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Characterizing Mildly Mixing Actions by Orbit

Equivalence of Products

Jane Hawkins and Cesar E� Silva

Abstract� We characterize mildly mixing group actions of a noncompact

locally compact
 second countable group G using orbit equivalence� We show
an amenable action � of G is mildly mixing if and only if G is amenable and
for any nonsingular ergodic G�action 
 the product G�action � � is orbit
equivalent to � We extend the result to the case of �nite measure preserving
noninvertible endomorphisms
 i�e�
 when G � N
 and show that the theorem
cannot be extended to include nonsingular mildly mixing endomorphisms�
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�� Introduction�

The main purpose of this paper is to present a new characterization of mildly
mixing group actions� Mild mixing was introduced by Furstenberg and Weiss in ����
and characterized in terms of Cartesian products with an ergodic in�nite measure
preserving transformation� It was later discussed in the context of nonsingular
transformations by Aaronson Lin and Weiss in ��� and generalized to nonsingular
actions of locally compact groups by Schmidt and Walters in ����� The related
notion of rigid factors and their absence was discussed under a di�erent name
by Walters in ��	�� For the case of amenable group actions we characterize the
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property of mild mixing in terms of orbit equivalence� If the action is not amenable
or in the case of �nite measure preserving endomorphisms we characterize the
property of mild mixing in terms of the ratio sets only� We also show that the
characterization in terms of orbit equivalence does not extend to mildly mixing
nonsingular endomorphisms�
The motivation for this characterization of mildly mixing in fact for the paper

is to provide a de�nitive answer to a question that has arisen in the literature about
determining the ratio set of a product transformation when the ratio set of each
factor in the product is known� A discussion about the di�culties of de�ning ratio
sets for nonivertible maps and of product transformations appears in Section ��
In particular we illustrate an obstruction to testing for a ratio set value only on
a dense subalgebra �like rectangles in a product space�� Using a mildly mixing
multiplier allows one to avoid this problem�
We assume throughout this paper that all groups are noncompact locally com�

pact second countable and that spaces are nonatomic standard Borel spaces� some�
times for convenience we complete the measure and work with nonatomic Lebesgue
probability spaces� A nonsingular action � of a group G on a space �X�B� �� con�
sists of an action of G on X such that the map � � G � X � X is measurable
and for each g � G the map �g�x� � ��g� x� is a nonsingular automorphism of X 
i�e� �g is an invertible measurable transformation and for any B � B ��B� � � if
and only if �����g B� � ���g��B� � �� An action is ergodic if whenever �g�A� � A
for all g � G then ��A� � � or �� If an action is ergodic and � is not concen�
trated on a single orbit f�gx � g � Gg� we say it is properly ergodic� We will work
only with properly ergodic actions� When no confusion arises we will often write
�g�x� � g�x� for simplicity of notation and G�x� will be used �instead of ��x�� to
denote the entire orbit of the point x under the action of G� All group actions are
assumed to be free�
A G�action � is de�ned to be mildly mixing if for every B � B with � � ��B� �

�
lim inf

g��
��B � gB� � ��

We also say that the G�action has no rigid factors in this case� We recall the
following theorem which was �rst proved by Furstenberg and Weiss ���� and in the
generality we use here by Schmidt and Walters �����

Theorem ���� ���� A nonsingular properly ergodic G�action � is mildly mixing if

and only if for every nonsingular properly ergodic action � of G on a space �Y�F � ���
the product action ��� on �X�Y�B � F � ���� given by g�x� y� � ��g�x�� 	g�y��
is �� � ergodic�

Let G� and G� be two groups with actions �� on �X��B�� ��� and �� on
�X��B�� ��� respectively� We say that �� is orbit equivalent �or Dye equivalent�
to �� if there exists a bimeasurable nonsingular invertible map 
 � �X��B�� ����
�X��B�� ��� such that 
�G��x�� � G��
x� for �� a�e� x � X�� We will de�ne the
notion of ratio set in Section �� Our main theorem is the following�

Main Theorem� Assume that G is a noncompact� locally compact� second count�

able group� If � is any amenable properly ergodic nonsingular action of G on a

standard Borel space �X�B� ��� then the following are equivalent�

�� � is mildly mixing �and hence preserves a �nite measure � �� � ������
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�� For every nonsingular properly ergodic action � of G on �Y�F � ��� the product
action � � � on �X � Y�B � F � � � �� given by g�x� y� � ��g�x�� 	g�y�� is
orbit equivalent to ��

If G is countable �i�e�� discrete�� then � and � are equivalent to�
�� For every nonsingular properly ergodic action � of G on �Y�F � �� such the

product action ��� on �X�Y�B �F � ���� given by g�x� y� � ��g�x�� 	g�y��
is ergodic� we have r�� � �� � r���� where r��� denotes the Krieger ratio

set of the action ��

We also prove versions of the Main Theorem for nonamenable groups and for
mildly mixing �nite measure preserving endomorphisms i�e� when G is the semi�
group N�
Section � reduces the theorem to the case of countable amenable groups and

in Section � we present a proof of the theorem in this setting and its extension to
continuous groups�
In Section � we discuss ratio sets in more detail and present an example that

illustrates the di�culty of computing the ratio set of a Cartesian product and
correct some gaps in the literature on this point�
Finally Section 
 is devoted to extending these results to the case of endomor�

phisms and proving a version of the main theorem for this case� We show that while
the main theorem holds for measure preserving mildly mixing endomorphisms it
cannot be extended to include all nonsingular mildly mixing endomorphisms�
The authors thank the referees for useful suggestions and remarks which im�

proved an earlier version of this paper�

�� De�nitions and Reduction to Countable Amenable

Groups�

In this section we reduce the statement of the main theorem by applying a
sequence of results about group actions from the literature� Many of the statements
below are well�known� However since not all these results appear in print we
provide complete statements of each result needed in this paper�
We �rst use the following theorem of Schmidt and Walters which allows us

to assume from now on that all mildly mixing group actions preserve the given
measure�

Theorem ���� ���� Let G be a locally compact second countable group� and let

��g� x� � �g�x� be a nonsingular properly ergodic action of G on the standard

probability space �X�B� ��� If � is not equivalent to any ��invariant probability

measure on �X�B�� then the action of G is not mildly mixing�

In order to obtain the full strength of our main theorem we use the fact that orbit
equivalence classes of group actions have a complete classi�cation when the group
action is amenable� To avoid unnecessary technicalities about amenable actions of
nonamenable groups we state our second simplifying theorem� We recall that a
group G is amenable if for every continuous action � of G on a compact metrizable
space � there is a ��invariant measure on ��

Theorem ���� ���� If � is an amenable action of G on �X�B� �� and � preserves

�� then G is amenable�
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Corollary ���� If G has a mildly mixing amenable action on �X�B� ��� then G is

an amenable group�

Remark ���� In �
� Connes Feldman and Weiss united the concepts of amenability
and orbit equivalence by showing that a free properly ergodic action of a countable
group is amenable if and only if it is orbit equivalent to a Z�action and a free
properly ergodic action of a continuous group is amenable if and only if it is orbit
equivalent to an R�action�

Assume that G is uncountable and locally compact and has a nonsingular free
action on X � We use a countable cross section to reduce the classi�cation problem
to that of a countable orbit structure a procedure similar to �nding a cross section
of a �ow to represent it as a �ow built under a function� Studying the orbits of
the base transformation gives information about the orbits of the �ow� The ideas
outlined below have been written about in detail by Feldman ����

De�nition ���� If K is precompact with nonempty interior in G and B is mea�
surable in X  then B is called a K�base if the map �jK�B is one�to�one and the set
KB has positive measure� The set KB is called a K�tower�

The existence of cross sections was shown by Forrest ����� in particular if K is a
compact subset of G acting on �X�B� �� and V is any open subset of G then for
any measurable set S � X of positive measure there is a K�base B � X such that
��V B 	 S� � ��
The usefulness of a K�base is to change a continuous G�orbit into a countable

orbit� We need a more general notion of orbit to accomplish this�

De�nition ���� A discrete equivalence relation R on �X�B� is an equivalence re�
lation which as a subset of X � X is product measurable and each equivalence
class R�x� is countable� Any measure on X gives rise to a natural measure for R
and � is said to be nonsingular for R if ��A� � � 
� ��R�A�� � �� Notions of
ergodic and properly ergodic carry over analogously to the relation R� We always
assume that R is nonsingular with respect to the given measure ��

De�nition ���� Two discrete equivalence relations R� on �X��B�� ��� and R� on
�X��B�� ��� are isomorphic if there is a one�to�one measurable map 	 � X� � X�

with �� � 	
�� � �� and for � a�e� x � X� R��	x� � R��x�� We write R�

�� R��

Every example of a discrete equivalence relation is isomorphic to one obtained
by taking a countable group G �which in our setting is equivalent to a discrete
group G� with a nonsingular action on X and de�ning RG�x� � fGxg� i�e� the
orbit relation �cf� �����
Given a K�base B for an uncountable action of G we de�ne a countable equiv�

alence relation on B which is isomorphic to the orbit equivalence relation of a
countable amenable group H � De�ne R � f�gx� x� � gx� x � B� g � Gg� This is a
measurable subset of X �X  and an equivalence class is� R�x� � fy � B � y � gx
for some y � B� g � Gg� One can show that R�x� is countable for each x � B�
Also we have a measure for the relation R de�ned by �B�A� � ��KA� for each
measurable set A � B� with respect to this measure R is nonsingular and ergodic
if and only if the original action � is nonsingular and ergodic with respect to ��
We adapt these results to our setting by proving the following result�
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Proposition ���� Suppose that G is a continuous amenable group� and has the

following properly ergodic actions� a �nite measure preserving action � on �X�B� ���
and a nonsingular action � on �Y�F � ��� Then the product action ��� on �X �
Y�B �F � � � �� given by g�x� y� � ��g�x�� 	g�y�� is orbit equivalent to � if and

only if there exists a countable group H acting on a standard space �Z�D� ��� and
K�bases B � Y for �� and C � X � Y for � � � such that RB

�� RC
�� RH �

Furthermore� given a compact K � G� and K�bases B� � X for � and B� � Y for

�� the set C � B� �B� is a K� base for ����

Proof� �
�� This implication follows from the fact that if Gi i � �� � are un�
countable groups and each Gi action on �Xi�Bi� �i� is almost free and properly
ergodic then the two actions are orbit equivalent if and only if they have they have
bases �Bi� �Bi

� on which the corresponding Ri are isomorphic� equivalently if and
only if for any bases �Bi� �Bi

� either R� is isomorphic to some restriction of R� to
a subset C� � B� or vice versa �cf� �����
���� If � is orbit equivalent to ��� then if � preserves a measure equivalent

to � we can choose any type II relation R for the RH �cf� De�nition ����� If � is
type III then every R obtained will be in the same isomorphism class and again
we can �nd a single RH in that isomorphism class�
The last statement follows since the set K�B��B�� has positive �� � measure

and the map �g� x� y� �� ��g�x�� 	g�y�� from K�B��B� to K�B��B�� � X�Y
is one�to�one� Suppose that ��g�x�� 	g�y�� � ��h�w�� 	h�v��� Then g � h x � w
and y � v by our assumptions� This concludes the proof� �

�� The Orbit Equivalent Multiplier Theorem for Countable

Amenable Groups�

We now let G denote an arbitrary countable group� In this section we charac�
terize mildly mixing actions of countable amenable groups G� At the end of this
section we extend the characterization to continuous groups by applying the results
from the previous section� We assume that � denotes a properly ergodic almost
free action of G on �X�B� ���

���� Orbit equivalence theory for countable amenable groups� The notion
of ratio set for a countable group of ergodic automorphisms was introduced by
Krieger as an invariant under orbit equivalence of nonsingular automorphisms ���
���� In this section it is convenient to assume that �X�B� �� is a Lebesgue probability
space� Since � is a nonsingular action for each g � G the measure ��g�A� � ���gA�

is equivalent to � and the Radon�Nikodym derivative
d��g
d�

exists and is positive
a�e�

De�nition ���� We denote by r���� the set of nonnegative numbers � satisfying�
for any  � � and any set A with ��A� � �� there exists a �g such that�

��A 	 ��gA 	 fx � j
d��g
d�

�x� � �j � g� � ��

Many properties of r���� are proved in ���� and ����� In particular r���� de�
pends only on the measure class of �� we will therefore denote r���� by r��� and
call it the ratio set of �� It is an invariant of orbit equivalence but not a complete
invariant unless r��� � f�n � n � Zg for some � � ��� �� or r��� � R� � f�g�
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De�nition ���� The action � is de�ned to be of type II if r��� � f�g� this case
occurs if and only if � admits a ���nite invariant measure � � �� If ��X� � �
then we say � is type II�� if ��X� �� then we say � is of type II�� Otherwise
� � r��� and we say � is of type III�

All ergodic type II� countable amenable G�actions are orbit equivalent� this was
proved for abelian groups by H� Dye ��� and extended to this generality in �
�� Also
all type II� form a single �distinct� orbit equivalence class as well �� 
�� It was
over a decade later that the rich structure of orbit equivalence classes of hyper�nite
type III group actions was discovered by Krieger ���� and extended to include all
amenable actions in �
��

Poincar�e flows for G�actions� For each g � G  we consider the automor�
phism �g given by the action � and we de�ne a related automorphism ��g on the

product space �X�R�B � BR� �� etdt� by ��g�x� t� � ��gx� t� log�
d��g
d�

�x��� for all

�x� t� � X�R� We denote by �� the action of all ��g  g � G� Let 
��� denote a mea�
surable partition of X�R which generates all ��� invariant sets and let �� denote
the natural surjection from X�R onto the Lebesgue space �Z�S� �� �� X�R�
����
that is �� is a factor map with respect to the ergodic decomposition of ��� We
de�ne a �ow on X �R by Fs�x� t� � �x� t� s�� s � R� Since �� commutes with Fs
the image under �� of Fs is a �ow de�ned by

Us����x� t�� � ���Fs�x� t���

Using this procedure we obtain a measurable decomposition of �� etdt into mea�
sures fqz � z � Zg such that for ��a�e� z � Z qz is an ergodic invariant measure
�in�nite but ���nite� for the G�action given by ��� Krieger proved that orbit equiv�
alent ergodic actions give rise to isomorphic �ows and every ergodic nonsingular
aperiodic �ow arises in this way� We will call the �ow Us on Z the Poincar�e �ow

of ��

Theorem ���� ���� Let G� and G� be two countable amenable groups with ergodic

type III actions �� on �X��B�� ��� and �� on �X��B�� ��� respectively� Then ��
and �� are orbit equivalent if and only if their Poincar�e �ows are isomorphic�

When T denotes a nonsingular automorphism of �X�B� �� we write �X�� ��� T ��
for the in�nite measure preserving skew product de�ned above� This is called the
Maharam skew product �����

���� Using orbit equivalence to characterize mildly mixing actions� We
�rst prove the main theorem for countable groups G and then extend the result to
continuous groups� Our assumptions on G imply that G is countable if and only if
G is discrete�

Theorem ��� �Countable Orbit Equivalence Multiplier Theorem�� Let � be any

amenable� nonsingular� properly ergodic action of a countable group G on �X�B� ���
Then the following are equivalent�

�� � is mildly mixing �and therefore of type II���
�� G is amenable and for every nonsingular properly ergodic action � of G on

�Y�F � ��� the product G�action � � � on �X � Y�B � F � � � �� given by

g�x� y� � ��g�x�� 	g�y�� is orbit equivalent to ��
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�� For every nonsingular properly ergodic action � of G on �Y�F � �� � the product
action ��� on �X � Y�B �F � �� �� is ergodic and r��� � r�� ����

Proof� By Theorem ��� it is clear that � �� � since the property of ergodicity is
invariant under orbit equivalence�
It is also clear that � �� � since the ratio set is invariant under orbit equivalence�
It is trivial that � �� ��
Now we show that � �� �� By Theorem ��� we can assume that the action

given by � preserves � �by replacing � by an equivalent probability measure if
necessary�� We assume �rst that � is of type III and denote by Us its Poincar�e
�ow on �Z�S� �� �� Y � R �
���� Therefore �� is an ergodic type II� trans�
formation with respect to the measure qz for ��a�e� z � Z� �Note that if � is of
type III� then �

� is an ergodic type II� transformation with respect to the mea�
sure � � etdt and Z is a single point�� We now use the G action given by �� on
�Y � R�S �BR� � � etdt� as the multiplier and our hypothesis and Theorem ���
imply that ���� is ergodic with respect to �� qz for ��a�e� z � Z� So we obtain
an ergodic decomposition of � � �� with respect to the measure � � � which is
indexed by points in Z with the measure �� By the uniqueness of ergodic decompo�
sitions we have shown that the ergodic decomposition of ���� with respect to the
measure �� � is isomorphic to that of �� with respect to �� We now consider the
Maharam skew product G action on �X � Y � R�B � S �BR� �� � � etdt� given
by ������� Since ������ �x� y� s� � � � ���x� y� s� these two actions clearly
have the same ergodic decomposition� Therefore applying the above result the
ergodic decompositions of �����

�
and �� are the same so the resulting Poincar�e

�ows are isomorphic� By Theorem ��� this implies that ��� is orbit equivalent
to ��
It remains to show that if � is a type II� action then so is ��� and if � is type

II� then so is ���� This follows immediately since � preserves � so ��� will
be ergodic �nite measure preserving as well� By the results of ��� and �
� discussed
in ��� we have that all type II� actions of a countable amenable group are orbit
equivalent� The type II� case follows for the same reason� �

Example ���� Suppose that T is a type III ergodic automorphism of a Lebesgue
probability space �X�B� �� and let R� denote rotation by � on the circle� Then
for a generic value of � the product automorphism �T�R�� is orbit equivalent to
T ���� However since R� is not mildly mixing the theorem shows that for each �
there will always be some ergodic automorphism T for which the product cannot
be orbit equivalent to T �

Using the idea of the proof in Theorem ��� we obtain the following corollary for
countable nonamenable groups G� In this generality we cannot draw conclusions
about the oribt equivalence of mildly mixing actions only about their ratio sets
and Poincar�e �ows�

Corollary ���� If G is any countable group� and � is any nonsingular� properly

ergodic action of G on �X�B� ��� Then the following are equivalent�

�� � is mildly mixing �and therefore of type II���
�� For every nonsingular properly ergodic action � of G on �Y�F � ��� the product

G�action ��� on �X � Y�B � F � �� �� is ergodic and r��� � r�� ����
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�� For every nonsingular properly ergodic action � of G on �Y�F � �� with Poincar�e
�ow Us� the product action ��� on �X�Y�B � F � ���� is ergodic and has

Poincar�e �ow isomorphic to Us�

Proof� � �� � and � �� � are obvious �using Theorem ����� To show that � ��
� we consider any nonsingular properly ergodic action � and we use the proof
from Theorem ��� � �� � verbatim to conclude that the Poincar�e �ows of � and
��� are isomorphic� this concludes the proof� �

We now prove the main theorem for continuous groups�

Theorem ��� �Continuous Orbit Equivalence Multiplier Theorem�� Assume G is

a noncompact� continuous� locally compact� second countable group and � is any

properly ergodic nonsingular amenable action of G on �X�B� ��� then the following

are equivalent�

�� � is mildly mixing �and hence of type II���
�� For every nonsingular properly ergodic action � of G on �Y�F � ��� the product

action � � � on �X � Y�B � F � � � �� given by g�x� y� � ��g�x�� 	g�y�� is
orbit equivalent to ��

Proof� We have that � �� � since ergodicity is invariant under orbit equivalence
so the ergodicity of � will force the ergodicity of ��� which in turn implies mild
mixing of � using Theorem ����
To show that � �� � we assume that � is mild mixing� Then we can �x a

compact set K of G and obtain a K�base B� and a countable amenable group H 
whose orbits generate R�� We can assume by by Remark ��� that H � Z so is
generated by a single automorphism T � By Proposition ��� the action generated by
T is mildly mixing if and only if the original G�action is� Given the action � we
similarly obtain a K�base B� with a nonsingular ergodic automorphism S �i�e� a
Z�action� generating R�� Since C � B��B� is a K�base the ergodicity of R�� R��
and R��� will follow since T is mildly mixing and will give the result� �

�� Ratio Sets for Group Actions and Endomorphisms�

This paper was motivated by the question of when a �nite measure preserving
endomorphism T preserves the ratio set of its multiplier S in the product T � S�
More generally when can one compute the ratio set of a transformation by testing
the de�ning condition �only� on a dense sub���algebra of sets� A partial answer to
this question appears in �����
In order to correct some incomplete proofs in the literature on ratio sets of

Cartesian products of transformations ��� Lemma ��� and Theorem ���� and ��

Theorem ��	�� we include a short discussion here showing that the proofs are
incomplete since only rectangles were checked in the product spaces� The results
in the last section of this paper complete those results�

���� Ratio sets of countable group actions� In general it is important to de�
termine whether or not a particular value � is in the ratio set of a given action � of
a countable group G� Simpli�cations of the de�ning condition are usually necessary
in order to calculate the ratio set of a countable group of automorphisms� One such
result using the full group of an invertible action appears in �����
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The following example similar to one given in ��� shows that in order to guar�
antee that the value � be in the ratio set of a transformation it is not su�cient
to check the de�ning condition on a countable dense subalgebra� In particular
when computing a value in the ratio set of a Cartesian product it is not enough
to verify the property on product sets� We write r�G� for the ratio set throughout
this section because the action of G will not vary�

Example ���� We �x X �
Q
�

j��f�� �gj and we give this compact space the ��
algebra B of Borel sets� We de�ne  to be the group of transformations on X
generated by �k�x� � xj � � �mod �� if j � k and xk if j �� k� If we put any
nonsingular measure for  on X  it is well�known that the orbits of the  �action are
identical to the orbits of the usual adding machine or odometer �add � and carry��
In fact every countable amenable group action is orbit equivalent to this action of
 with respect to some nonsingular � ����� We use the  notation in order to see
precisely which coordinates change under the group action�
We de�ne a product measure � �

Q
�

j�� �j as follows� We �x � � ��� ��� For

each j � �q q � N we de�ne �j��� �
�
� � �j���� For each j � �q � � q � N we

de�ne

�j��� � ��
�

j�
� ��

�

��q � ���
� �j��� �

�

j�
�

�

��q � ���
�

for each j � �q � � q � N we de�ne

�j��� � ��
�

��q � ���
��j��� �

�

��q � ���
�

In other words for all even j we have the � �� �
�
� � measure and for odd indices j we

have two measures which give a ratio of ��
We can show that r� � � f�g� to do this it is enough to produce a measurable

set C ��C� � � satisfying the condition

��C 	 ���C� � �� � �  �
d��

d�
�x� � �

for all points x in C 	 ���C� This will imply that � �� r� � for any � �� �� We
claim that the set C � fx � x�q�� � �� q � Ng has these properties� Clearly
whenever C gets mapped back onto itself only even coordinates can change so
the Radon�Nikodym derivative condition holds� It remains to show that ��C� � ��
This follows from the fact that

Q
�

q�����
�

��q��	� � � ��

If we now consider the countable dense subalgebra generated by� Bi
j � fx � xj �

i� j � N� i � f�� �gg then clearly we obtain the countable dense subalgebra of B
call it Bo consisting of the usual cylinder sets� We claim that on cylinder sets we
appear to see the value � in the ratio set in the sense that the de�ning property
holds�
First we remark that

lim
q��

� � �q� � ��

q� � �
� ��

we now consider any set of the form� Cp � fx � xj� � i�� � � � � xjp � ipg � Bo� Given

any  � � we �rst �nd Q large enough so that j���q
�
��	

q���
� �j �  for all q � Q� We

now choose j � �q� � and such that j � maxfjp��� Q��g� We de�ne an element
� �  as follows�
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Consider the set

C
�
j���j � fx � Cp � xj � �� xj�� � x�q�� � �g�

De�ne � � �j � �j��� Then

��C
�
j���j� � fx � Cp � xj � �� xj�� � �g � C�


j���j � Cp�

and

d��

d�
�x� �

� � �j� � ��

j� � �
�

which is within  of ��
Therefore

��Cp 	 �
��Cp 	 fx � j

d��

d�
�x�� �j � g� � ��

and this holds for any cylinder Cp even though � is not in the ratio set r� ��

���� Endomorphisms and ratio sets� A dichotomy occurs when one considers
a noninvertible nonsingular ergodic conservative endomorphism T of a standard
probability space �X�B� ��� We will denote by �� the Radon�Nikodym derivative
of T �which is not a priori uniquely de�ned� and consider only the unique T��B
measurable function satisfying�

Z
f � T � ��d� �

Z
fd�

for every nonnegative integrable function f � The Radon�Nikodym derivative deter�
mines an R� �valued cocycle for the N action given by� for all n � �

���n� x� �

n��Y
i�


���T
ix��

With respect to the �nite measure � either
P
�

i�
 ���i� x� �� for a�e� x in which
case we say that � is a recurrent measure for T  or

P
�

i�
 ���i� x� � � for a�e�
x in which case we say that � is a nonrecurrent measure for T � This notion was
introduced in ���� and studied further in ��� � ����
In ���� the authors de�ned the concept of ratio set for endomorphisms exactly as

in De�nition ��� above and showed that r��T � does depend on the representative
in the measure class of � and that r��T � 	 R

� is a closed subgroup of R� if and
only if � is recurrent� In ���� it was shown that if � is a recurrent measure for T 
then T admits a ���nite measure � �� � if and only if �� is a coboundary� i�e�

�� �
f � T

f

for some positive measurable function f � It follows then that this is also equivalent
to saying r��T � � f�g ��
��
In the next section we extend our results to the case of endomorphisms where

we must take into account the special nature of ratio sets for noninvertible maps�
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�� The Orbit Equivalent Multiplier Theorem for

Endomorphisms�

In this section we extend the orbit equivalence characterization theorem to �nite
measure preserving endomorphisms� We also show that the main theorem does not
extend to arbitrary nonsingular mildly mixing endomorphisms�
The equivalent characterizations of mildly mixing group actions given in The�

orem ��� are no longer equivalent in the noninvertible setting� We generalize the
de�nition presented in our introduction and compare it to another generalization
that has been studied �� ��� De�nition 
�� a condition on sets leads to simpler
proofs of our main results� in the measure preserving and invertible case De�ni�
tions 
�� and 
�� are the same� We show most theorems hold for either de�nition
though it is not known if they are equivalent�
In this section we will always work with nonatomic Lebesgue probability spaces�

Let T � �X�B� ��� �X�B� �� be a nonsingular endomorphism� i�e� T is measurable
and ��A� � � if and only if ��T���A�� � �� We recall that T is ergodic if for
all A � B with T��A � A ��A� � � or �� T is conservative if for every A with
� � ��A� � � there is an integer n � � such that ��A 	 T�n�A�� � ��
It follows then that T is conservative ergodic if and only if for all measurable

sets A and B with � � ��A� � � � � ��B� � � there is an integer n � � such that
��B 	 T�n�A�� � �� This is equivalent to the condition that for all measurable A
with � � ��A� � � there is an integer n � � such that ��Ac 	 T�n�A�� � � �where
Ac denotes the complement of A��
When T��B � B�� mod �� then T is called an automorphism and a measurable

inverse T�� exists� If T��B �� B�� mod �� then we call T noninvertible�

De�nition ���� A nonsingular endomorphism T is mildly mixing on sets if

lim inf
n��

��A�T�n�A�� � �

for all sets A with � � ��A� � ��

It is obvious from the de�nition that mildly mixing on sets implies ergodic�

De�nition ���� ��� A nonsingular endomorphism T is mildly mixing if for all f �
L� nk �� fnk � f � Tnk � f weak�� in L� implies f is constant � a�e�

Proposition ���� Let T be a nonsingular endomorphism on �X�B� ���

�� If T is mildly mixing� then T is mildly mixing on sets�

�� If T is mildly mixing on sets� then for any f � �A � L�� nk � �� if

fnk � f � Tnk � f weak�� in L� then f is constant a�e�

Proof� ���� If T it is not mildly mixing on sets then there exists a measurable set
A � � ��A� � � and a subsequence nk such that nk �� as k �� and

lim
k��

jj�A � �T�nkAjj� � ��

It is straightforward to show that convergence of fnk to f  f � L� in the L�

norm implies convergence weak�� in L�� So �A � �T�nkA weak�� in L� which is a
contradiction since the assumption implies that �A is constant a�e�� i�e� ��A� � �
or ��
���� Suppose T is mildly mixing on sets and there is a measurable function of

the form f � �A and a subsequence nk such that f � T
nk � f weak�� in L��
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Then for all g � L� Z
g � �T�nkAd��

Z
g � �Ad��

or

j

Z
g � �T�nkAd��

Z
g � �Ad�j � ��

or

j

Z
g � ��T�nkA � �A�d�j � ��

Choosing g � �A we have

j

Z
�A � ��T�nkAd�� �A�d�j � ��

so Z
��A � �A�T�nkA�d�� ��

and we have

��A 	 T�nkA�� ��A�

and therefore

��A nA 	 T�nkA�� ��

Similarly using g � �Ac Z
�Ac � ��T�nkA � �A�d�� ��

which gives us that

��T�nkA nA�� ��

Therefore by our hypothesis ��A� � � or �� �

Remark 
��� �� When T is type II� or invertible the proof of Propositon 
�� can
be extended to show that the two de�nitions coincide� This also follows from
the orbit equivalence characterization which is proved later in this section�

�� If T is exact �i�e� T�n �Tn�A� � A a�e� for all n � N implies ��A� � � or ��
then T is clearly mildly mixing on sets� This is true for mildly mixing as well
�Proposition ����� �����

�� There exist non�conservative endomorphisms which are mildly mixing on sets�
One can easily construct an exact non�conservative transformation and the
above remark implies this will be mildly mixing on sets�

In the next proposition we show that the Countable Orbit Equivalence Multi�
plier Theorem �Theorem ���� cannot be extended to the case of nonsingular en�
domorphisms� however in Theorem 
�� we prove it for �nite measure preserving
ones�

Proposition ���� There exists an ergodic conservative nonsingular type III endo�

morphism T on �X�B� ��� with � recurrent� such that�

�� T is mildly mixing �and hence mildly mixing on sets�� and
�� for any �nite measure preserving weak mixing automorphism S of �Y�F � ���

T � S is ergodic but r��� �T � S� �� r��S��
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Proof� Let TH be the type III conservative ergodic nonsingular automorphism with
an independent generator constructed by Hamachi in ����� It is known that TH is
the natural extension of an exact conservative endomorphism T and that T is type
III with respect to a recurrent measure � �see �	� or ��
��� Since T is exact by the
remark above T is mildly mixing� If S is any type II� weak mixing automorphism
then by ��� and ��
� T � S is ergodic and type III thus has a di�erent ratio set
from that of S� �

The next theorem was proved by Aaronson Lin and Weiss for nonsingular
mildly mixing endomorphisms �cf� �� Theorem ����	��� We include it as it holds
for mildly mixing on sets as well� By Remark � above it cannot be strengthened
to include conservativity but Proposition 
�� below gives the related result which
yields conservative products�

Theorem ���� If T is a nonsingular endomorphism which is mildly mixing on sets�

then for any ergodic nonsingular automorphism S� T � S is ergodic�

Proof� We assume that A is an invariant set for T � S and let f � �A� Then we
use the proof exactly as in ��� applying Proposition 
����� above to conclude that
f must be constant a�e� �

For the remainder of this section we restrict to �nite measure preserving mildly
mixing endomorphisms where the two de�nitions coincide� Therefore the terminol�
ogy mildly mixing is used unambiguously� We characterize mildly mixing in the
�nite measure preserving case again using a set condition�

Proposition ���� Let T be a nonsingular endomorphism� T is type II� mildly

mixing if and only if

lim inf
n��

��Ac 	 T�n�A�� � �

for all sets A with � � ��A� � ��

Proof� �
�� We recall the well�known fact �cf� ���� p����� that a nonsingu�
lar endomorphism T is type II� if and only if for all sets A with ��A� � �
infn�
 ��T

�n�A�� � �� Now lim inf ��T�n�A�� � lim inf ��Ac 	 T�n�A�� � � for
all sets A with � � ��A� � � and so T is type II�� Since

A�T�n�A� � �Ac 	 T�nA� � �A 	 T�nAc��

it follows that T is mildy mixing�
���� Assume that T is a type II� mildly mixing endomorphism and that � is

the invariant measure� Assume that there exists a sequence fnig tending to� such
that

lim
i��

��Ac 	 T�niA� � ��

Note that

��A� � ��T�niA� � ��Ac 	 T�niA� � ��A 	 T�niA��

The assumption implies that

lim
i��

��A 	 T�niA� � ��A��
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But ��A� � ��A	T�niA����A	T�niAc� therefore limi�� ��A	T�niAc� � �
and so

lim
i��

��A�T�niA� � ��

which is a contradiction� �

We use Proposition 
�� to generalize the Furstenberg�Weiss result ���� Theo�
rem ��� for automorphisms to our noninvertible setting� In addition we strengthen
it by proving it for any nonsingular noninvertible multiplier� a related result is
stated in ����
Our proof is based on De�nition 
�� and an idea used by King ��	 Theorem ���

Proposition ���� Let T � �X�B� ��� �X�B� �� be a mildly mixing �nite measure

preserving endomorphism� If S � �Y�F � �� � �Y�F � �� is a conservative ergodic

nonsingular endomorphism then T � S is conservative ergodic�

Proof� Let A � B � F with � � �� � ���A� � �� It is enough to show that there
exists an n � � such that�

�� ��Ac 	 �T � S��n�A�� � ����

First suppose A is up to a set of � � � measure � of the form A � X � A��
Then since S is conservative ergodic it is obvious that condition ��� holds�
Now suppose that A is not of the above form� We let Ay � fx � X � �x� y� � Ag

denote the cross section of A over y� Using a vector�valued version of Lusin!s
Theorem continuity of the map y � �Ay

on arbitrarily large sets implies the
existence of a set B � B with ��B� � � so that for all � � � if M��� � fy �
��B�Ay� � �g then ��M���� � �� Since B can be chosen to be Ay for � a�e� y we
can �nd B such that � � ��B� � ��
Now since T is mildly mixing we can �nd N � � and � � � such that for all

n � N 

��Bc 	 T�nB� � ���

Using that

�Ac 	 �T � S��nA�y � �Ac�y 	 T
�n�ASny��

that B�Ay � Bc��Ay�
c � Bc��Ac�y and the de�nition of M��� we obtain

�� ��Ac 	 �T � S��nA� �

Z
Y

���Ac�y 	 T
�n�ASny��d��y�

�

Z
M�		

���Bc 	 T�nASny�� ��d��y�

�

Z
M�		�S�nM�		

���Bc 	 T�nB�� ���d��y��

since T preserves � and Sny �M��� if and only if y � S�nM���� Thus

�� ��Ac 	 �T � S��nA� �

Z
M�		�S�nM�		

�d��y��

Since ��M���	S�nM���� � � for in�nitely many n �by the conservativity of S�
this last integral is positive for some n � N  and thus ��� is satsi�ed and so T � S
is conservative ergodic� �
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Every �nite measure preserving endomorphism admits an invertible natural ex�
tension and the following well�known result allows us to apply group action results
obtained earlier� The authors include a short proof for completeness�

Proposition ���� Let T � �X�B� �� � �X�B� �� be a �nite measure preserving

endomorphism and "T � � "X� "B� "�� � � "X� "B� "�� its natural extension� Then T is

mildly mixing if and only if "T is mildly mixing�

Proof� There is a measure preserving map � � "X � X such that � � "T � T � �
a�e� and the sigma�algebra G � ���B is such that G � "T��G � "T��G � � � � and
�n�
 "T

nG generates "B �this corresponds to the fact that the decomposition on "X
that gives the endomorphism is exhaustive��
����� Suppose there exists a set A with � � "��A� � � and

lim inf
n��

"��A� "T�n�A�� � ��

Let  � ��
Since A is measurable there exists k and E � "T kG such that "��A�E� � � Given

k there exists n � k such that "��A� "T�nA� � � Since E is also in "TnG there

exists G � G such that "��A� "TnG� � � Thus "�� "T�nA�G� �  which implies
"��A�G� � �� Therefore A � G� �"� mod ��� Thus A � ���B for some B � B�

Now "��A� "T�nA� � "�����B� "T�n���B� � "� � ����B�T�nB� � ��B�T�nB��
Therefore T cannot be mildly mixing and the contradiction implies the theorem�
The converse is clear� �

The converse of Proposition 
�� now follows easily from Theorem ��� and the
fact that T � S is ergodic if and only if "T � S is ergodic �cf� ��
���
We conclude with the main theorem of this section which extends the invertible

theorems to the noninvertible setting�

Theorem ���� �Orbit Equivalence Multiplier Theorem for Finite Measure Pre�
serving Endomorphisms� Let T be a �nite measure preserving endomorphism� The

following statements are equivalent�

�� T is mildly mixing�
�� For every conservative ergodic nonsingular automorphism S� r����	�T �S� �

r��S� �so T � S is ergodic��

�� For every conservative ergodic nonsingular automorphism S� "T � S is orbit

equivalent to S� where "T is the natural extension of T �

Proof� The implications � 
� � and � �� � follow immediately�
� �� �� Given a conservative ergodic nonsingular automorphism S let S� de�

note its Maharam skew product� Then ��� together with Theorem ��� imply that

r����	� "T � S� � r��S�� more precisely the ergodic decomposition of S
� is isomor�

phic to the ergodic decomposition of � "T�S��� However the hypothesis on T implies

that � "T � S�� � "T � S� and �T � S�� � T � S�� Taking natural extensions we
have�

��T � S�� � ��T � S�� � "T � S��

We claim that the ergodic decompositions of T �S� and ��T � S�� �with respect to
the obvious measures� are isomorphic� we note that these are both in�nite measure
preserving transformations� It is known that a measure for an in�nite measure
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preserving endomorphism is ergodic if and only if the lifted measure is ergodic for
the natural extension� This and the uniqueness of ergodic decompositions proves
the claim�
It then follows immediately that the ergodic decomposition of �T � S�� is iso�

morphic to that of S� and this decomposition completely determines the ratio set
so ��� follows immediately� �

We have the following corollary to the proof just given� For the de�nition and
proof of existence of the natural extension of T when T is a conservative nonsingular
endomorphism with a recurrent measure see �����

Corollary ���� If T is a conservative nonsingular endomorphism of �X�B� �� and

� is a recurrent measure for T � then r��T � � r� "T � where "T on � "X� "B� "�� is the

natural extension�

Proof� As above we show that the ergodic decomposition of � "T �� is identical to

that of "�T �� from which the result follows immediately� �
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