it, and we will therefore set it up in fairly large generality here. The construc-
tion is modeled on Fulton’s intersection theory and in the complex case it makes
the machinery of excess intersection theory available. Unfortunately, although the
construction is quite simple in principle, the whole thing has turned a bit techni-
cal. On first reading it is best to ignore the difference between Čech and singular
homology, and continue to Proposition 14, the construction of the Euler class in
the proof of Proposition 14 and Proposition 15.

We first make some algebraic topological preparations. For any pair of topolog-
ical spaces A ⊂ X, homology with closed support and with local coefficients ξ is
defined as

Hcl
i (X,A; ξ) = lim

← K
Hi(X,A ∪ (X −K); ξ)

where we take the limit over all compacta K ⊂ X −
◦
A. The groups Hcl

∗ are
functorial under proper maps. Unfortunately this “homology theory” suffers the
same tautness problems that singular homology has. To be able to work with well
behaved cap products we will have to complete it. The following works well enough
for our purposes but is a bit clumsy.

Suppose that X is locally modelable i.e., is locally compact Hausdorff and has
local models which are each subsets of some Rn. Obviously, locally compact subsets
of locally modelable spaces are locally modelable. In particular, a locally closed
subset of a locally modelable space is locally modelable. If X is locally modelable

then for every compact subset K ⊂ X −
◦
A there is a neighborhood UK ⊃ K in X

which embeds in RN . We now define

Ȟcl
i (X,A, ξ) = lim

← K
Ȟi(UK , A ∩ UK ∪ (UK −K); ξ)
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where for every pair (Y,B) in a manifold M , Čech homology is defined as

Ȟi(Y,B) = lim
←
{Hi(V,W ), (V,W ) neighborhoods of (Y,B) in M}

This definition depends neither on the choice of UK , nor on the embedding UK ↪→
RN , since two embeddings are dominated by the diagonal embedding, and Ȟ∗(Y,B)
does not depend on M but only on (Y,B) (cf. [Dol, VIII.13.16]).

Fortunately, we do not usually have to bother with Čech homology. Suppose
in addition that X is locally contractible, e.g., locally a sub analytic set (cf. [GM,
§I.1.7], and the fact that Whitney stratified spaces admit a triangulation). Then
X is locally an Euclidean neighborhood retract (ENR) by [Dol, IV 8.12] and since
in a Hausdorff space a finite union of ENR’s is an ENR by [Dol, IV 8.10] we can
assume that UK is an ENR. Now assume that A is open. Then by [Dol, Prop. VIII
13.17],

Ȟ∗(UK , UK ∩A∪ (UK −K)) ∼= H∗(UK , UK ∩A∪ (UK −K)) ∼= H∗(X,A∪X −K).

Thus, in this case Ȟcl
∗ (X,A) = Hcl

∗ (X,A). If A is closed and locally contractible
then one should be able to organise things such that UK ∩ A is an ENR and the
same conclusion would hold.

Lemma 13. Let X be a locally modelable space, and Z a locally compact (e.g.,
locally closed) subspace, then there are cap products

Ȟi(X,X − Z, ξ)⊗ Ȟcl
j (X, ξ′)

∩
−→ Ȟcl

j−i(Z, ξ ⊗ ξ
′)

with the following properties.

1. If Y is locally embeddable, f :Y → X is proper, σ′ ∈ Ȟcl
j (Y, Y − f−1(Z), ξ′),

and c ∈ Ȟi(X,X − Z, ξ), then the push-pull formula holds:

f∗(f
∗c ∩ σ′) = c ∩ f∗σ

′.

2. If Z ↪
i
−→W is proper and W is locally compact, we can increase supports, i.e.,

for c ∈ Ȟi(X,X − Z, ξ) and σ ∈ Ȟcl
j (X, ξ′) we have

c|(X,X−W ) ∩ σ = i∗(c ∩ σ).

Proof. For every c ∈ Ȟi(X,X −Z) and σ ∈ Ȟcl
j (X), we have to construct a class

c ∩ σ ∈ Ȟi−j(Z,Z −K) for a cofinal family of compacta {K}. Since Z is locally
compact, every compactum K is contained in a compactum L ⊂ Z with L c K

(i.e., L ⊃
◦
L ⊃ K). Likewise there exists a compactum L′ c L. By excision it

suffices to construct a class in Ȟi−j(L,L−K).
Let UL′ be a neighborhood of L′ in X which embeds in RN . Let VL, WL−K ⊂ VL,

and VK ⊂ VL be neighborhoods of respectively L, L − K and K in RN . Let

UL = VL ∩
◦
L
′

, then UL ⊂ UL′ . Shrinking VK , we can assume that VK ∩ L′ =
VK ∩ L. After replacing VL by (VL − L′) ∪WL−K ∪ VK , we can then assume that
VL ∩ (L′ −K) = WL−K ∩ (L′ −K).

We have a restriction map Ȟi(X,X − Z) → Ȟi(UL, UL − L′). After shrinking
VL if necessary, c|(UL,UL−L′) comes from a class cL ∈ Hi(VL, VL−L′). By definition
there is map

Ȟcl
j (X)→ Ȟj(UL, UL −K)→ Hj(VL, VL −K).
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Let σL ∈ Hj(VL, VL −K) be the image of σ. Now our task is to construct a class
cL ∩ σL ∈ Hi−j(VL,WL−K) possibly after shrinking VL and WL−K even further.

By our choice of neighborhoods, we can write VL−K = (VL−L′)∪(WL−K−K).
Then the standard cap product [Dol, VII Def. 12.1] gives a map

Hi(VL, VL − L
′)⊗Hj(VL, VL −K)

∩
−→ Hj−i(VL,WL−K −K)

so composing with the map Hj−i(VL,WL−K − K) → Hj−i(VL,WL−K) we get a
class cL∩σL ∈ Hj−i(VL,WL−K) as required. This construction defines our class for
a cofinal family of neighborhoods (VL,WL−k) so we can take the limit. Moreover if
K ′ ⊃ K, choices for K ′ will work a fortiori for K, so we can pass to the limit over
K.

To prove the first property, note that since f is proper, f−1Z is locally compact.
Choose compacta K b L b L′ ⊂ Z giving compacta f−1K b f−1L b f−1L′.
Note further that compacta of the form f−1K are a cofinal family of compacta
in f−1(Z). Embed neighborhoods UL′ ⊂ VL′ ⊂ RN and Uf−1L′ ⊂ RM . Now
we carry out the construction above with the diagonal embedding of Uf−1L′ in

RN+M . Let Vf−1L′ be a neighborhood of Uf−1L′ ∈ RN+M . We can assume that

Vf−1L′ → VL′ under the projection π to RN . We can also assume that c|(UL,UL−L′)
comes from a class cL ∈ Hi(VL, VL − L′). Finally let σf−1L′ be the image of σ in
Hj(Vf−1L′ , π

−1WK−L). Then the first property follows from the identity

π∗(π
∗cL ∩ σ

′
f−1L′) = cL ∩ π∗σ

′
f−1L′

in Hj(VL,WK−L). The second property is left to reader. �

A smooth manifold X of dimension n, has an orientation system or(X). It is
the sheafification of the presheaf U → Hn(X,X − U). Equivalently, we can define
or(X) as the sheaf Rdπ∗(X ×X,X ×X −∆,Z) on X, where ∆ is the diagonal of
X×X, π the projection on the first coordinate, and Rdπ∗ the parametrised version
of the dth cohomology.

Likewise, for a real vector bundle E of rank r there is an orientation system
or(E), the sheafification of Hq(E|U , E|U − U). We have or(X) = or(TX)∨, as can
be seen immediately from the alternative description of or(X) and excision.

A manifold X has a unique fundamental class [X] ∈ Hcl
n (X, or(X)) in singular

or Čech homology such that for small U ,

[X]|Ū ∈ Hd(X,X − U,H
d(X,X − U)) = Hom(Hd(X,X − U), Hd(X,X − U))

is identified with the identity (cf [Spa, p. 357]).

Similarly, a bundle E
π
−→ X has a canonical Thom class

ΦE ∈ Ȟ
r(E,E −X,π∗or(E))

[Spa, p. 283]. In turn for every section s in E with zero set Z(s), the Thom class
defines a localised cohomological Euler class

e(E, s) = s∗ΦE ∈ Ȟ
r(X,X − Z(s), or(E)).

Let M be a Banach manifold, E a real Banach vector bundle on M and s a
section of E with zero set Z(s). The zero section s0 defines an exact sequence

0 −→ TM
Ts0
−−→ TE|M −→ E −→ 0
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This gives a canonical map Ds:TM |Z(s) → E|Z(s) defined by the diagonal arrow
in the diagram

0y
TM |Z(s)yTs0

TM |Z(s)

Ts
−→ TE|Z(s)

Ds↘
y

E|Z(s).y
0

If D is a connection on E then D(s) extends Ds from Z(s) to M (hence the
notation), but in general connections need not exist on Banach manifolds.

To state the homotopy property of the localised Euler class we introduce one
more notion. For a topological space X with a family of closed subsets {Xα}α∈A,
we define the confined homology as

Hcf
j (X) = lim

← α∈A
Hj(X,X −Xα).

There are three situations we have in mind: Xα = X, then confined homology is just
homology; the family is the set of compacta, then confined homology is homology
with closed support; and finally infinite dimensional configuration spaces are usually
filtered by some norm that controls “bubbling”. For example in Donaldson theory
the moduli space of ASD connections with curvature bounded in the L4 norm is
compact. From the point of view of Proposition 14 it is then natural to filter
the space B∗ of all irreducible L2

2 connections mod gauge by the family of subsets
{B≤C}C∈R+ , where B≤C the subset of connections with L4 norm of the curvature
bounded by C.

Proposition 14. Let M be a smooth Banach manifold, E a banach bundle over
M and s a section in E. Assume that

1. The map Ds is a section in the bundle Fredd(TM |Z(s), E|Z(s)) of Fredholm
maps of index d. We say that Z(s) has virtual dimension d, and that Ds is
Fredholm of index d.

2. The real line bundle det(Ind(Ds)) is trivialised over Z(s).

Then these data define a Čech homology class with closed support

Z(M,E, s) = Z(s) ∈ Ȟcl
d (Z(s),Z)

with the following properties.

1. The class Z(s) = [Z(s)] if Z(s) is smooth of dimension d and carries the
natural orientation defined by the trivialisation of det(IndDs).

2. Let {Mα}α∈A be a family of closed subsets of M such that Mα ∩ Z(s) is
compact for all α ∈ A. Then there is a natural map i∗: Ȟ

cl
j (Z(s),Z) →

Hcf
j (M,Z). Now if st with t ∈ [0, 1] is a one parameter family of sections
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such that Z(s•) ∩Mα × [0, 1] is compact for all a ∈ A, then

i0∗Z(s0) = i1∗Z(s1)) ∈ Hcf
j (M,Z).

For every exact sequence

0→ E′ → E → E′′ → 0

defined over a neighborhood of Z(s), let s′′ be the induced section in E′′, and s′ the
induced section of E′|Z(s′′) with zero set Z(s). Then

3. If E′ has finite rank,

Z(s) = e(E′|Z(s′′), s
′) ∩ Z(s′′).

4. If Ds′′|Z(s) is surjective, then Z(s′′) is smooth in a neighborhood of Z(s),
Ds′:TZ(s′′)|Z(s) → E′|Z(s) is Fredholm with IndDs′ = IndDs, and

Z(E, s) = Z(E′|Z(s′′), s
′).

Proof. If M (hence E) is a finite dimensional manifold of dimension N + d then
E is a real vector bundle of rank N with an isomorphism det(E) = det(TM) over
Z(s). Let [M ] ∈ Hcl

N+d(M, or(M)) be the fundamental class, and ΦE the twisted

Thom class of E in HN (E,E −M, or(E)). Define

Z(s) = e(E, s) ∩ [M ] ∈ Ȟcl
d (Z, or(E)⊗ or(M)) = Ȟcl

d (Z(s),Z)

i.e., Z(s) is the Poincaré dual of the localised cohomological Euler class. In the last
step we used the chosen trivialisation of or(E)⊗ or(M) = or(detTM∨ ⊗ detE) =
or(det(Ind(Ds))) given by the trivialisation of the index.

In the infinite dimensional case we proceed similarly but we have to go through
a limiting process and use that we know what to do when the section is regular.
For each compactum K ⊂ Z we have to construct a class ZK ∈ Ȟd(Z,Z −K) such
that for K ′ ⊃ K the class ZK′ |K = ZK under the restriction map Ȟd(Z,Z−K ′)→
Ȟd(Z,Z −K).

Over a neighborhood U of K in M we can find a subbundle F in E of finite
rank N such that Im(Ds)|K +F |K = E|K . Such a bundle certainly exists: We can
choose a finite number of sections s1, . . . sN such that the si span Coker(Dsx) for
every x ∈ K, and possibly after perturbing we can assume that the si are linearly
independent in a neighborhood of K. (Remember that K ↪→ RM and that E has

infinite rank, so there is plenty of freedom.) Let Ẽ be the quotient bundle E/F
defined over U , and s̃ the induced section with zero set Mf = Z(s̃) (f is for finite).

Clearly the map TM |Z(s)

Ds
−−→ E|Z(s) −→ Ẽ is surjective. Since the canonical map

Ds̃ on Mf restricts to this composition on Z(s), Ds̃ is surjective on Mf possibly

after shrinking U . Hence Mf is a smooth manifold. Let T = ker(TM |Mf
→ Ẽ).

There is a canonical identification T ∼= TMf . Now T is a bundle of rank N + d
since

Ind(Ds)|K = T − F.(5)

Thus Mf has dimension N + d.
On Mf , the section s in E lifts to a section sf of the subbundle F . Clearly

Z(sf ) = Z(s) ∩ U . Define

ZK = e(F |Mf
, sf ) ∩ [Mf ] ∈ Ȟd(Z(s), Z(s)−K;Z)).
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Here we have used the restriction map

Ȟcl
d (Z(s) ∩ U ; or(F )⊗ or(Mf ))→ Ȟd(Z(s), Z(s)−K; or(F )⊗ or(Mf )),

the identification or(det(Ind(Ds))) = or(F )⊗ or(Mf ) and the chosen trivialisation
of det(Ind(Ds)) as in the finite dimensional case.

This construction does not depend on the choices. If F1 and F2 are two choices of
subbundles of E then there is third bundle G containing F1 +F2. We can therefore
assume that we are dealing with a subbundle F ′ ⊂ F . Then using primes to denote
objects we get out of the construction above using F ′ instead of F , we have the
sections sf in F over Mf , s′f in F ′ over M ′f and a section s′′f = sf mod F ′ in F/F ′

over Mf cutting out M ′f . They satisfy the identity

ZK = e(F |Mf
sf ) ∩ [Mf ]

= e(F ′|Mf
, s′f ) ∩ e(F/F ′|M ′f , s

′′
f ) ∩ [Mf ]

= e(F ′|Mf
, s′f ) ∩ [M ′f ] = Z′K ,

where in the third step we have used the identification

or(M ′f ) = or(Mf )⊗ or(F/F ′)|Mf
.

In particular, if K ′ ⊃ K all choices on K ′ work a fortiori for K, so we can pass to
the limit.

The relation Z(s) = [Z(s)] for regular sections (property 1), and the compati-
bility with Euler classes of finite rank bundles (property 3) are now clear from the
construction. The stability property 4 also follows from the construction. For every
compactum K, we can choose the finite rank subbundle F as a subbundle of E′.
Then Ẽ →→ E′′. Now one checks that by a diagram chase that

Z(Ẽ, s̃) = Z(E′/F |Z(E′′,s′′), s
′ mod F )

and that

TZ(Ẽ, s̃) = Ker(TM → Ẽ)

= Ker(Ker(TM → E′′)→ E′/F )

= Ker(TZ(s′′)→ E′/F ) = TZ(E′/F ).

In particular, the orientations agree. Thus we see that

ZK(E, s) = e(F, sf ) ∩ [Z(Ẽ, s̃)]

= e(F, sf ) ∩ [Z(E′/F |Z(E′′,s′′), s
′ mod F )] = ZK(E′|Z(s′′), s

′).

It only remains to pass to the limit over K.

To see that Ȟcl
j (Z(s)) maps to Hcf

j (M) note that for every compact subset

Kα = Mα ∩ Z(s), we constructed a finite dimensional submanifold Mf ⊃ Kα.
Then we have maps

Ȟcl
j (Z(s))→Ȟj(Z(s), Z(s)−Kα) = Ȟj(Z(s) ∩Mf , (Z(s) ∩Mf )−Kα)

→ Hj(Mf ,Mf −Mα)→ Hj(M,M −Mα).

Again this map is independent of choices, and we can pass to the limit.
The homotopy property of Z is a formal consequence of the compatibility with

finite dimensional Euler classes. Consider the trivial bundle R over the interval
[−1, 2] with the one parameter family of sections θ − τ where θ: [−1, 2]→ R is the



C∞ Properties of Kähler Surfaces 117

inclusion and 0 ≤ τ ≤ 1. Then clearly e(R, θ) = e(R, θ − 1) ∈ H1([−1, 2], {−1, 2})
is the canonical generator. Consider M × [−1, 2]. Let π:M × [−1, 2] → M be the
projection and S:M × [−1, 2]→ π∗E an extension of our one parameter family of
sections, e.g., St = s0 for t ≤ 0 and St = s1 for t ≥ 1. The bundle π∗E⊕R has a
one parameter family of sections (S, θ − τ). Now

Z(s0)
4
= π∗Z(π∗E⊕R; (S, θ))

3
= π∗e(R, θ) ∩ Z(π∗E;S)

= π∗e(R, θ − 1) ∩ Z(π∗E;S)

= π∗Z(π∗E⊕R; (S, θ − 1)) = Z(s1)

�

Now consider the case of a complex manifold with a holomorphic bundle.

Proposition 15. (Compare [P-T, Prop. III.2.4].) Let M be a complex Banach
manifold, E a holomorphic vector bundle and s a holomorphic section with zero
set Z(s). Assume that Ds is a section of FreddC(TM |Z(s), E|Z(s)). We say that
Z(s) has complex virtual dimension d, and that Ds is Fredholm of complex index
d. Then the localised Euler class Z(s) = [Z(s)] ∈ Hcl

2d(Z(s),Z), if Z(s) is a local
complete intersection of dimension d, and more generally

Z(s) = [c(Ind(Ds))−1c∗(Z(s))]2d.(6)

Here, c∗(Z(s)) is the total homological Chern class which will be defined later by
equation (9). It coincides with the Poncaré dual of the total cohomological Chern
class of the tangent bundle if Z(s) is smooth.

Remark 16. If Z(s) is smooth we can even get away with an almost complex
manifold M and the assumption that Ds is complex linear.

Remark 17. The definition of c∗(Z(s)) is analogous to the definition of the homo-
logical Chern classes in [Ful, Example 4.2.6]. I have tacitly removed M and E from
the notation for it. I strongly believe that c∗(Z(s)) is independent of the embedding
but I did not prove this. There is one case where independence of c∗(Z(s)) on the
embedding can be proved completely analogous to [Ful, Example 4.2.6] by simply
replacing algebraic arguments by complex analytic ones: If for every K ⊂ Z(s)
compact, there exists a holomorphic finite rank sub bundle F ↪→ E defined over
a neighborhood of K such that F |K + Im(Ds)|K = E|K . Then a neighborhood
UK of K in Z(s) sits in a complex rather than almost complex finite dimensional
manifold Mf . Such a bundle should typically exist if Z(s) has the structure of a
quasi projective variety, and CokerDS has the interpretation of a coherent sheaf
as in [Pi1, §5, §6].

Proof. We will use Mac Pherson’s graph construction, that is we consider the limit
λ→∞ of the map (λs: 1) in P(E⊕O) or finite dimensional approximations thereof.
We use the notations of the proof of Proposition 14.

For a compactum K ⊂ Z(s) we choose the finite rank bundle F as follows.
It is a complex bundle, and in every point of Z(s) there are sections of F which
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restricted to a neighborhood are holomorphic sections of E and which span locally
a subbundle F hol ↪→ F , such that

Ds:TE|Z(s) →→ E/F hol|Z(s)

is a surjection. We do not assume that F is a holomorphic subbundle, because I
do not see a reason why such a bundle should exist. However since F is a complex
bundle, both the quotient bundle Ẽ = E/F and the tangent bundle

TMf |Z(s) = T |Z(s) = Ker(TM |Z(s)

Ds
−−→ E|Z(s) → Ẽ|Z(s))

are complex bundles. We extend this complex structure on TMf over all of Mf ,
possibly after shrinking Mf , making it into an almost complex manifold of complex
dimension d+N .

Consider the space P(F ⊕ O)
π
−→ Mf . Then the total space of F can naturally

be identified with an open subspace of P(F ⊕ O). The image of the zero section
will still be called the zero section, and the complement of F the divisor at infinity.
The divisor at infinity can be identified with PF .

Let Q be the universal quotient bundle. The bundle Q has sections (0, 1) , and

(λsf , 1), cutting out the zero section and the graph of λsf , respectively. Equiva-

lently, we can cut out the graph of λsf by (sf , 1/λ). Then clearly as λ → ∞ the

graph degenerates to a set contained in the zero set of (sf , 0).

Now Z((sf , 0)) has two “irreducible components”. One component M̃f ↪→ PF
is the closure of the image of (sf : 0):Mf − Z(s) → PF |Mf−Z(s) ⊂ P(F ⊕ O). It
will be called the strict transform. The other component is just P(F ⊕O)|Z(s). Let

Ef = M̃f ∩ P(F ⊕O)|Z(s). It will be called the exceptional divisor.
I claim that

Ȟcl
2d+2N−1+i(Ef ) = 0 for i ≥ 0.(7)

Accepting this claim we see from the exact sequence

Ȟcl
2d+2N (Ef )→ Ȟcl

2d+2N (M̃f )→ Hcl
2d+2N (M̃f − Ef )→ Ȟcl

2d+2N−1(Ef )

that M̃f carries a unique fundamental class [M̃f ] restricting to [M̃f − Ef ]. Now

consider C ′ = Z((sf , 0)) − [M̃f ] ∈ Ȟcl
2d+2N (Z((sf , 0))). Then C ′ comes from a

unique class C ∈ Ȟcl
2d+2N (P(F ⊕O)|Z(s)) because of the sequence.

0→ Ȟcl
2d+2N (P(F ⊕O)|Z(s))→ Ȟcl

2d+2N (Z((sf , 0)))→ Hcl
2d+2N (M̃f − Ef ).

Now note that Q restricted to the zero section is canonically isomorphic to F .
We therefore have the following chain of equivalences

Z(s)K = e(F, sf ) ∩ [Mf ]

= π∗e(π
∗F, λsf ) ∩ e(Q, (0, 1)) ∩ [P(F ⊕O)]

= π∗

(
e(Q, (λsf , 1)) ∪ e(Q, (0, 1))

)
∩ [P(F ⊕O)]

= π∗e(Q, (0, 1)) ∩ e(Q, (sf , 1/λ)) ∩ [P(F ⊕O)]

= π∗e(Q, (0, 1)) ∩
(
e(Q, (sf , 0)) ∩ [P(F ⊕O)]

)
= π∗e(Q, (0, 1)) ∩ Z((sf , 0)).
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If we accept the claim (7) for a moment and we note that the support of M̃f and

e(Q, (0, 1)) are disjoint we see further that

Z(s)K = π∗e(Q, (0, 1)) ∩ C ′ = π∗e(Q) ∩ C,

where in the last expression we can drop supports because P(F ⊕ O)|Z(s) → Z(s)
is proper. If we use that e(Q) = ctop(Q), this can be rewritten further to

Z(s)K = [π∗c(Q) ∩ C)]2d

= [c(F )π∗
(
(1− h)−1 ∩ C

)
]2d

= [c(F − T ) (c(T )s∗(Z(s),Mf ))]2d

where we used the notation h = c1(OP(F⊕O)(+1)) and

s∗(Z(s),Mf )
def
= π∗

(
(1− h)−1C

)
(8)

for the total homological Segre class of the normal cone. (This terminology will be
justified in a minute.) But c(F − T ) = c(IndDs)−1 and since T = TMf ,

c∗(Z(s))
def
= c(T )s∗(Z(s),Mf )(9)

is exactly the analogue of the homological chern classes of [Ful, example 4.2.6].
We show that c∗(Z(s)) does not depend on the choice of F . Again it suffices

to treat the case that F ′ ⊂ F . We use primes whenever an object is associated to
F ′. The independence follows directly from a formula for the Segre classes which
expresses how they behave under the extension M ′f ⊂ Mf in terms of the normal

bundle F/F ′ of M ′f ⊂Mf .

s∗(Z(s),Mf ) = c(F/F ′)−1s∗(Z(s),M ′f ).(10)

Assuming (10), we see that

c∗(Z(s)) = c(T )s∗(Z(s),Mf )

= c(T )c(F/F ′)−1s∗(Z(s),M ′f ) = c(T ′)s∗(Z(s),M ′f ).

In particular we can take the limit over K.
Formula (10) is well known for integrable complex manifolds [Ful, example 4.1.5],

and we will follow the proof closely. There are two terms in the class C occurring
in the definition (8) of the Segre class, which we treat separately.

Note that there is a regular section σ of F/F ′(1) on P(F ⊕ O)|Mf
cutting out

P(F ′ ⊕O)|Mf
. Therefore

[P(F ′ ⊕O)|M ′f ] = e(F/F ′, sf mod F ′) ∩ [P(F ′ ⊕O)|Mf
]

= e(F/F ′, sf mod F ′) ∩ e(F/F ′(1), σ) ∩ [P(F ⊕O)|Mf
].

Since on P(F ′ ⊕O)|Mf
there is an exact sequence

0→ Q′ → Q→ F/F ′ → 0,
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we have e(Q′, (s′f , 0))∪ e(F/F ′, sf mod F ′) = e(Q, (sf , 0)). Then the above implies
that

Z(Q′, (s′f , 0)) = e(Q′, (s′f , 0)) ∩ [P(F ′ ⊕O)|M ′f ]

= e(Q, (sf , 0)) ∩ e(F/F ′(1), σ) ∩ [P(F ⊕O)|Mf
]

= e(F/F ′(1), σ) ∩ Z(Q, (sf , 0)).

As for the other term, on M̃f there is a smooth section in O(−1) given by (sf , 0)

which is an isomorphism O ∼= O(−1) on M̃f − E . It follows that

[M̃ ′f − E ] = e(F/F ′, sf mod F ′) ∩ [M̃f − E ] = e(F/F ′(1), σ) ∩ [M̃f − E ].

Then we have the equality

[M̃ ′f ] = e(F/F ′(1), σ) ∩ [M̃f ].

because both left and right hand side are supported on M̃ ′f−E∪P(F ′⊕O)|Z(s)∩M̃f ,

i.e., the closure of [M̃ ′f − E ], and both cycles restrict to [M̃ ′f − E ].
For the computation of the Segre class we can forget about the support given by

σ and use

e(F/F ′(1)) = ctop(F/F ′(1)) =
∑

ctop−j(F/F
′)hj .

Thus we finally get the expression

s∗(Z(s),M ′f ) = π∗

∑
ij

hi+jctop−j(F/F
′) ∩ (Z(Q, (sf , 0))− [M̃f ])


= c(F/F ′)s∗(Z(s),Mf ),

which we set out to prove.
It remains to prove the claim (7). We first turn to the case that Z(s) is smooth

but possibly of the wrong dimension. Smoothness of Z(s) implies that ImDs|T ⊂ F
has constant rank over Z(s) because kerDs|T = kerDs = TZ(s). Then ImDs|T
is just the normal bundle N of Z(s) in Mf . Now let us identify the limit set
(sf : 1/λ)(Mf ) when λ → ∞. If we have a smooth path γ: I → Mf with γ(0) =

x0 ∈ Z(s), then we see that limt→0(sf : 0)(γ(t)) = (Dsf ( d
dt
|t=0γ): 0). Therefore M̃f

is just the blowup M̂f of Z(s) in Mf . This makes sense even though Mf is only an
almost complex manifold since the normal bundle N has a complex structure. The
blow up is obtained abstractly by identifying a tubular neighborhood Nε of Z(s)
with the normal bundle, and replacing Nε with I = {(l, x) ∈ PN ×Nε | l 3 x}. It

is an almost complex manifold, so certainly carries a fundamental class [M̃f ]. It
is also clear that Ef = PN is a submanifold of real codimension 2, and certainly
satisfies the claim (7).

Let O(Ef ) be the smooth complex line bundle on the blow-up M̂f defined by the
exceptional divisor Ef , and let z ∈ A0(O(E)) be a section cutting out Ef = PN
with the proper orientation, i.e., Z(O(Ef ), z) = [Ef ]. On M̂f the pulled back
section is of the form sf = zŝf with ŝ nowhere vanishing. Therefore the limit

set of (sf : 1/λ)(M̂f ) in P(F ⊕ O)|M̂f
as λ → ∞ is just (ŝ: 0)(M̂f ) ∪ D where

D ⊂ P(F ⊕O)|Ef is the P1 bundle joining the zero section (0: 1)|Ef and the section
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(ŝf : 0). Then down on Mf the limit set of (sf : 1/λ)(Mf ) is just M̃f ∪ CEf , where

CEf is cone bundle over Z(s) joining Ef ⊂ M̃f and the zero section.
Now CEf represents the homology class C. Thus,

s∗(Z(s),Mf ) = π∗(1−h)−1CEf = π∗(1−h)−1Ef = π∗(1−h)−1PN = s(N )∩[Z(s)].

Therefore, if Z(s) is smooth, we find the expected formula

c∗(Z(s)) = c(TMf )s(N ) ∩ [Z(s)] = c(TZ(s)) ∩ [Z(s)].

Note that in deriving this formula we have not really used the holomorphicity of s.
It was sufficient that M has an almost complex structure and that Ds is complex
linear. Replacing manifolds by stratified spaces the proof carries over essentially
verbatim if Z(s) is a local complete intersection since this condition implies that
Ds|T has constant rank, and that we have a well defined normal bundle.

In proving the claim (7) in the general case we use holomorphicity more strongly.

We first blow up Z(s) in M to get a new infinite dimensional analytic space M̂ .
That this is possible follows from the local analysis of the normal cone in [P-T,
§III.1].

Locally on M , the exceptional divisor E ⊂ M̂ can be described as follows. Locally
on M we have an exact sequence of holomorphic bundles

0→ F hol → E → E′′
hol
→ 0,

such that TM |Z(s) →→ E′′
hol|Z(s) is surjective, i.e., locally F hol can take the role

of F . Further, locally we can split the sequence since F hol has finite rank. Let

the holomorphic subbundle Ẽ ⊂ E be a lift of E′′
hol

. We write s = shol
f ⊕ s̃

corresponding to the decomposition E = F hol⊕Ẽ. Let Mhol
f be the integrable finite

dimensional complex manifold Z(s′′
hol

) = Z(s̃) and Ehol
f the exceptional divisor of

the blow up of Z(s) in Mhol
f . Then locally E ∼= Ehol

f ×Z(s) PẼ. Moreover Ehol
f is

naturally embedded in P(F hol ⊕ O)|Z(s) ⊂ P(E ⊕ O)|Z(s). If we are a little more

careful and choose Ẽ such that PẼ|Z(s) ⊂ E then E = Join(Ehol
f ,PẼ|Z(s)) ⊂ PE|Z(s).

Let z ∈ H0(O(E)) be a section vanishing exactly along E . On M̂ we can decom-
pose the section as s = znŝ. Therefore, just as in the previous finite dimensional
case, (s: 1/λ)(M̂) → P(E ⊕ O) degenerates to (ŝ: 0)(M̂) ∪ nD where D is the P1

bundle over E joining the zero section (0: 1)|E and (ŝf : 0)|E . Down on M , this means

that (s: 1/λ)(M) ⊂ P(E⊕O) degenerates to M̃ ∪CE where M̃ ⊂ PE is isomorphic

to M̂ with M̃ ∩ P(E ⊕ O)|Z(s)
∼= E , and CE is the cone bundle over Z(s) joining

the zero section and E .
Now we finally come to our claim (7). The set Ef has the description Ef =

P(F ⊕O)∩E . At the very beginning we have chosen F such that F ⊃ F hol. Locally

we define F̃ = F∩Ẽ, then locally F = F hol⊕F̃ and locally Ef = Join(Ehol
f ,PF̃ |Z(s)).

Thus Ef is a stratified space of real dimension 2d+ 2N − 2, and we are done. �

Remark 18. In the complex case we have obviously defined a class containing
more information about the section. Let

Ẑ(s) = c(Ind(Ds))−1c∗(Z(s)).
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3. Seiberg Witten Classes

We will collect a few facts about Seiberg Witten basic classes in a formulation
suitable for arbitrary Kähler surfaces. In the usual formulation, these classes are the
support of a certain function on the set of Spinc-structures. However in the presence
of 2-torsion, Spinc-structures cause endless confusion which is why I have chosen
to base my exposition on SC-structures [Kar]. This notion catches the essence of
Spinc-structures, the existence of spinors. It is well suited to the Kähler case and is
equivalent to that of a Spinc-structure in dimension 4. For more details see [Kar].

Let X be a closed oriented manifold of dimension 2n. Choose a Riemannian
metric g with Levi-Civita connection ∇g, and Clifford algebra bundle C(X, g) =
C(T∨X, g). There is a natural isomorphism of bundles c:∧∗T∨X → C(X, g) given
by anti-symmetrisation. It induces a connection and metric on C(X, g) also denoted
∇g and g.

An SC-structure is a smooth complex vector bundle W of rank 2n together
with an algebra bundle isomorphism ρ:C(X, g) → End(W ). In other words an
SC-structure is an irreducible module of the Clifford algebra bundle. A section
φ ∈ A0(W ) is called a (smooth) spinor. An SC-structure exists if and only if
w2(X) can be lifted to the integers [Kar, §3.4]. Existence will be clear in the case
of Kähler surfaces.

An SC-structure admits an invariant hermitian metric, i.e., one such that Clif-
ford multiplication by 1-forms is skew hermitian (sh). The chirality operator
Γ = (

√
−1)nc(Volg) has square 1, and is hermitian. Thus, Γ has an orthogonal

eigenbundle decomposition W = W+ ⊕W− with eigenvalue ±1, the positive and
negative spinors of the SC-structure. A one form ω ∈ A1(X) defines an skew her-
mitian map c(ω):W± → W∓ which is an isomorphism away from the zero set of
ω.

In this paragraph we assume dim(X) = 4. Then T∨X
∼= Hom(W+,W−)sh. Let

LW = detW+. Then LW ∼= detW−, by the isomorphism induced from Clifford
multiplication by a generic 1-form, which is an isomorphism outside codimension
4. Thus W is a Spinc(4)-bundle if we identify

Spinc(4) = {(U1, U2) ∈ U(2)× U(2) | det(U1) = det(U2)}.

We recover the usual definition Spinc(4) = Spin(4) ×Z/2/Z U(1) from the isomor-
phism Spin(4) = SU(2) × SU(2). In any case by chasing around the cohomology
sequences of the diagram

0 −→ Z/2Z −→ Spinc(4) −→ SO(4)× U(1) −→ 1∥∥∥ x x
0 −→ Z/2Z −→ Spin(4) −→ SO(4) −→ 1

we see that LW + w2(X) ≡ 0 (mod 2), and that this is the only obstruction to
lifting the SO(4)×U(1) bundle to Spinc(4). If H2(X,Z) has no 2-torsion, the line
bundle L ≡ w2(X) determines such a lift completely, and it is common to speak of
the Spinc-structure L.

An hermitian SC-structure is a pair (W, 〈, 〉) of an SC-structure W together
with a non-degenerate invariant hermitian metric 〈, 〉. A unitary SC-structure
(W, 〈, 〉 ,∇), is an hermitian SC-structure together with a unitary Clifford connec-
tion∇, i.e., a unitary connection such that for all vector fieldsX, spinors φ ∈ A0(S),
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and 1-forms ω we have

∇X(ω · φ) = (∇gXω) · φ+ ω · ∇Xφ.

The Dirac operator /∂ of a unitary SC-structure is the composition

A0(W )
∇
−→ A1(W )

·
−→ A0(W ).

It is an elliptic self adjoint first order differential operator, and it maps positive
spinors to negative ones and vice versa (i.e., /∂:A0(W±) → A0(W∓)). Since ρ
is parallel, ∇ respects the decomposition W = W+ ⊕ W−. Thus ∇ induces a
connection on LW with curvature F .

Much of the usefulness of SC-structures is a consequence of the following easy
lemma.

Lemma 19. The set of isomorphism classes SC of SC-structures is an H2(X,Z)
torsor, i.e., if SC 6= ∅ and we fix an SC-structure W0, then for every SC-structure
W1, there exits a unique line bundle L such that W1 = W0⊗L. Every SC-structure
W admits a unitary SC-structure (W, 〈, 〉 ,∇). If we fix one unitary SC-structure
(W0, 〈, 〉0 ,∇0), there is a unique triple (L, h, d) of a smooth line bundle L, with
hermitian metric h and unitary connection d, such that

(W, 〈, 〉 ,∇) ∼= (W0, 〈, 〉0 ,∇0)⊗ (L, h, d).(11)

Proof. Clearly if W0 is an SC-structure, so is W0⊗L for every line bundle L. Con-
versely, the bundle of Clifford linear homomorphisms L(W0,W ) = HomC(W0,W )
has rank 1, and the natural map W0 ⊗ L(W0,W )→W is an isomorphism.

A partition of unity reduces the existence of a unitary SC-structure Clifford mod-
ule structures to a local question. But a local example is obtained by lifting the
Levi-Civita connection on the oriented frame bundle to the Spin covering. In any
case existence will be clear for Kähler surfaces. It follows directly from the defini-
tion of a Clifford module that the natural connection and metric on Hom(W0,W )
leaves L(W0,W ) invariant. Hence there is an induced metric and connection (h, d)
on L(W0,W ), which has property (11). Conversely, if (W, 〈, 〉 ,∇) is defined by
Equation (11), then

(L, h, d) = HomC [(W0, 〈, 〉0 ,∇0) ; (W0, 〈, 〉0 ,∇0)⊗ (L, h, d)]

which proves uniqueness. �

If a base SC-structure is chosen, the line bundle L will be called the twisting line
bundle.

There is a natural gauge group GC acting on a unitary SC-structure, the group
of all smooth invertible Clifford linear endomorphisms. GC can be canonically
identified with C∞(X,C∗). In the representation (11), GC = C∞(X,C∗) acts in the
usual way on the set of metrics and unitary connections on the twisting line bundle
L. Since every hermitian metric on a line bundle is gauge equivalent, so is every
Clifford invariant metric on a hermitian SC-structure. Thus, up to gauge we can fix
an invariant metric and we are left with a residual gauge group G = C∞(X,U(1)).

The set of Clifford connections A on a fixed hermitian SC-structure (W, 〈, 〉) (i.e.,
unitary SC-structures) is an affine space ∇0 +

√
−1A1

R(X). Using the representa-
tion (11) and harmonic representatives, one shows that the set of connections mod
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gauge is

B = A/G ∼=
√
−1A1

R(X)/d logC∞(X,U(1)) ∼= H1
DR(X)/H1(X,Z)⊕ ker d∗

Let Q∗ = A×A0(W+)∗, where the star denotes non trivial spinors. We set

P∗ = Q∗/G.

It is a CP∞×R+ bundle over B. Thus P∗ has the homotopy type of (S1)b1(X)×CP∞.
We have the following natural description of the hyperplane class x. Fix a point
and consider the based gauge group G0. Then Q∗/G0 is a principal U(1) bundle
over P∗ and x = −c1(Q∗/G0).

There is an alternative description of B and P∗ that will be useful. Let AC be
the set of all Clifford connections, and H the set of all hermitian metrics on L. Let

Auni = {(∇, <,>), ∇ is <,> -unitary} ⊂ AC ×H

be the set of unitary SC-structures. Fix a metric <,>0 and a <,>0-unitary con-
nection ∇0. The representation ∇ = ∇0 + a, models AC on A1

C(X), and the
representation <,>= ef <,>0 models H on A0

R(X). A pair (∇, <,>) ∈ Auni if
and only if a + ā = df . In particular a is determined by f and Im(a), so Auni is
modeled on A0

R(X)×A1
R(X).

Now the diagonal action of GC on AC×H leaves Auni invariant. Our alternative
description of B and P∗ is

P∗ = (Auni ×A0(W+)∗)/GC → B = Auni/GC(12)

Finally, to do decent gauge theory we have to complete to Banach spaces and
-manifolds. Seiberg Witten theory works fine with an Lp1 completion of A, AC,
and A0(W+) and an Lp2 completion of G, GC and H if p > dimX. In this range
Lp1 ↪→ C0, and therefore the two possible Lp descriptions of P∗ and B coincide. On
the other hand, the Sobolev range does not seem optimal: with more care and work
one can probably use all p-completions with 2 − dim(X)/p > 0. We will suppress
completions from the notation, explicitly mentioning completions if necessary.

From now on we assume dimX = 4. Fix an SC-structure W and choose an
invariant hermitian metric 〈, 〉. Choose a Riemannian metric g and a real 2 form ε

The anti-symmetrisation map gives an isomorphism c: Λ+ ∼= Endsh0 (W+) between
the real self-dual forms and the traceless skew hermitian endomorphisms of W+.
This special phenomenon allows us (or rather Seiberg and Witten) to write down
the monopole equations [Wit]:

/∂φ = 0 φ ∈ A0(W+)(13)

c(F+) = 2πφ 〈φ,−〉 − π|φ|2 − 2π
√
−1c(ε+).(14)

Let M =M(W, g, ε) ⊂ P∗ be the space of solutions modulo gauge.
As a technical remark, note that we use the conventions of [BGV], and that in

their conventions the Weitzenböck (Lichnerowitz) formula restricted to W+ reads

/∂2 = ∇∗∇+ s/4 + c(F+/2)

where s is the scalar curvature ([BGV, th. 3.52] and the observation that the twist-
ing curvature of an SC-structure is 1/ rank(W+) times the curvature on det(W+)).
The sign difference in the c(F+) term in [KM2, Lemma 2] explains the relative
change of sign with respect to [KM2, formula (∗)] in the Seiberg Witten equations.
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It is chosen in such a way that the Weitzenböck formula gives C0 control on the
harmonic positive spinor φ.

A basic property of the monopole equation noted by Witten, which follows from
the Weitzenböck formula [KM2, Lemma 2] or a variational description [Wit, Section
3], is the following

Proposition 20. If the metric has non negative scalar curvature s, and 4π|ε| ≤ s,
then all solutions of the monopole equations have φ = 0.

Alternatively, we can define M as the zero of a Fredholm section in an infinite
dimensional vector bundle. Let

A0(W−) = Q∗ ×G A
0(W−)

where A0(W−) is completed in Lp. When in the second monopole Equation (14)
we bring everything to one side, the monopole equations define a section s in in

E = A0(W−)⊕A+(X),

where the second summand is considered as a trivial bundle (and is also completed
in Lp).

To see that it is actually a Fredholm section we linearise the equations, assuming
that (∇, φ) is a solution, and (∇+εa, φ+εψ) with a ∈

√
−1A1

R(X) and ψ ∈ A0(W+)
is a solution up to order 1 in ε. We get (cf. [Wit, Eq. 2.4])

/∂ψ + a · φ = 0

c−1(2π(φ 〈ψ,−〉+ ψ 〈φ,−〉 − Re 〈φ, ψ〉)− d+a = 0.

The tangent space of the G-orbit of (∇, φ) is {(a, ψ) = (−du, uφ), u ∈
√
−1A0

R(X)}.
Thus the Zariski tangent space of M in (∇, φ) is the first cohomology of the Fred-
holm complex

0→
√
−1A0

R(X)→
√
−1A1

R(X)⊕A0(W+)→
√
−1A+

R (X)→ 0⊕A0(W−),

where the maps are given by the left hand side of the linearised equations. The
virtual dimension d(W ) = (−1 + b1 − b+) + 2IndC(/∂). By the Atiyah Singer index
formula and a little rewriting this is

d(W ) = vdimR(M) = 1
4 (L2

W − (2e(X) + 3σ(X))),(15)

where e(X) is the topological Euler characteristic, and σ(X) the signature [Wit,
Eq. 2.5].

The crucial property that makes Seiberg Witten theory so much easier than
Donaldson theory is

Proposition 21. [KM2, Corollary 3],[Wit, §3] The moduli space M is compact.
For fixed c > 0 there are only finitely many SC-structures W with d(M(W )) ≥ −c
and M(W, g, ε) 6= ∅.

Note that for generic pairs (g, ε), moduli spaces of negative virtual dimension are
empty, but I do not see an a priori reason why moduli spaces of arbitrary negative
virtual dimension should not exist for special pairs. In fact for generic pairs the
moduli space is smooth of dimension d(W ) [KM2]. However we will not use this
fact.

A pair (g, ε) is admissible if LW admits no connection with F+ = −2π
√
−1ε+,

where as usual + means taking the self dual part. Admissible metrics and forms
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exist if b+ ≥ 1, since a pair is certainly admissible if c1(LW ) 6∈ εharm + H−g where

H−g is the space of g-anti-self-dual closed forms, and “harm” means projection to
the harmonic part. Note that no use of Sard-Smale is made to define admissibility.

By a transversality argument [Don], or a slightly modified version of Lemma 22
below, the admissible pairs form a connected set if b+ ≥ 2. We say that a metric g
is admissible if (g, 0) is. Even if b+ = 1, all metrics are admissible when L2

W ≥ 0,
and LW is not torsion, but otherwise we have to be a little bit more careful.

If b+ = 1, the choice of an orientation o+ of H+ is the choice of a connected
component in {ω2 > 0} ⊂ H2(X,R). It will be called the forward timelike cone.
For every metric g, let ωg be the unique harmonic self dual form in the o+-forward
timelike cone with

∫
ω2 = 1. For a pair (g, ε) and an SC-structure W define the

discriminant

∆W (g, ε, o+) =

∫
(c1(LW )− ε)ωg(16)

Clearly the discriminant depends only on the period (ωg, ε
+harm

) and the choice of
orientation o+. It depends on o+ only through its sign, and we will often drop it
from notation. A pair (g, ε) is admissible if the discriminant ∆W (g, ε) 6= 0, because
it means precisely that c1(LW ) /∈ εharm +H−g .

Lemma 22. If b+ = 1 a pair (g, ε) is admissible if and only if the discriminant
∆W (g, ε) 6= 0. There are exactly two connected components of admissible pairs
labeled by the sign of the discriminant.

Proof. Suppose two pairs (gi, εi), i = 0, 1, have discriminants ∆i of equal sign.

Connect the pairs by a path (gt, εt) in the space of all pairs. Let (ωt, ε
+,harm
t ) be

the corresponding path of periods. Then the discriminant

∆t =

∫
(c1(LW )− ε+,harm

t )ωt

is continuous in t but may change its sign. However if we modify the path by setting

ε′t = εt + (∆t − (1− t)∆0 − t∆1)ωt

then using ∆W (g, ε+ δ) = ∆W (g, ε)−
∫
δ ∧ ωg and

∫
ω2
g = 1 we see that

∆′t = ∆W (gt, ε
′
t) = (1− t)∆0 + t∆1.

In particular ∆′t does not change sign, so (gt, ε
′
t) is a path of admissible pairs.

Conversely, if c1(LW ) ∈ εharm +H−, then any connection ∇ with induced Chern
form εharm determines a “reducible” solution (∇, 0) ∈ P − P∗ of the monopole
equations. �

The index bundle Ind(Ds) of the deformation complex can be deformed by com-
pact operators (over a compact space!) into the sum of the index of the signature
complex and the index of the complex dirac operator. Thus, the determinant line
bundle det(Ind(Ds) of the index is naturally oriented by choosing an orientation
o for detH1(X,R)∨ ⊗ H+(X,R). We will in fact assume that an orientation for
both H+ and H1 is chosen. Suppose further that the pair (g, ε) is admissible (i.e.,
M((W, g, ε) ⊂ P∗), then the identification of the monopole equations as a sec-
tion s in the bundle E and Proposition 14 in Section 2 gives us a homology class
M = Z(E, s) ∈ Hd(W )(P

∗), i.e., a homology class of the proper virtual dimension
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even ifM is not smooth, not reduced and not of the proper dimension (note that in
our case the moduli spaceM = Z(s) is compact, and homology with closed support
is just ordinary homology). In caseM is smooth and has the proper dimension, it is
just the fundamental class. The class M depends only on the connected component
of (g, ε) in the space of admissible pairs, by the homotopy property of the localised
Euler class, Proposition 14.2. In particularM is independent of the admissible pair
if b+ ≥ 2, and depends only on the sign of the discriminant if b+ = 1.

Definition 23. Let X be a smooth oriented 4-manifold with b+ ≥ 1. Choose an
orientation o of detH1(X,R)∨ ⊗ detH+(X,R), and if b+ = 1, an orientation o+ of
H+. If b+ ≥ 2, the SW-multiplicity is the map

no:SC → Λ∗H1(X,Z)[t] ∼= H∗(P
∗,Z)

W 7→M(W, g, ε, o)

where (g, ε) is any W -admissible pair. If b+ = 1 the SW-multiplicities no,o+,+ and
no,o+,− are defined similarly but with pairs (g±, ε±) having positive respectively
negative discriminant ∆.

We will usually suppress the dependence of the SW-multiplicity (ies) on the
orientations o and o+. The choice of orientation o only determines the sign of the
multilicity: no = −n−o and no,o+,± = −n−o,o+,±. The orientation o+ determines
which invariant is n+ and which is n− since no,o+,+ = no,−o+,−.

All known examples with b+ ≥ 2 have non trivial multiplicities only when the
virtual dimension d(W ) = 0. However for surfaces with pg = 0 it is easy to give
examples with one of n± non trivial for d(W ) > 0. We will use such an invariant
in fact. If b1 6= 0, the H1 part of the multiplicity becomes essential.

Remark 24. Since Hi(P∗) = 0 for i < 0, a moduli space of negative virtual
dimension never defines a nontrivial class. Thus, if for a class L ∈ H2(X,Z)
there exists an SC-structure W with L = c1(LW ) and the multiplicity n(W ) 6= 0
(respectively one of n±(W ) 6= 0), then L2 ≥ 3e(X) + 2σ(X) (cf. Equation (15)).

Remark 25. In the case b+ = 1 we can alternatively consider the multiplicity as
depending not on a sign of ∆ but on a chamber structure in

Γ = {(ω, ε) ∈ H2(X,R)2 | ω2 = 1, ω0 > 0}

where a chamber is defined by walls which are in turn defined by all classes
L ≡ w2(X) through Equation (16). This is particularly useful when we consider
structures with L2

W ≥ 0, LW is not torsion. Then all pairs (g, 0) are admissible and
have discriminant of equal sign, because the forward timelike cone is strictly on one
side of the hyperplane L⊥W ⊂ H2(X,R). Thus, for this subset we have a preferred
chamber.

We will say that L ∈ H2(X,G) has non trivial multiplicity if there is an SC-
structureW such that L = c1(LW ) andW has non trivial multiplicity. This includes

the the fact that L has a lift L̂ to H2(X,Z) with L̂ ≡ w2(X) ∈ H2(X,Z/2Z). If
b+ = 1 we will further qualify which multiplicity is non trivial (i.e., n+ or n−) or
which chamber is chosen. We will simply write n(L) 6= 0 or n+(L) 6= 0 etc.

A final and important piece of general theory is the following blow-up formula
[Ste],[FS1, §8], [FS2]. We will give a proof valid for Kähler surfaces in Section 6.
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Theorem 26. Let X be a closed oriented 4-manifold with b+ ≥ 1. An SC-structure

W̃ on X#P̄2 can be decomposed as W̃ = W#W P̄2

k , with determinant lines LW̃ =

LW +(2k+1)E. If the multiplicity n(±)(W̃ ) 6= 0 then d(W̃ ) = d(W )−k(k+1) ≥ 0,
and the multiplicity n(±)(W ) 6= 0. Moreover if LWP̄2 = ±E (i.e., E · LW̃ = ±1),

then n(±)(W̃ ) = n(±)(W ) under the identification H1(X,Z) ∼= H1(X̃,Z).

Here, n(±) = n if b+ > 1, and if b+ = 1, it is understood that we compare say

n+(W#W P̄2

k ) with n+(W ).

4. Seiberg Witten Classes of Kähler Surfaces

From now on, (X,Φ) denotes a Kähler surface. Then X has a natural base
SC-structure

W0 = Λ0,∗X

with Clifford multiplication given by

c(ω10 + ω01) =
√

2
(
−i(ω10) + ε(ω01)

)
,

where i is contraction and ε is exterior multiplication. The metric and connection
induced by the Kähler structure on Λ0∗X define a unitary SC-structure on W0. For
an arbitrary SC-structure W = W (L) the spinor bundles are of form

W+ = (Λ00 ⊕ Λ02)⊗ L, W− = Λ01(L).

and LW = det(W+) = −K⊗L2 (cf. Lemma 19). We call L the twisting line bundle.
We now turn to the monopole equations (see also [Wit, Section 4]). In the

decomposition of W+, a positive spinor will be written φ = (α, β). The Dirac
equation is then [BGV, Propos. 3.67]

/∂φ =
√

2(∂̄α+ ∂̄∗β) = 0.

Since X is Kähler, we can locally choose holomorphic geodesic coordinates

(z1, z2). A basis of the self dual forms is then the Kähler form Φ =

√
−1

2
(dz1 ∧

dz̄1 +dz2∧dz̄2), dz1∧dz2 and dz̄1∧dz̄2. Let h be an hermitian metric on L. Choose

a unit generator e for L. Then an orthonormal basis for W+ is e and
1

2
edz̄1 ∧ dz̄2.

Using the definition of Clifford Multiplication we compute:

c(Φ)e =
√
−1
2 (−i(dz1)ε(dz̄1) + ε(dz̄1)i(dz1)− i(dz2)ε(dz̄2) + ε(dz̄2)i(dz2))e

= −2
√
−1e.

In exactly the same way we compute c(Φ),
1

2
edz̄1∧dz̄2, and the action of c(dz1∧dz2)

and c(dz̄1 ∧ dz̄2) on e and
1

2
edz̄1 ∧ dz̄2. The result in matrix form is given by

c(Φ) =

(
−2
√
−1 0

0 2
√
−1

)
c(dz1 ∧ dz2) =

(
0 −4
0 0

)
c(dz̄1 ∧ dz̄2) =

(
0 0
4 0

)
.

On the other hand, writing α = αee, and β =
1

2
β1̇2̇edz̄1 ∧ dz̄2,

(α+ β) 〈α+ β,−〉 =

(
|αe|2 αeβ̄1̇2̇

ᾱeβ1̇2̇ |β1̇2̇|
2

)
.
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Thus, if we define α∗ = h(α,−), β∗ = h(β,−) and take the trace free part, we get
the healthy global expression

(2π(α+ β) 〈α+ β,−〉)0 = −2π
√
−1c

(
1
2 (|β|2h − |α|

2
h)Φ +

√
−1(−αβ∗ + βα∗))

)
.

Plug all this in the monopole equations (13),(14). Writing c1(F ) =
−1

2πi
F , and

using that ΛΦ = 2 the monopole equation for a Kähler metric and perturbation
ε = λΦ can be rewritten to

∂̄α+ ∂̄∗β = 0(17)

F 02 = 2πβα∗(18)

F 20 = −2παβ∗(19)

Λc1(F )11 = (|β|2 − |α|2) + 2λ.(20)

Note that F is the curvature on LW , but that these are equations for a unitary
connection d = ∂ + ∂̄ on L and sections α ∈ A00(L), and β ∈ A02(L) through the
identity F = −F (K) + 2F (L, d). Here F (K) is the curvature of the canonical line
bundle, i.e., minus the Ricci form.

In terms of the twisting bundle the virtual (real) dimension of the moduli space
reads

d(L) = d(Λ0∗(L)) = 1
4 (L2 −K2) = L · (L −K).(21)

To give a more precise description of the moduli space of solutions we lean heavily
on the work on the abelian vortex equation by Steve Bradlow [B1], Oscar Garćıa-
Prada [Gar], and earlier in a different guise by Kazdan Warner [KW]. See also [B2]
and [OT2].

Proposition 27. A necessary condition for the existence of solutions to the mono-
pole equations (17) to (20), is that (L, ∂̄) is a holomorphic line bundle, and that

−degΦ(K) ≤ degΦ(L) <

∫
(λΦ2), or(22) ∫

λΦ2 < degΦ(L) ≤ degΦ(K), or(23) ∫
λΦ2 = degΦ(L).(24)

In particular, LW = −K ⊗ L2 has a natural holomorphic structure. In case (22),
the moduli space M = M(L,Φ, λ) of solutions can be identified as a real analytic
space with the moduli space of pairs of a holomorphic structures ∂̄ on L, and a
divisor α ∈ |(L, ∂̄)|. In particular, the Zariski tangent space in (∂̄, α) is canonically
identified with H0(L|Z(α)). In case (23), the moduli space M of solutions can be

identified with the moduli space of pairs of a holomorphic structure ∂̄ on L, and an
element β ∈ PH2(L) = |K⊗L∨|∨. In particular, the Zariski tangent space at (∂̄, β)

is isomorphic to H0(K ⊗ L∨|Z(β̄)). In case (24), the “moduli space” M⊂ P −P∗

(i.e., α = β = 0) can be identified with the space of holomorphic structures ∂̄ on L.

Proof. Combining (17) and (18) yields

∂̄∂̄∗β = −∂̄2α = −F 02α = −2π|α|2β.(25)



130 Rogier Brussee

(Strictly speaking, this is an equation in Lp−1.) Integrating both sides against 〈β,−〉
immediately gives that αβ = 0 and ∂̄β = ∂̄α = 0. Thus, F 02 = F 20 = 0, since
F 02 = 2F 02(L, d), ∂̄ is a holomorphic structure on L, and either 0 6= α ∈ H0(L)
and β = 0 or 0 6= β ∈ H2(L) and α = 0, or α = β = 0. Note that if for example
α 6= 0, then β = 0 is cut out transversely by Equation (25). The last monopole
Equation (20) gives the condition

deg(L) = −deg(K) + 2 deg(L) = 1
2

∫
Λc1(F )Φ2 = 1

2

∫
(|β|2 − |α|2 + 2λ)Φ2

which fixes the global L2 norm of α and β, and determines whether α 6= 0 or β 6= 0
or α = β = 0.

Finally, we deal with Equation (20). If α 6= 0 and β = 0, then it is essentially
the abelian vortex equation.

It is slightly more convenient to use our alternative description (12) of P∗, and
solve for a pair (dL, h) where h = efh0 is a hermitian metric and dL = ∂ + ∂̄ =
d0 + a is a h-unitary connection on L, and mod out the full gauge group GC of
all complex nowhere vanishing functions. For an h-unitary connection, we have
∂h(s, t) = h(∂s, t)+h(s, ∂̄t) for all sections s, t ∈ A0(L). Thus, dL is determined by
∂̄ and h, or equivalently, a01 and f . Then if we let A01 be the space of ∂̄-operators
on L modeled on A01(X) through ∂̄ = ∂̄0 + a01 with the complex gauge group GC

acting by conjugation, we see that

P∗ ∼= {(∂̄, h, α, β) ∈ A01 ×HL × (A00(L)⊕A02(L))∗}/GC.

To be precise, we take dL and ∂̄ in Lp1, and GC and f in Lp2 with p > 4. The sections
α and β, being disguised spinors, are as before in Lp1.

Expressed in a01 and f , Equation (20) becomes

∆ f = 2π(|β|2h0
− |α|2h0

)ef − 2
√
−1Λ(∂0a

01 − ∂̄0ā01) + µ(26)

where µ = 2π(2λ+ Λc1(F (K))− 2Λc1(L,∇0)) (compare [B1, Lemma 4.1]).
If β is small in Lp1, hence in C0, we can solve for f in Equation (26) with the

solution depending real analytically on (a01, α) by the analytical Lemma 33. More

invariantly, if β is small, there is a unique metric h(∂̄, α, β) = h0e
f(∂̄−∂̄0,α,β) solving

the last monopole Equation (20).
In geometric terms, this has the following consequence. Let

P01∗ = A01 × (A00(L)⊕A02(L))∗/GC.

Clearly, there is a projection P∗ → P01∗ forgetting h. What we have done is
showing that there is section

P01∗ → P∗

(∂̄, α, β)→ (∂̄, α, β, h(∂̄, α, β))

in a neighborhood of β = 0 whose image is cut out as a real analytic space by the
last monopole Equation (20).

Now we will cut out M = Z(E, s) in three steps rather than in one. In each
step we define a quotient bundle E → E′′ → 0 with kernel E′. We check that
the quotient section s′′ is transversal near M, so near M, the zero set Z(s′′) is a
smooth manifold. On Z(s′) we have an induced section s′ in E′|Z(s′′) and we have
M = Z(E′|Z(s′′), s

′). If everything was real analytic then this is an identification
as real analytic spaces. Moreover, if s is Fredholm, then IndDs = IndDs′. This
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is exactly the procedure needed to apply the localised Euler class machinery (see
Proposition 14), which is what we will do in Section 6.

Let

Q∗ = A01 ×HL × (A00(L)⊕A02(L))∗

and define

Apq(L) = Q∗ ×GC A
pq(L)(27)

in a suitable completion which may vary and which we will indicate. Then the
bundle E over P∗ in which the monopole equations define a section s can be iden-
tified with

E = A01(L)⊕A02(X)⊕A0
R(X)

(all completed in Lp1) with decomposition of the section s = (s01, s02, sΦ) corre-
sponding to equation (17), (18) and (20). On the other hand

TP∗ =
(
A01(X)⊕A0

R(X)⊕ A00(L)⊕ A02(L)
)
/A00(X)

(completed in respectively Lp1, Lp2, Lp1, Lp1 and Lp2).

For the first step, define E1 = A01(L) ⊕ A02(X) (both completed in Lp1). Then
we have the exact sequence

0→ E1 → E → A0
R(X)→ 0

with the projection sΦ of s defining a section in A0
R(X). It is just the vortex

Equation (20). We have maps

A0
R(X)

i
−→ TP∗|Z(sΦ)

DsΦ
−−−→ A0

R(X)

(first A0
R completed in Lp2 second in Lp). In a point (∂̄, α, 0, h(∂̄, α, 0) the composi-

tion is given by

δf 7→ (∆ +2π|α|2h)δf.(28)

which is surjective if α 6= 0. Hence near β = 0, the map DsΦ is surjective, and
Z(sΦ) is smooth. Thus near β = 0, in particular near M, the solutions of the
vortex equation Z(sΦ) can be identified with the image of the section P01∗ → P∗

even as a real analytic space.
NowM is cut out on Z(sΦ) by the section s1 = (s01, s02) in E1|Z(sΦ). But there

is a bundle Ẽ1 over P01, defined similarly to E1 with section s̃1 defined similarly
by the monopole equations (17) and (18) and we identify M with M01 = Z(s̃1).

For step two consider the following exact sequence over a neighborhood of M01

in P01∗

0→ Ẽ2 → Ẽ1

δ
−→ A02(L)→ 0

(the last term completed in Lp−1) where the operator δ in (∂̄, α, β) is given by

δ: (ξ, ω) 7→ ∂̄ξ − αω.

Then δ is really surjective near M. In a point (∂̄, α, 0) with ∂̄2 = 0 and ∂̄α = 0,
the space Coker δ is a dolbeault representative of the hyper cohomology group

H3(0→ O
α
−→ (L, ∂̄)→ 0) ∼= H2((L, ∂̄)|Z(α).

Since Z(α) is a complex curve we conclude that Coker δ = 0.
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The induced section s′′1 in A02 is given by the composition

(∂̄, α, β) 7→ (∂̄α+ ∂̄∗β, ∂̄2 − 2πα∗β) 7→ (∆ +2π|α|2h(∂̄,α,β))β.

Since we have assumed that α 6= 0 we conclude that

Z(s′′1) = {(∂̄, α, β) ∈ P01∗, β = 0}.(29)

Now the derivative Ds′′1 :TP01|Z(s′′1 ) → A02(L)|Z(s′′1 ) can be identified with a map

Coker
(
0→ A00(X)→ A01(X)⊕ A00(L)⊕ A02(L)

)
→ A02(L).

In (∂̄, α, 0) it is given by

(δa01, δα, δβ)→ (∆ +2π|α|2)δβ,

and we see that Ds′′1 is surjective. Moreover, Equation (29) is an identification
as real analytic spaces. Then M ∼= Z(s2) where s̃2 is the induced section s̃′1 in

Ẽ2|Z(s′′1 ).
In step three we introduce the space

PBN∗ = A01(X)×A00(L)∗/GC

(BN for Brill Noether) which we identify with Z(s′′1) = {β = 0} ⊂ P01∗. Let

E2 = Ẽ2|PBN∗ and s2 the section identified with s̃2. Then s2:PBN∗ → E2 is given
by

s2: (∂̄, α) 7→ (∂̄α, ∂̄2)

and we finally find our identification as real analytic spaces

M∼= Z(s2) =MBN = {(∂̄, α), ∂̄2 = 0, ∂̄α = 0, α 6= 0}/GC ⊂ PBN∗.(30)

The space MBN is exactly the moduli space of holomorphic line bundles together
with a non vanishing section carried by the same underlying smooth line bundle L,
i.e., all homologically equivalent effective divisors. This is the Brill Noether space.

For the Zariski tangent space, Equation (30) gives

T(∇,α,0,h)M = T(∂̄,α)M
BN

= Ker

(
∂̄
α ∂̄

)/
Im

(
α
−∂̄

)
= H1(0 −→ O

α
−→ L −→ 0)

= H0(L|Z(α)).

It is easy to check that the linearised versions of equations (17), (18), (19), and (26)
give the same result (as it should).

Case (23) is reduced to the previous case by Serre duality. In case (24) the metric
h we look for is an (almost) Hermite-Einstein metric. �

Remark 28. For future reference we note that PBN∗ and E2 have a natural com-
plex structure, and that s2 is holomorphic! ThusMBN has a naturally the structure



C∞ Properties of Kähler Surfaces 133

of a complex space. It need not be a complex manifold, we only know that Ds2

can be identified with the map

(31) Coker

(
0→ A00(X)

( ∂̄
−α)
−−−→ A01(X)⊕ A00(L)

)
Ds2=(∂̄α ∂̄)
−−−−−−−→

Ker

(
A02(X)⊕ A01(L)

(−α ∂̄)
−−−−→ A02(L)→ 0

)
Thus, after a compact perturbation on a compact space,

IndCDs2 = C−χ(OX) + IndC∂̄(32)

where ∂̄ is the universal ∂̄ operator on the complex

0 −→ A00(L)
∂̄
−→ A01(L)

∂̄
−→ A02(L) −→ 0.(33)

Also note that the orientation conventions for the signature on a Kähler manifold
are set up such that the orientation index of the signature complex is detR Cχ(OX).
Further, IndC∂̄ = IndC/∂. Hence the standard complex orientation of IndCDs2 is
the one compatible with the identification (IndCDs2)R = IndRDs needed for the
definition of the SW-multiplicities.

Corollary 29. Let X be Kähler surface. Suppose that a cohomology class L ∈
H2(X,Z) satisfies n(L) 6= 0. Then L is of type (1, 1). Moreover if pg > 0, then for
all Kähler forms Φ on X, the class L satisfies

degΦ(KX) ≥ degΦ(L) ≥ −degΦKX .(34)

If pg = 0, and n−(L) 6= 0 (resp. n+(L) 6= 0), then

degΦ(L) ≥ −degΦ(KX) (resp. degΦ(L) ≤ degΦ(KX)).

Proof. First we consider the case pg > 0. Under the conditions of the corollary,
there is an SC-structure W with LW = L which admits at least one solution to
the monopole equation for every admissible pair (g, ε). In particular W admits a
solution for every Kähler metric and ε = λΦ. Thus L = LW is of type (1, 1). More-
over the necessary condition for the existence of a solution of section or cosection
type (i.e., Equation (22) or (23) in Proposition 27) gives precisely the required
inequality (34) if we let λ tend to zero.

If pg = 0, then L is automatically of type (1, 1) and say the condition n−(L) 6= 0
means that there is an SC-structure W with LW = L such that for any Kähler
metric, W admits solutions of section type (i.e., Equation (22)) if λ is sufficiently
large. This gives a lower bound but no upper bound on degΦ(L). �

Remark 30. Recall that an admissible metric is an admissible pair with ε = 0. If
pg = 0, and L2 ≥ 0 with L not torsion, then all metrics are admissible and have
discriminant of equal sign σ. If in addition the preferred multiplicity nσ(L) 6= 0,
we still obtain the stronger inequality (34). In particular, on a del Pezzo surface,
classes with L2 ≥ 0 and nσ(L) 6= 0 do not exist.

We can now do our useful ad hoc computations of SW multiplicities for classes
L “close to ±KX”.
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Corollary 31. Let X be a Kähler surface with base SC-structure W0 = Λ0∗X.
Then n(W0) = 1 if pg > 0 and n−(W0) = 1 if pg = 0. In particular, n(−KX) 6= 0
resp. n−(−KX) 6= 0. Likewise, n(W0(KX)) = ±1 if pg > 0 and n+(W0(KX)) = ±1
if pg = 0. In particular, n(KX) 6= 0 resp. n+(KX) 6= 0. Moreover, W0 is the
only SC-structure W with LW = −KX mod torsion and nontrivial multiplicity n
respectively n−. In particular, if there is an L ∈ H2(X,Z) such that L = −K ∈
H2(X,Q) and n(L) 6= 0 resp. n−(L) 6= 0, then L = −K ∈ H2(X,Z).

Proof. We will prove the statement for −KX . Then we have to consider SC-
structures W = Λ0∗(L) with c1(L) torsion. Choose a Kähler metric and λ � 0.
Then M(W ) ∼= MBN(c1(L)), the moduli space of line bundles with a section of
topological type given by c1(L). ButMBN (L) is just a reduced point if c1(L) = 0,
and empty if c1(L) is non trivial torsion. Thus W0 = Λ0∗X is unique among the
SC-structures W with LW = −KX mod torsion with n(W ) 6= 0 (resp. n−(W ) 6= 0).
In fact its multiplicity is 1. The case +KX can be dealt similarly with Serre duality.
Its multiplicity is ±1 because of the unpleasant orientation flips. �

Corollary 32. Let D be an effective divisor with D · (D−K) = 0, h0(O(D)) = 1,
h0(OD(D)) = 0, and h0(L(D)) = 0 for every non trivial holomorphic line bundle
L ∈ Pic0(X) − 0. Then n(−KX + 2D) 6= 0 if pg > 0 and n−(−KX + 2D) 6= 0 if
pg = 0. Likewise, n(KX − 2D) 6= 0 if pg > 0 and n+(KX − 2D) 6= 0 if pg = 0.

Proof. This corollary is proved just as the previous one, and reduces to it if D = 0.
The conditions of the corollary ensure thatMBN([D]) consists of one smooth point
and that vdim(Λ0∗(D)) = 0. �

It remains to collect the relevant analysis from Steve Bradlow [B1, §4] and Kaz-
dan Warner [KW].

Lemma 33. Let X be a compact Riemannian manifold, and dim(X) < p < ∞
a Sobolev weight. Then for every real non-negative function 0 ≤ w0 ∈ Lp, with∫
w0 > 0 and real function µ0 ∈ Lp, with

∫
µ0 > 0, there exists a neighborhood

U(w0,µ0) ⊂ L
p × Lp such that for all (w, µ) ∈ U(w0,µ0) the equation

∆ f = −wef + µ(35)

has a unique Lp2 solution depending analytically on w and µ. The solution is smooth
if w and µ are smooth.

Proof. As in [B1, Lemma 4] make the substitution f = f̃−g where g is the unique
solution of ∆ g =

∫
µ − µ to reduce to the case where µ is constant. Then apply

[KW, Theorem 10.5(a)] to solve the equation for w0, µ0 (note that Kazdan-Warner’s
Laplacian is negative definite and that the proof works fine with w ∈ Lp instead of
C∞). Since at a solution f0 for (w0, µ0) we have

δ“eqn (35)” = (∆ +w0e
f0)δf

and (∆ +w0e
f0) is invertible, we conclude with the implicit function theorem that

there continues to exist a solution for (w, µ) in a small neighborhood of (w0, µ0),
and that this solution depends real analytically on (w, µ). Regularity follows from
standard bootstrapping techniques. Uniqueness follows from the weak maximum
principle ([GT, Theorem 8.1], cf. [KW, remark 10.12]). �
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5. Proof of the Main Theorems

We will first prove Theorem 1. Our first task is to define a suitable set K of basic
classes.

Definition 34. Let X be a smooth oriented compact four manifold. If b+ ≥ 2
then the basic classes are defined by

K = {K ∈ H2(X,Z) | n(K) 6= 0}.

If b+ = 1 then K = K− ∪ K+ where

K− = {K ∈ H2(X,Z) | n−(K) 6= 0, and ∃L ∈ H2(X,Z) with n−(L) 6= 0

such that n−(L−m(K + L)) 6= 0 for some m ≥ 1 }.

The set K+ is defined similarly in terms of n+. Here, we allow m ∈ Q, but m(K+L)
must necessarily lift to a two divisible integral class.

These basic classes are rightfully the Seiberg Witten basic classes when b+ ≥ 2,
but for b+ = 1 the definition is geared towards the specific application we have in
mind.

Proposition 35. The classes K defined above have all properties (∗) of Section 1.

Proof. It is clear that K is an oriented diffeomorphism invariant, and that the
basic classes are characteristic.

For Kähler surfaces the classes are of type (1, 1) by Corollary 29.
The degree inequality ((∗).2) (for all surfaces minimal or not) also follows from

Corollary 29. This is immediate for pg > 0. If pg = 0 assume that K ∈ K+ say,
the case K ∈ K− being essentially the same. Now Corollary 29 gives the three
inequalities

degK ≤ degKX ,

degL ≤ degKX ,

−m degK + (1−m) degL ≤ degKX

which together imply −degKX ≤ degK ≤ degKX .
The pushforward property under blow down (∗).3 follows immediately from the

blow up formula Theorem 26 or Proposition 43.
If pg > 0 then KX ∈ K by Corollary 31. Thus it remains to check that KX ∈ K

if pg = 0. In fact we will check that −KX ∈ K.
We have already seen in Corollary 31 that n−(−KX) 6= 0. Define

L = −KX + 2
∑

Ei = −Kmin +
∑

Ei.

Either directly from Corollary 32, or using the invariance under the reflection in
the exceptional curves E1, . . . , En we see that n−(L) 6= 0. Now denoting

Lm = mKmin +
∑

Ei,

we have L−m(−KX +L) = −KX + 2Lm, so we check that n−(−KX + 2Lm) 6= 0.
We will distinguish four cases.

If κ(X) = 0, then Kmin is torsion and we can take m = ord(Kmin), since
n−(−KX + 2

∑
Ei) 6= 0.
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If κ(X) = 1, then Xmin has a unique elliptic fibration Xmin

π
−→ C. By the

canonical bundle formula, Kmin = π∗LC(π∗KC +
∑

(pi − 1)Fi), where LC is a
holomorphic line bundle on C of degree χ. Since pg = 0 and χ ≥ 0, we have
0 ≤ g ≤ q ≤ 1, and we distinguish further between g = 0 and g = 1.

If g = 0, then c1(π∗LC(KC)) = (χ− 2)F , where F is a general fibre, and there
are at least 3− χ multiple fibers because Kmin > 0. Now the class

Kmin +

2−χ∑
i=1

Fi =
n∑

j=3−χ

(pj − 1)Fj

is of the form mKmin with rational m > 1. Again by Corollary 32, we have

n−(−KX + 2Lm) = n−(−KX + 2(
n∑

j=3−χ

(pj − 1)Fj +
∑

Ei)) 6= 0.

If g = 1, then χ = 0, and KC = 0. In this case we can take m = 1, since
c1(LC) = 0 ∈ H2(X,Z) and by Corollary 32

n−(−KX + 2L1) = n−(−KX + 2(
∑

(pi − 1)Fi +
∑

Ei)) 6= 0.

The most instructive case is when X is of general type. Then the irregularity q =
0 since pg = 0 and χ(OX) > 0. Take m = 2, thenMBN(c1(L2)) = |2Kmin +

∑
Ei|.

By formula (1) (or directly by Ramanujan vanishing)

dimCM
BN(L2) = P2 − 1 = K2

min = 1
2 vdimR(Λ0∗(L2)).

Thus, the moduli space is again smooth of the proper dimension and we conclude

that n−(−KX + 2L2) 6= 0. In fact n−(Λ0∗(L2)) = tK
2
min since the canonical line

bundle O(1) on P∗ corresponds to the O(1) on MBN. This is because both mea-
sure the weight of the action of the constant gauge transformations on the spinors
respectively sections. �

Remark 36. It is easy to give a definition of oriented diffeomorphism invariant
basic classes for b+ = 1 that satisfy all properties (∗) except the invariance under
blow down (i.e., property (∗).3). A class K is then basic if there exists a metric
g such that for all δ > 0 there exists an ε with (g, ε) admissible, ‖ε+,harm‖ < δ
and n(K, g, ε) 6= 0. The degree inequality for minimal surfaces then follows from
Remark 25. But alas, if K2 < 0 one cannot avoid the possibility that a sign of the
discriminant ∆ realisable with small ε on the blow up can only be realised for large
ε on the blow down. In my original treatment I used this definition. I am grateful
to Robert Friedman for pointing out this mistake.

Corollary 37. Suppose that X is a surface with κ(X) ≥ 0. Then for all K ∈ K
we have

K = λKmin +
∑
±Ei ∈ H

2(X,Q)(36)

where λ = 0 if κ(X) = 0, |λ| ≤ 1 if κ(X) = 1 and λ = ±1 if κ(X) = 2. In
particular, all classes correspond to a moduli space of virtual dimension d = 0.

Proof. Since the virtual dimension d(K) =
1

4
(K2 − K2

X) of the moduli space

corresponding to a basic class K is non-negative (cf. Remark 24) this lemma is just
Lemma 11 and the fact that K has all properties (∗) (Proposition 35). �
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We now give the proof of the main Theorem 1.
With basic classes K having the properties (∗) available Proposition 12 implies

that for every surface of κ ≥ 0, the class Kmin is invariant up to sign and torsion
and every (−1)-sphere is represented by a (−1)-curve up to sign and torsion.

We first get rid of torsion in the (−1)-curve conjecture, i.e., part 2 of Theorem 1.
Let e be a (−1)-sphere, giving a connected sum decomposition X = X ′#P̄2. As we
have used before, there is a diffeomorphism Re = id #C-conjugation representing
the reflection in e.

I claim that for any SC-structure W on a 4-manifold

R∗e(W ) = W ⊗O((c1(LW ), e)e),

where O(e) is the line bundle corresponding to the Poincaré dual of e. In fact if
we write R∗eW = W ⊗L, then L = HomC(W,R∗eW ), the bundle of Clifford module
homomorphisms (cf. the proof of Lemma 19). Now we can just identify W and
R∗eW on X ′, i.e., L is trivialised on X ′. Thus

c1(L) ∈ ImH2(X,X −X ′,Z) ∼= H2(P̄2) ⊂ H2(X,Z).

Write L = O(ae) for some integer a. Since

LW + 2ae = LR∗eW = R∗eLW = L+ 2(e, LW )e

the claim is proved.
Going back to the Kähler case, we can assume that e is homologous to a (−1)-

curve E up to torsion. Consider W = R∗eR
∗
E(Λ0∗(X)) = Λ0∗(E − e). By oriented

diffeomorphism invariance n(−)(W ) 6= 0 (in case pg = 0 we have tacitly used the
fact that R∗eR

∗
E induces the identity on rational cohomology so in particular does

not change the orientation of H+). Moreover c1(LW ) = −KX up to torsion. By
Corollary 31, we conclude that W = Λ0∗(X), so e = E ∈ H2(X,Z).

Now we know that ±Kmin ∈ H2(X,Q) is determined by the oriented smooth
manifold, and we want to find ±Kmin over the integers. Pick one of the classes, say
+Kmin ∈ H2(X,Q). Choose a basis E′1, . . . , E

′
n of the lattice in H2(X,Z) spanned

by the (−1)-spheres. Then there is a (−1)-curve Ei with E′i = ±Ei ∈ H2(X,Z).
There is a class K ∈ K such that K = Kmin +

∑
E′i ∈ H

2(X,Q), because the
orbit of KX under the group G generated by the reflections in the (−1)-spheres
contains a class of this type. Conversely, in the G orbit of K there is a class
K ′ ∈ K with K ′ = KX ∈ H2(X,Q). Then necessarily K ′ = KX ∈ H2(X,Z) by
Corollary 31. Hence the basic class K is unique. Now we have the identity

Kmin = K +
∑

(E′i,K)E′i ∈ H
2(X,Z).

This finally proves Theorem 1.

Remark 38. After reading [FM3] I realised the following. The blow up formula
Theorem 26 can be generalised to connected sum decompositions X = X ′#N
with N negative definite and H1(N,Z) = 0. The latter condition is automatic for
Kähler surfaces of non-negative Kodaira dimension by a beautiful observation of
Kotschick [Kot] (an unramified covering Ñ → N of degree d gives an unramified

covering X̃ = dX ′#Ñ → X ′#N which is a Kähler surface of non-negative Kodaira
dimension with a connected sum decomposition with a factor with b+ > 0). Such
smooth negative definite manifolds N have H2(N) = ⊕ni=1 Zni with n2

i = −1. SC-
structures WN on N are determined by LN =

∑
(2ai + 1)ni. Thus the reflections
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Rni in n⊥i , act on the SC-structures on N . SC-structures on X ′#N are of the form
W = WX′#WN . Now the blow up formula is as if N = nP̄2: W = WX′#WN is an
SW-structure on X ′#N if and only if WX′ is a SW-structure on X ′ and d(W ) ≥
0. In particular the Seiberg Witten structures are invariant under the operation
Rni :WX′#WN → WX′#RniWN , and HomC(W,RniW ) has a trivialisation over
X ′. With these remarks the arguments for (−1)-spheres carry over directly to prove
that for Kähler surfaces X with κ(X) ≥ 0, with a connected sum decomposition
X = X ′#N , H2(N) ⊂ H2(X) is spanned by (−1)-curves.

Remark 39. An easy application of the techniques of the next section gives the
following. If L is a holomorphic line bundle on a surface with pg = q = 0 with

h0(L) ≥ χ(L) ≥ 1, then n−(Λ0∗(L)) = t
L(L−KX )

2 . If pg = q = 0 and κ(X) ≥ 0 we
can apply this to L2 = 2Kmin +

∑
Ei. Then by the Castelnuovo criterion and the

above we conclude n−(−KX+2L2) 6= 0. This gives an alternative way to prove that
−KX ∈ K for the case pg = q = 0. Conversely, the degree inequality (∗).2 cannot
hold true for rational and ruled surfaces for Kähler forms Φ such that degΦ(KX) <
0. Since in deriving the degree inequality we did not use that κ(X) ≥ 0, we
conclude that for κ(X) = −∞ the set of the above defined basic classes K = ∅.
In particular we see that the following proposition is a rather direct analog of the
classical Castelnuovo criterion.

Proposition 40. A Kähler surface is rational if and only if b1 = 0, and K = ∅.

Stefan Bauer showed me how to use the Seiberg Witten multiplicities and the
basic classes to determine the multiplicities of an elliptic surface with finite fun-
damental group. They are all of type Xpq in the proposition below [FM2, Theo-
rem II.2.3]. If an elliptic surface does not have finite cyclic fundamental group, the
multiplicities can be read off from the topology [FM2, theorem II.2.5 and Corollary
II.7.17].

Proposition 41. (Bauer) Let Xpq be a minimal elliptic surface fibred over P1 with
2 multiple fibers of multiplicity p and q with p ≤ q. Then the multiplicities p and
q are determined by the underlying oriented differentiable manifold, unless pg = 0,
p = 1 and q arbitrary. The surfaces X1q are all rational and diffeomorphic.

Proof. Let F be the homology class of a general fibre, and Fp, Fq the fibers of
multiplicity p respectively q. The ray of the fibre in H2(Xpq,Z)/Torsion, is spanned
by the primitive vector κ = (gcd(p, q)/pq)F . If we fix a Kähler form Φ this is the
primitive vector normalised so that κ · Φ > 0. The notation κ is traditional and
should not be confused with the Kodaira dimension. Now we can write KX modulo
torsion in terms of κ:

KX = (pg−1)F +(p−1)Fp+(q−1)Fq =
(pg + 1)pq − p− q

gcd(p, q)
κ ∈ H2(X,Z)/Torsion.

Let d(p, q) = ((pg + 1)pq − p− q) / gcd(p, q) be the oriented divisibility of KX .
If KX is torsion we set d(p, q) = 0. The number gcd(p, q) is determined by the
topology of the manifold, being the order of the fundamental group. We now
show how to recover d(p, q) from the underlying smooth oriented manifold (when
possible).

The surfaces Xpq are rational if and only if the divisibility d(p, q) < 0, which is
equivalent to pg = 0, p = 1 and q arbitrary. Now by Proposition 40, Xpq is rational
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if and only if K = ∅ (alternatively use the ex Van de Ven conjecture Corollary 4).
Thus, from now on we can assume that Xpq has non-negative Kodaira dimension.
Then d(p, q) ≥ 0 and p ≥ 2.

Let K̄ = K/Torsion. Since the Kodaira dimension is non negative, K 6= ∅, and by
Corollary 37 the basic classes in K̄ are on the ray Zκ∩ [−KX ,KX ], i.e., in between
−KX and +KX , and ±KX are the extremal classes. Hence if K̄ = {0}, then KX

is torsion, i.e., d(p, q) = 0. If |K̄| ≥ 2 then KX is not torsion and d(p, q) is the
unoriented divisibility of ±KX .

Now assume that |K̄| ≥ 3. Choose one of ±KX , say −KX . We will recover
p from the unique basic class K1 ∈ K̄ which is extremal but one, and such that
K1 ∈ [−KX , 0]. Since d(p, q), pg and gcd(p, q) are known, this determines q as well.

First consider the case pg > 0. I claim that K1 = −KX + 2Fq. Write K1 =
−KX + 2mκ with m > 0 and mκ represented by the smallest effective divisor D
such that n(−KX + 2D) 6= 0. Now Fq is the smallest among all nontrivial effective
divisors on the ray Zκ, and n(−KX + 2Fq)) 6= 0 by Corollary 32. Then since
Fq = (p/ gcd(p, q))κ, we see that p is determined by the divisibility of K1− (−KX).
If we choose +KX among ±KX , then the Serre dual version of Corollary 32 shows
that K ′1 = KX − 2Fq is the class extremal but one in K ∩ [KX , 0]. Hence we
recover the same value for p from the divisibility of K ′1−KX . From the differential
geometric point of view there is nothing that prefers KX over −KX .

In the case pg = 0 we choose the unique orientation o+ of H+, such that −KX is
in backward lightcone, i.e., the standard orientation oΦ with the forward timelike
cone of H+ containing the Kähler class Φ. Now we can repeat the argument for the
case pg > 0 with n replaced by n− = noΦ,−. If we choose +KX among ±KX , then
the chosen orientation is −oΦ. We are then looking at the invariant n−oΦ,− = noφ,+,
and again the argument works as in the case pg > 0.

If 1 ≤ |K| ≤ 2, then −KX+2Fq > 0, and KX ≥ 0 i.e., 0 ≤ d(p, q) < 2p/ gcd(p, q).
The few possibilities are listed in the following table

(p, q) gcd(p, q) d(p, q) Type
pg = 0 (2, 2) 2 0 Enriques

(2, 3) 1 1
(2, 4) 2 1
(2, 5) 1 3
(3, 3) 3 1
(3, 4) 1 5

pg = 1 (1, 1) 1 0 K3
(1, 2) 1 1

Clearly, in this case the pair (p, q) is determined by the oriented differentiable
manifold as well. �

We now give a proof of Corollary 7.

To prove that no surface with Kodaira dimension κ ≥ 0 admits a metric with
positive scalar curvature, first consider the case pg > 0. Then the statement is
clear, and one of Witten’s basic observations. For 4-manifolds with positive scalar
curvature n(K) = 0 for all K ∈ H2(X,Z), since for our metric with positive scalar
curvature g and small perturbations ε, we haveM(W, g, ε) = ∅ for all SC-structures
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W by Proposition 20. On the other hand we just showed that n(−KX) 6= 0 using
a Kähler metric.

The same argument works if pg = 0 and K2
X ≥ 0: n(−KX , g, ε) is independent

of the metric g and of ε as long as ε is small, with the exception of the case −KX

torsion in which case we have to choose ε in the forward light cone. But we can do
better.

For the general case pg = 0, we choose our metric of positive curvature g and
a sufficiently small perturbation ε = λΦ with 0 < λ � 1. Choose the standard
Kähler orientation oΦ of H+.

Suppose that g has period ωg = ωmin +
∑
ηiEi where ωmin is the projection

to the cohomology of the minimal model. Then since ωg is in the interior of the
forward light cone, and Kmin is in the closure of the forward light cone, ω ·Kmin =
ωmin ·Kmin ≥ 0 with equality if and only if Kmin is torsion.

Let sgn(η) = 1 if η ≥ 0 and −1 otherwise. Define the class K = −Kmin −∑
sgn(ηi)Ei ∈ H2(X,Z) then n−(K) = n−(−KX) 6= 0. On the other hand we

have

ωg ·K ≤ 0 < λ

∫
ωgΦ

so the discriminant ∆(K, g, ε, oφ) < 0. Thus

n(K, g, λΦ, oΦ) = n−(K)

i.e., we compute n− rather than n+ with respect to the standard orientation oΦ

with the admissible pair (g, ε). But g has positive scalar curvature and λ is small
so n(K, g, λΦ, oΦ) = 0, a contradiction just like before.

6. Some Computations of Seiberg Witten Multiplicities

In this section we will go beyond determining potential basic classes and compute
the Seiberg Witten multiplicity of elliptic surfaces. We also prove an algebraic
version of the blow up formula. It is here that our excess intersection formulas pay
off. We first show how to go over to express the multiplicities in complex geometric
terms. Then we use the special geometry of elliptic surfaces to compute them and
finally we prove a blow up formula.

From now on we identify an SC-structure with the corresponding twisting line
bundle L. We will consider the solutions of the monopole equations of section type,
i.e., corresponding to Equation (22), so if necessary we take a perturbation of the
form λφ with λ� 0.

Recall that the SW-multiplicity is essentially the localised Euler class M of a
bundle E over the configuration space P∗ with a section s given by the monopole
equations (cf. Definition 23). The zero set of s is the moduli space of solutions
M(c1(L)) with virtual dimension d(L) = c1(L) · (c1(L) − KX) (cf. Equation 21).
To determine this class we use the properties of the localised Euler class in Propo-
sition 14 and work through the three step process in the last part of the proof of
Proposition 27 (from (27) onwards). We use the notation introduced in this proof.

If we identifyM withMBN, the moduli space of holomorphic line bundles with
a non trivial section, and the other incarnations of M in the last part of the proof
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of 27, then by Proposition 14 part 4 we have

M(c1(L)) = Z(P∗, E, s) = Z(P01∗, E1, s1) = Z(PBN∗, E2, s2) ∈ Hd(L)(M
BN,Z).

(37)

Now as we remarked in Remark 28, the section s2 is holomorphic! Moreover,
we have an identification IndCDs2 = IndC∂̄ + C−χ(OX) where ∂̄ is the universal ∂̄
operator in the sequence

0 −→ A00(L)
∂̄
−→ A01(L)

∂̄
−→ A02(L)→ 0(38)

on MBN. Therefore, formula (6) in Proposition 15 tells us that

M = [c(IndC(∂̄))−1 ∩ c∗(M
BN)]d(L).

We will now rewrite IndC(∂̄) in more useful holomorphic terms.
We spell out the definition of A0q(L). Let QBN∗ = A01 × A00(L)∗. Then we

define
A0q(L) = QBN∗ ×GC A

0q(L)

(with A0q(L) completed in Lp1−q and GC in Lp2). There is also a local version: Let

Ω0q(L) be the sheaf of smooth (or more precisely locally Lp1−q) differential forms

with values in L considered as an O(X) module. Then consider the following sheaf
on X × PBN∗:

Ω0q(L) = (X ×QBN∗)×GC p
∗
1Ω0q(L)

where a group element g ∈ GC = map(X,C∗) acts on forms in a point (x; ∂̄, α)
as g(x). It is clear from the definition that the projection to PBN∗ is given by
p2∗Ω

0q(L) = A0q(L), whereas the higher groups Rip2∗Ω
0q(L) vanish for i > 0 by

the usual fineness argument.
Consider the universal divisor

∆ = {(x; ∂̄, α) | α(x) = 0}/GC ⊂ PBN∗ ×X

Now I claim that on X ×MBN there is an exact sequence

0 −→ O(∆)
i
−→ p∗2Ω00(L)

∂̄
−→ p∗2Ω01(L)

∂̄
−→ p∗2Ω02(L)→ 0.(39)

where ∂̄ is the universal ∂̄ operator. In fact this claim is equivalent to three state-
ments two local and one global: that the first ∂̄ has a locally free rank 1 kernel,
that the sequence is exact in the middle and the end, and that the kernel of the
first ∂̄ has a section which vanishes along ∆.

First the local statements: Let a01 be a form of type (0, 1) on a two complex
dimensional polydisk with coefficients in a ring of germs of holomorphic functions
on a complex space S, i.e., “depending on S”, and ∂̄0 the standard ∂̄ operator
acting on forms on the polydisk. We extend ∂̄0 linearly over the germs on S.
For the local statements it is enough that if locally ∂̄ = ∂̄0 + a01 with ∂̄0a

01 = 0
then a01 = ∂̄0f . Of course f will also “depend on S”. We can then gauge away
a01 because ∂̄ = exp(−f)∂̄0 exp(f), and the local statements are clear from the
Poincaré lemma for ∂̄0. The proof for such a family ∂̄ Poincaré lemma carries over
verbatim from the usual one in [GH, page 5,25].

The global statement is a bit of a tautology. On X×P∗ there is a natural section
in p∗1Ω00(L) given by

(∂̄, α;x)→ (∂̄, α, α(x)).
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On the support of MBN × X as an analytic space, this section lies in the kernel
of ∂̄. Now by definition a section in the kernel of ∂̄ depending holomorphically on
MBN is holomorphic. Likewise the zero of this section is by definition the support
of ∆.

Having proved the claim, we see that the sequence (39), is an p2∗-acyclic resolu-
tion of O(∆). Thus, the ith cohomology of the complex of sheaves (38) is the sheaf
Rip2∗(O(∆). It follows that Ind(∂̄) = Ind (Rp∗O(∆)) and our SW multiplicity class
is finally given by

M(c1(L)) = [c(Rp∗O(∆))−1c∗(M
BN)]d(L).(40)

A more precise description ofMBN and its homological Chern classes c∗(MBN)
depends on the surface. Here we will do the case of elliptic surfaces. The author
has succeeded in treating ruled surfaces in a similar way.

Proposition 42. Let X
π
−→ C be a Kählerian elliptic surface of holomorphic Euler

characteristic χ over a curve C of genus g, with multiple fibers F1, . . . Fr of mul-
tiplicity p1, . . . pr. Consider the line bundle L = O(π∗D +

∑
aiFi) where D is a

divisor on C of degree d, and 0 ≤ ai < pi. Then the Seiberg Witten multiplicity is
zero if d < 0, and if d ≥ 0 it is given by

n(−)(Λ
0∗(L)) =

{
(−1)d

(
χ+2g−2

d

)
if χ+ g − 2 ≥ 0∑max(g,d)

j=0 (−1)j
(

1−g−χ+d−j
d−j

)(
g
j

)
if χ+ g − 2 < 0.

Note that if the topological Euler characteristic e > 0 (or equivalently χ > 0)

then g = q =
1

2
b1(X) [FM2, corollary II.2.4], so in this case χ + g − 2 = pg − 1.

Note further that the second formula is just 1 if pg = q = 0 (i.e., e > 0). This
illustrates Remark 39.

If pg > 0 and q = g = 0, so in particular e = 12χ > 0, Witten proves this
formula by choosing a general ω ∈ H0(KX) and using the perturbation ε = ω + ω̄.
He then argues that the multiplicity n(L) is the number of ways we can decompose
a fixed canonical divisor K0 as K0 = D+ + D− with D+ ∈ |(L, ∂̄0)|, and D− ∈
|K ⊗ (L, ∂̄0)∨|, where ∂̄0 is the unique holomorphic structure that L admits [Wit,
Eq. (4.23) e.v.].

To be honest, this is what I read out of it. Actually I think that the computations
below are the mathematical version of (I paraphrase) “integrating over the bosonic
and fermionic collective coordinates in the path integral” and “computing the Euler
class of the bundle of the cokernel of the operator describing the linearised monopole
equations over the moduli space (the bundle of antighost zero modes)” [Wit, above
(4.11)]. In fact with hindsight, the latter seems a dual description of the localised
Euler class in the case that the cokernel has constant rank.

Proof. We choose a Kähler metric and λ such that degΦ(L⊗2(−K)) < λVol(X).
This means that if L has non zero multiplicity, it must carry a holomorphic structure
with a section. In case pg = 0 it also means we are looking at n−. But (L, ∂̄)
has a section if and only if D is an effective divisor on C. In fact a family of
vertical line bundles with a section gives a family of effective divisors on C by
pushforward of the line bundle, and conversely a family of effective divisors on C
gives a family of vertical line bundles with a section by pull back and multiplication
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with a fixed section in O(B) = O(
∑
aiFi) (B for base locus). Thus there is a

natural isomorphism

MBN ∼=MBN
C = Cd

where Cd is the dth symmetric power of C. The functorial isomorphism comes with
an isomorphism O(∆X) = O(π∗∆C +B).

Next we use Grothendieck Riemann Roch (an alias of the family index theorem).
Let q:C × Cd → Cd be the projection map. Then the projection

p:X ×MBN →MBN

can be factored as p = q ◦ π × id. Thus, writing π × id as π,

ch(Rp∗O(∆)) = chRq∗ [O(∆C)⊗Rπ∗O(B)]

= q∗ [chO(∆C) · ch (Rπ∗O(B)) · td(C)]

= q∗ [chO(∆C) · π∗ (chO(B) · td(X))]

= q∗
[
chO(∆C) · π∗

(
eB · (1−K/2 + χ(OX)(pt× Cd)

)]
= χ(OX)q∗

[
ch(O(∆C)) · (pt× Cd)

]
= ch(O(1)χ),

where we have abbreviated the holomorphic Euler characteristic by χ. If we denote
by x the Chern class of O(1), then our computation shows that

ct(Rp∗(O(∆)) = (1 + tx)χ,

at least over the rationals.
The Chern classes of the tangent bundle of Cd are computed in [ACGH, Eq.

VII.5.4]. Denoting the pullback of the θ divisor on Picd to Cd by θ the result is

ct(TCd) = (1 + tx)d+1−ge−tθ/(1+tx)

Combining these two expressions with formula (40), and remembering that the
virtual dimension is zero our multiplicity drops out:

n(Λ0∗(L)) = c(IndRp∗O(∆))−1c(T dC) ∩ [Cd]

= [(1 + tx)d+1−g−χe−tθ/1+tx]td .

With the following identity of formal power series [ACGH, Eq. VIII.3.1]

[(1 + xt)af(−t/(1 + xt))]tb = [(1− xt)b−a−1f(−t)]tb

the expression becomes

n(Λ0∗(L)) = [(1− tx)χ+g−2e−tθ]td =

{
(−1)d

∑d
j=0

(
χ+g−2
d−j

)
θjxd−j

j! if χ+ g − 2 ≥ 0∑d
j=0(−1)j 1−g−χ+d−j

d−j
θjxd−j

j! if χ+ g − 2 < 0.

Now θjxd−j ∩ [Cd] = j!
(
g
j

)
[ACGH, below Eq. VIII.3.3]. The elementary identity∑

j

(
a
j

)(
b
c−j

)
=
(
a+b
c

)
then gives the answer as stated. �

As a second application of the methods developed we give a complex analytic
version of the blow up formula.
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Proposition 43. Let (X,Φ) be a Kähler surface, and L a line bundle on X. Sup-

pose that degΦ(L⊗2(−K)) < λVol(X). Let σ: X̃ → X be the blow up of X in a

point, with Kähler form Φ̃, and let L̃ = L(aE) be a line bundle on X̃ with a ≥ 0.

Suppose that the cohomology class of Φ̃ is close to Φ. Then there is a natural
identification M(L̃) =M(L), and

M(L̃) = [(1 + x)a(a−1)/2M̂(L)]dimR=L·(L−K)−a(a−1).

Here M̂ is the class defined in Remark 18, and x the class of the natural bundle
O(1) over M. In particular if a = 0, 1 then n(L̃) = n(L).

Of course, this proposition determines the multiplicity

n(−)(Λ
0∗(L(aE))) = n(−)(Λ

0∗(L(−aE))).

Since quite in general n+(Λ0∗(L)) = ±n−(Λ0∗(K ⊗ L∨) it determines the corre-
sponding relation for n+ up to sign, which is really all we need here.

Proof. The conditions on the degree imply that a solution of the monopole equa-
tions correspond to a holomorphic structure on L with a section. Since Φ̃ is close
to Φ we have (by definition of close) degΦ̃(L̃) < λVol(X̃), hence solutions on the

blowup also correspond to holomorphic structures on L̃ with a section.
Now aE is contained in the base locus of the sections. Thus, similarly to what we

did for elliptic surfaces, we get an identification ofM(L) withM(L̃) by multiplica-

tion of the section with a section in O(aE), and the universal divisor on X̃×M(L̃)

is ∆̃ = ∆ + aE.
Let p̃ be the projection X̃×M(L)→M(L), and p the projection X×M(L)→

M(L). Then the index computation becomes

Rp̃∗(∆̃) = Rp∗ [O(∆)⊗Rσ∗O(aE)] .

By induction on a, one shows that

Rσ∗O(aE) = O −Oa(a−1)/2
pt .

Since O(∆|pt×M(L)) = O(1) this implies

c(Rp̃∗(∆̃)) = c(Rp∗O(∆))/c(O(1))a(a−1)/2.

Formula (40) now gives us

M(L̃) = [(1 + x)a(a−1)/2
(
c(Rp∗(∆))−1c∗(M(L)

)
]d(L̃).

Since the real virtual dimension of M(L̃) is d(L̃) = L · (L−K)− a(a− 1) and the

term in brackets is exactly M̂(L), we have proved the formula. �
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