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3-Primary v1-Periodic Homotopy Groups of E7

Donald M. Davis

Abstract. In this paper we compute the 3-primary v1-periodic homotopy
groups of the exceptional Lie group E7. This represents the next stage in
the author’s goal of calculating the v1-periodic homotopy groups of all com-
pact simple Lie groups (at least when localized at an odd prime). Most
of the work goes into calculating the unstable Novikov spectral sequence of
ΩE7/Sp(2). Showing that this spectral sequence converges to the v1-periodic
homotopy groups in this case utilizes recent results of Bousfield and Bendersky-
Thompson.
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1. Introduction

In this paper we compute the 3-primary v1-periodic homotopy groups of the
exceptional Lie group E7.

The p-primary v1-periodic homotopy groups of a space X, denoted v−1
1 π∗(X; p)

or just v−1
1 π∗(X), were defined in [21]. They are a localization of the actual ho-

motopy groups, telling roughly the portion which is detected by K-theory and its
operations. If X is a compact Lie group, each v−1

1 πi(X; p) is a direct summand
of some actual homotopy group of X, and so summands of v1-periodic homotopy
groups of X give lower bounds for the p-exponent of X.
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After the author computed v−1
1 π∗(SU(n); p) for odd p in 1989, Mimura proposed

the goal of calculating v−1
1 π∗(X; p) for all compact simple Lie groups X. This has

now been achieved in the following cases (X, p):
• X a classical group and p odd ([19]);
• X an exceptional Lie group with H∗(X; Z) p-torsion-free ([13]);
• (SU(n) or Sp(n), 2) ([11],[12]);
• (G2, 2) ([22]), (F4 or E6, 3) ([10]), and (E7, 3) (the current paper).

The only cases remaining then are (E8, 2 or 3 or 5) and (SO(n) or F4 or E6 or
E7, 2). Several of these appear tractable.

Now we state our main theorem. We usually abbreviate v−1
1 π∗(X; 3) as v∗(X),

and denote by ν(n) the exponent of 3 in the integer n.

Theorem 1.1. If j is even, then v2j(E7) = v2j−1(E7) = 0. If j is odd, then

v2j(E7) ≈ v2j−1(E7) ≈


Z/3⊕ Z/3min(10,ν(j−9−2·35)+4) if j ≡ 0 mod 3
Z/3⊕ Z/3min(8,ν(j−43)+5) if j ≡ 1, 7 mod 9
Z/3⊕ Z/3min(14,ν(j−13−4·38)+5) if j ≡ 4 mod 9
Z/9⊕ Z/3min(19,ν(j−17−2δ·313)+4) if j ≡ 5, 8 mod 9,

where δ equals one of the numbers 2, 5, or 8. If j is odd and j ≡ 2 mod 9, then
v2j−1(E7) ≈ Z/9⊕ Z/3min(13,ν(j−11)+4), while

v2j(E7) ≈
{

Z/33 ⊕ Z/3ν(j−11)+3 if ν(j − 11) < 10
Z/33 ⊕ Z/312 or Z/34 ⊕ Z/311 if ν(j − 11) ≥ 10.

An immediate corollary of this work is a lower bound for the 3-exponent of E7.
Recall that the p-exponent of a space X, denoted expp(X), is the largest e such
that π∗(X) has an element of order pe. We obtain

Corollary 1.2. The 3-exponent of E7 satisfies exp3(E7) ≥ 19.

Proof. If X is a compact Lie group, then vi(X) ≈ dirlimk,m πi+4k·3m(X). Hence
an element of order 319 in v2j(E7) when j ≡ 17 + 2δ · 313 mod 2 · 315 corresponds
to an element of order 319 in some πn(E7). �
By comparison, the result that we have obtained at other primes is ([13])

expp(E7)


= 17 if p > 17
= 18 if p = 17
≥ 17 if p = 7, 11, or 13
≥ 18 if p = 5.

This should be contrasted with the situation for spheres, where expp(S2n+1) = n
for all odd primes p and all positive integers n by [25] and [18].

Note that in Theorem 1.1, we determine the precise abelian group structure
of all groups (with isolated exceptions), whereas in some earlier papers, such as
[19], [13], and [10], we had been unable to determine the group structure of most
groups v2j−1(X). Because of the insights of [23], we are able not only to resolve the
extension questions (group structure) in almost all cases occurring here, but also
in those of [13] and [10]. These new results about group structure are presented in
Section 3.
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Most of the work is calculation of the v1-periodic unstable Novikov spectral se-
quence (UNSS) of the space Y7 := ΩE7/Sp(2). The main input is the detailed
structure of H∗(ΩE7; Z/3) given in [26] and restated here in Proposition 5.2. The
advantage of Y7 over ΩE7 is that BP∗(Y7) is a free commutative algebra, which
makes its UNSS easier to calculate. Perhaps the most novel feature of the calcula-
tions here is the use of coassociativity to give detailed formulas for BP∗-coaction.
The terms which arise in this way play crucial roles in the calculations. The calcu-
lations of v∗(F4) in [10] are essential in the transition from v∗(Y7) to v∗(ΩE7).

Another delicate point is convergence of the v1-periodic UNSS for Y7. In Sec-
tion 4, we use deep recent work of Bousfield and Bendersky-Thompson to prove that
the v1-periodic UNSS converges to v∗(−) for E7/F4, which we will show implies
similar convergence for Y7.

The author would like to thank Mamoru Mimura, Pete Bousfield, and especially
Martin Bendersky for useful suggestions.

Note added in proof (Oct. 5, 1998): Using a completely different method, based
on [17, 9.2], the author has obtained an independent verification of the results for
v2j(E7) given in Theorem 1.1, and shown that in the cases unresolved in Theorem
1.1, δ = 5 and, if j is odd and ν(j − 11) ≥ 10, then v2j(E7) ≈ Z/33 ⊕ Z/312.
This method relies very heavily on computer calculations, and will be discussed in
a forthcoming paper.

2. Background in v1-periodic homotopy and the UNSS

In this section, we review known results, and establish one new useful result
about computing the UNSS. Although some of these results are also true when
p = 2, it will simplify exposition to assume that p is an odd prime.

The v1-periodic homotopy groups of any topological space X are defined by

v−1
1 πi(X) = lim→ [M i+1+kqpe(pe), X],(2.1)

where q = 2p− 2, a notation that will be used consistently throughout this paper,
and M t(n) denotes the Moore space St−1 ∪n et. Here the direct limit is taken
over increasing values of e and k using Adams maps M t+qpe−1

(pe) → M t(pe) and
canonical maps M t(pe+1)→M t(pe). This definition was given in [21], where their
relationship with actual homotopy groups of many spaces was established.

A space X is said to have an H-space exponent at the prime p if, for some e and
L, pe : ΩLX → ΩLX is null homotopic. It was shown in [21, 1.9] that if X has an
H-space exponent, then

v−1
1 πi(X) ≈ lim→ πi+kqpe(X),

and hence v−1
1 πi(X) is a direct summand of some group πi+kqpe(X). To make this

final deduction, we need to know that the limit group is a finitely generated abelian
group, but this will be the case.

Next we discuss the unstable cobar complex, which can be used to compute the
UNSS for many spaces. We will modify and generalize previous treatments of this
topic. Let BP be the Brown-Peterson spectrum corresponding to the prime p.
Then

BP∗ = π∗(BP ) ≈ Z(p)[v1, v2, . . . ],
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where vi are the Hazewinkel generators of BP∗. Let

Γ = BP∗(BP ) ≈ BP∗[h1, h2, . . . ],

where hi are conjugates of Quillen’s generators ti. We have |vi| = |hi| = 2(pi − 1).
Let η = ηR : BP∗ → BP∗(BP ) be the right unit. We write hivj interchangeably
with η(vj)hi; this is the right action of BP∗ on Γ.

Let M be a Γ-comodule with coaction map ψM : M→Γ ⊗M . Tensor products
are always over BP∗. The stable cobar complex SC∗(M) is defined by

SCs(M) = Γ⊗ Γ⊗ · · · ⊗ Γ⊗M,

with s copies of Γ, and differential d : SCs(M)→ SCs+1(M) given by

d(γ1 ⊗ · · · ⊗ γs ⊗m) = 1⊗ γ1 ⊗ · · · γs ⊗m(2.2)

+
s∑
j=1

(−1)jγ1 ⊗ · · · ⊗ ψ(γj)⊗ · · · ⊗ γs ⊗m

+(−1)s+1γ1 ⊗ · · · ⊗ γs ⊗ ψM (m).(2.3)

Our unstable cobar complex V C∗(M) is a subcomplex of SC∗(M), consisting of
terms satisfying an unstable condition, introduced in the following definition.

Definition 2.4. [6, 3.3] If M is a nonnegatively graded free left BP∗-module, then
V (M) is defined to be the BP∗-span of

{hI ⊗m : 2(i1 + i2 + · · · ) ≤ |m|} ⊂ Γ⊗M,

where I = (i1, i2, . . . ) and hI = hi11 h
i2
2 · · · .

This unstable condition will pervade our computations. Note that for odd di-
mensional classes, this agrees with the module U(M) which has been used most
frequently in earlier work of the author and Bendersky. However, it also agrees with
the V (M) construction employed in [12] on even-dimensional classes. The novelty
here is that it will be applied to a module having classes of both parities.

Define V C0(M) = M , and V Cs(M) = V (V Cs−1(M)). If M is a Γ-comodule,
then the differential d of the stable cobar complex of M induces a differential on the
subcomplex V C∗(M). We will usually replace it by the chain-equivalent reduced
complex obtained by replacing V (M) by ker(V (M) ε−→M) ([5, 2.16]). This has
the effect of only looking at terms which have positive grading in each position.
The homology groups of this unstable cobar complex are denoted by Exts,tV (M).
As observed in [6], these are the usual Ext groups in the abelian category V of
Γ-comodules satisfying the unstable condition in Definition 2.4. Note there is a
shift isomorphism

Exts,t−1
V (BP∗S2n) ≈ Exts,tV (BP∗S2n+1),(2.5)

induced by a shift isomorphism of the unstable cobar complexes.
The following generalization of [8, §7] will be very useful to us. Its proof follows

some suggestions of Martin Bendersky.

Theorem 2.6. If X is a simply-connected CW -space, there is a spectral sequence
{Es,tr (X), dr} which converges to the homotopy groups of X localized at p. If X is
an H-space, and BP∗(X) is a free commutative algebra, then

Es,t2 (X) = Exts,tV (Q(BP∗X)),
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where Q(BP∗X) denotes the indecomposable quotient of BP∗X.

This is the UNSS for the space X. We will write V C∗(X) for the complex
V C∗(Q(BP∗X)), whose homology is E2(X). We denote by Fr the free commutative
algebra functor. If N is a free BP∗-module with basis B = Bev ∪Bod, then Fr(N)
is the tensor product of a polynomial algebra over BP∗ on Bev with an exterior
algebra on Bod.

Proof. The spectral sequence was described in [8]. The determination of E2 when
BP∗(X) is a free commutative algebra is quite similar to that of [9, 6.1] and to the
argument on [12, p.346]. Let M = Q(BP∗X), a free BP∗-module.

Let G denote the category of unstable Γ-coalgebras, and G(−) the associated
functor considered in [8]. If N is a free BP∗-module, then G(N) is defined to be
BP∗(BP (N)), where BP (N) is the 0th space of the Ω-spectrum representing the
homology theory BP∗(−)⊗N . If N has basis B, then

G(N) ≈ BP∗(
∏
b∈B

BP|b|) ≈ Fr(〈hIb : b ∈ B, 2|I| ≤ |b|〉).(2.7)

Here hI is as in Definition 2.4 with |I| =
∑
ij , while |b| denotes the degree of

the basis element b. Also BPn denotes the nth space in the Ω-spectrum for BP .
The first isomorphism in (2.7) is immediate from the definition of G given in [8,
6.3,6.7]. The second isomorphism follows from [33, p.51], which says that H∗(BPn)
is a polynomial algebra if n is even, and an exterior algebra if n is odd, [31, 4.9],
which says that the same thing is then true of BP∗(BPn), and [7, p.1040], which
interprets conveniently the description of the indecomposables first given in [31].
Note that there is an isomorphism of BP∗-modules

Q(G(N)) ≈ V (N).(2.8)

We claim that
BP∗X

ξ−→G(M) →−−−−→ G(V (M)) →−−−−→
→

G(V 2(M)) · · ·(2.9)

is an augmented cosimplicial resolution in G. Here the augmentation ξ is the com-
posite

BP∗X
ηX−→G(BP∗X)

G(ρ)−−−−→ G(QBP∗X),
where the second morphism applies G to the quotient morphism ρ. The cofaces are
of two types:
• G(V qM)

ηG(V qM)−→ G(G(V qM))
G(ρ)−→G(V q+1M), where ρ : G(−) → QG(−) =

V (−) is the quotient morphism.
• G(V i(ψV q−iM )), 0 ≤ i ≤ q, where ψN : N → V (N) stabilizes to the Γ-

coaction.
The degeneracies G(V qM) → G(V q−1M) just do the counit ε on one of the V -
factors. It is clear that all of these morphisms are in G, and the cosimplicial iden-
tities are satisfied as usual. The argument of [12, 3.13] implies that the first type
of coface map and the augmentation ξ are algebra morphisms. The second type of
coface map is an algebra morphism since it is BP∗(f) for an infinite loop map f ,
namely the map BP (N)

BP (g)−→ BP (N ′) induced by a BP∗-morphism N
g−→N ′.

The exactness of the resulting augmented cochain complex

0→ BP∗X
ξ−→G(M)→ G(V (M))→ G(V 2(M))→ · · ·(2.10)
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(obtained using the alternating sum of cofaces as boundaries) follows as in [9, p.387],
but we provide details for completeness. (In comparing with [9], it is useful to note
that V (N) ≈ σ−1U(σN).) Since the coface operators are algebra homomorphisms,
their alternating sum preserves the filtration of this augmented complex by powers
of the augmentation ideal. Let E0 denote the quotients of the filtration. Then,
using (2.8), we have

E0(G(V q(M))) ≈ Fr(Q(G(V q(M)))) ≈ Fr(V q+1(M)),

and E0(BP∗X) ≈ Fr(M). Thus E0(2.10) is the free commutative algebra on the
complex

0→M → V (M)→ V 2(M)→ · · ·
with morphisms the alternating sum of ψ on each V and ψM , which is exact by [16,
7.8]. Since the free commutative algebra functor applied to an exact sequence yields
an exact sequence, we deduce that (2.10) is exact, and hence yields a resolution in
G of BP∗X.

Hence ExtG(BP∗, BP∗X) is equal to the cohomology of the complex obtained by
applying HomG(BP∗,−) to the portion of (2.10) after ξ. Since HomG(BP∗, G(N)) ≈
N , we obtain that ExtG(BP∗, BP∗X) is the homology of the complex

M → V (M)→ V 2(M)→ · · · ,(2.11)

with differentials as in (2.3). The claim of the theorem follows now from [8, 6.17],
which states that E2(X) ≈ ExtG(BP∗, BP∗X), and the observation that (2.11) is
just our unstable cobar complex, whose homology is ExtV(M). �

The following definition will be extremely important.

Definition 2.12. The excess exc(γ) of an element γ of Γ̄s is defined to be the
smallest n such that γι2n+1 is an element of V Cs(S2n+1).

This means that if γ = γ1 ⊗ · · · ⊗ γs, then for 1 ≤ i ≤ s,
γi ⊗ (γi+1 · · · γsι2n+1)

must satisfy 2.4. The following result, which was proved as [20, 4.2], gives a formula
for the excess of certain monomials when s = 2.

Lemma 2.13. If a ≤ b and a ≤ d, then

exc(pahb⊗vchdve) = max
(
b−(p−1)(c+d), d

)
−min

(
a, |b−(p−1)c−pd|

)
−(p−1)e.

In [4], the v1-periodic UNSS was defined and shown to satisfy the following very
nice property.

Theorem 2.14. If p is odd and X is spherically resolved, the v1-periodic UNSS of
X satisfies
• v−1

1 Es,t∞ (X) = v−1
1 Es,t2 (X), and is 0 unless s = 1 or 2 and t is odd.

• v−1
1 Es,t∞ (X) ≈ v−1

1 πt−s(X) if s = 1 or 2 and t is odd.
• v−1

1 Es,t2 (X) = dirlimEs,t+kqp
e

2 (X), where e is chosen sufficiently large, and
the direct limit is taken over increasing values of k under multiplication by
vp

e

1 .
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Here we say that X is spherically resolved if it can be built from a finite number of
odd-dimensional spheres by fibrations. In Section 4, we will show that Theorem 2.14
holds in a certain case in which we cannot prove that X is spherically resolved.

We will use the unstable cobar complex for the unlocalized UNSS, but, as we are
dealing exclusively with v1-periodic classes, we can, in effect, act as if it satisfies
the first two properties of Theorem 2.14.

We will make frequent use of the following result for the spheres, which was
proved in [20], following [8] and [3]. We introduce here terminology x ≡ y mod
S2n−1 to mean that x− y desuspends to (or is defined on) S2n−1. For elements of
Es2(S2n+1), we frequently abbreviate xι2n+1 as x.

Theorem 2.15. 1. The only nonzero groups v−1
1 Es,t2 (S2n+1) are

v−1
1 Es,2n+1+qm

2 (S2n+1) ≈ Z/pe

with s = 1 or 2 and e = min(n, ν(m) + 1).
2. The generator of E1,2n+1+qm

2 (S2n+1) is αm/e := d(vm1 )/pe and satisfies

αm/e ≡ −vm−e1 he1 mod S2e−1,(2.16)

and, if m = spe−1 with s 6≡ 0 mod p, and e > n, then

αm/e ≡ −svm−1
1 h1 mod p.(2.17)

3. If n ≤ ν(m) + 1 and 1 ≤ j ≤ n, then d(pm−ν(m)−1−jhm1 )ι2n+1 has order pj in
E2,2n+1+qm

2 (S2n+1). It equals vm−j−1
1 h1 ⊗ hj1 mod S2j−1.

4. If ν(m) + 1 ≤ n and 1 ≤ j ≤ ν(m) + 1, then d(pm−n−jhm1 )ι2n+1 has or-
der pj in E2,2n+1+qm

2 (S2n+1). It equals vm−n−j+ν(m)
1 h1 ⊗ hn+j−ν(m)−1

1 mod
S2n+2j−2ν(m)−3.

5. The homomorphism Σ2 : E2,2n−1+qm
2 (S2n−1)→ E2,2n+1+qm

2 (S2n+1) is injec-
tive if n ≤ ν(m) + 1 and is multiplication by p otherwise.

Other more technical results proved in earlier works are as follows. Here we begin
the practice, which will be continued throughout the paper, of often abbreviating h1

as h, and v1 as v. Also, we introduce the term “leading term” to refer to a monomial
of largest excess in an element z of V C(X); all other monomials comprising z
desuspend farther than does the leading term.

Proposition 2.18. 1. ([23, 2.9]) If a cycle of V C2(S2n+1) has order pf in
E2,t

2 (S2n+1) and leading term h⊗hjι2n+1, then j+ ν(|E2,t
2 (S2n+1)|) = f +n.

2. ([20, 4.6]) Let ν = ν(σ), and let

z = εvσ−e−1he ⊗ h+ L ∈ V C2,2n+1+qσ(S2n+1)

be a cycle with ε ∈ Z(p) and exc(L) < e− p+ 1 ≤ n− ν. Then

z = d(uεvσ−(e+ν−p+2)he+ν−p+2 + L′),

where u is a unit in Z(p), and exc(L′) < e+ ν − p+ 2. The same conclusion
holds for z = εvσ−e+p−2h⊗ he−p+1 + L.

We will need the following precise description of α2.

Lemma 2.19. The element α2 which generates E1,2q+2n+1
2 (S2n+1) is given by

α2 = −d(v2
1)/p = 1

p (v2 − (v − ph)2) = 2vh− ph2 = hv + vh.
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We will make repeated use of the following result, especially part (1).

Lemma 2.20. Let p = 3. Then
1. η(v1) = v1 − 3h1

2. η(v2) = v2 + 4v3h− 18v2h2 + 35vh3 − 24h4 − 3h2

3. ψ(h1) = h1 ⊗ 1 + 1⊗ h1

4. ψ(h2) = h2 ⊗ 1 + 1⊗ h2 + 4h3 ⊗ h+ 6h2 ⊗ h2 + 3h⊗ h3 − vh⊗ h2 − vh2 ⊗ h
Proof. Parts (1) and (3) are standard, appearing in all referenced papers of the
author and/or Bendersky. Part (2) is taken from Giambalvo’s tables ([24]). Part
(4) is derived from [13, 2.6i], using part (1) of this lemma several times to replace
a v on the right (which is interpreted as η(v)) by v − 3h. Note, however, that the
sum in [13, 2.6i] should be preceded by a minus sign. �

The following result, proved in [23, 2.11,2.12,2.13], will be central to many of
our calculations.

Lemma 2.21. 1. If n ≥ 1, then in E1
2(S2n+1), hp1v1 ≡ vp1h1 mod S1.

2. hn+p−1
1 ⊗ h1 ≡ −vp−1

1 h1 ⊗ hn1 mod S2n−1 if n > 1;
3. d(v`1h

n+1
1 ) ≡ −(`+ n+ 1)v`1h1 ⊗ hn1 mod S2n−1.

3. New results about extensions

In this section, we show that v−1
1 π2j−1(X) is cyclic when X is a sphere bundle

over a sphere with attaching map α1 or α2. This will be crucial to our proof of
Theorem 1.1. We also determine the group structure of all groups v−1

1 π2j−1(X)
when X is an exceptional Lie group for which the orders |v−1

1 π∗(X)| have been
determined.

The first result of this section is the following, in which Bk(2n+ 1, 2n+ kq + 1)
is an S2n+1-bundle over S2n+kq+1 with attaching map αk.

Theorem 3.1. Let n > 1, and k = 1 or 2. Then v2j−1(Bk(2n + 1, 2n + kq + 1))
and v2j(Bk(2n+ 1, 2n+ kq + 1)) are isomorphic cyclic p-groups with exponent

min(n, 2 + ν(j − n)) if j ≡ n mod p(p− 1)
min(n+ k(p− 1), 2 + ν(j − n− k(p− 1))) if j ≡ n mod (p− 1)

and j 6≡ n mod p(p− 1)
0 otherwise.

Proof. Let B = Bk(2n+ 1, 2n+ kq+ 1). The determination of v2j(B) when k = 1
was made in [13, 1.3(2)]. In [10, p.301], v2j(B) was determined when k = 2, n = 4,
and p = 3. The argument there adapts to the general case in a straightforward
fashion.

The cyclicity of v2j−1(B) when k = 1 is proved similarly to [23, p.613]. It is
easy when |v2j(S2n+q+1)| = pn+p−1, for then ∂ : v2j(S2n+q+1) → v2j−1(S2n+1) is
surjective, and so v2j−1(B) ≈ v2j−1(S2n+q+1) is cyclic.

Now consider the case when |v2j(S2n+q+1)| < pn+p−1. By Theorem 2.15(4),
the class d(pm−n−phm)ι2n+q+1 has order p in E2

2(S2n+q+1). Here m is an integer
related to the stem of the class under consideration. Since ∂ annihilates this class,
there is w ∈ V C2(S2n+1) such that z := d(pm−n−phm)ι2n+q+1 − w is a cycle in
E2

2(B). We wish to show that pz is the image of a generator of E2
2(S2n+1).



3-Primary Periodic Homotopy Groups of E7 193

We use the formula

d(htι) = d(ht)ι+ htd(ι),(3.2)

which was explained as [23, 5.4]. This implies that

pz = d(pm−n−p+1hmι2n+q+1)− pm−n−p+1hm ⊗ hι2n+1 − pw.
The first term is a boundary. Using Lemma 2.20, the second term is, mod terms
that desuspend below S2n+1, −vm−n−p+1

1 hn+p−1⊗hι2n+1, and by Lemma 2.21(2),
this is, mod lower terms, vm−n−p+1

1 h ⊗ hnι2n+1, which is the leading term of a
generator of E2

2(S2n+1), by Theorem 2.15 or Proposition 2.18. Also, as we shall
show in the next paragraph, pw desuspends to S2n−1. Since the double suspension
from E2

2(S2n−1) to E2
2(S2n+1) is not surjective, this implies that pz is the image of

a generator of E2
2(S2n+1).

One way to see that w can be chosen so that pw desuspends to S2n−1 is to note
that pz = d(pm−n−p+1hm)ι2n+q−1− pw is a cycle in E2

2(B(2n− 1, 2n+ q− 1)); i.e.,
multiplying by p allows you to double desuspend the whole equation.

The argument when k = 2 is very similar. We will have w ∈ V C2(S2n+1)
satisfying that z := d(pm−n−2p+1hm)ι2n+2q+1 − w is a cycle in E2

2(B), and, as in
the previous paragraph, w can be chosen so that pw double desuspends. We obtain

pz = d(pm−n−2p+2hmι2n+2q+1)− pm−n−2p+2hm ⊗ α2ι2n+1 − pw.
The first term is a boundary, the last term desuspends, while the middle term is,
mod terms that desuspend, vm−n−2p+2

1 hn+2p−2⊗ (2vh− ph2)ι2n+1. The term with
ph2 desuspends, while the first term is, by 2.21(2), 2vm−n−p+1

1 hn+p−1 ⊗ hι2n+1,
which is the leading term of a generator of E2

2(S2n+1). The class {pz} generates
E2

2(S2n+1) by Proposition 2.18(1). �

In [13] and [10], sphere bundles X of the type covered by Theorem 3.1 occurred
as factors in product decompositions of exceptional Lie groups (localized at a prime
p). In those papers, we merely asserted the order of the groups v−1

1 π2j−1(X), but
we can now declare that they are cyclic. There are a few other cases of factors Y
of exceptional Lie groups for which only the order but not the group structure of
v−1

1 π2j−1(Y ) was given in [13], but we can now complete the determination of the
v1-periodic homotopy of all torsion-free exceptional Lie groups by giving the group
structure in these cases. The following result handles all of these, and those left
unresolved in [10].

Proposition 3.3. 1. The 3-primary groups v2j−1(B(11, 15)) and v2j−1(E6/F4),
which occur in [10, 1.2], are cyclic.

2. The factors B(2n+ 1, 2n+ q+ 1) which occur in G2 for p = 5, F4 and E6 for
5 ≤ p ≤ 11, E7 for 11 ≤ p ≤ 17 and for p = 5, and E8 for 11 ≤ p ≤ 29, as
listed in [13, 1.1], have v2j−1(B) cyclic of order given in [13, 1.3(2)].

3. The spaces B(11, 23, 35) and B(23, 35, 47, 59), which occur as factors in 7-
primary E7 and E8, respectively, have v2j−1(B) cyclic of order given in [13,
1.4].

4. The spaces B(3, 11, 19, 27, 35), B(3, 15, 27), and B(3, 15, 27, 39), which occur
as factors of 5-primary E7, 7-primary E7, and 7-primary E8, respectively,
have v2j−1(B) ≈ Z/p⊕ Z/pe−1, where e is the number given in [13, 1.4].
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Proof. The first two parts are immediate from Theorem 3.1. The first space in
part 3 is a factor of SU(18), and in the notation of [23, 1.5] it has N = 5 and
i = 2. By [23, 1.9], its v2j−1(−)-groups are cyclic. Similarly, the second space in
part 3 is a quotient of a factor B = B(11, 23, 35, 47, 59) of SU(30). This factor B
has N = 5 and i = 4 in the notation of [23, 1.5], and hence its groups v2j−1(−)
are cyclic by [23, 1.9]. Thus so are the groups of the desired space B(23, 35, 47, 59),
since v2j−2(S11) = 0 for values of j under consideration.

The spaces in part 4 are also factors of SU(n) and hence are covered by [23, 1.9].
In the notation of [23, 1.5], these three spaces each have N = 1, while i = 4, 2, and
3, respectively, and m̂ > 0. Thus their v2j−1(−) has a split Z/p by [23, 1.9]. �

4. Discussion of E7/F4

In this section we sketch a natural approach to Theorem 1.1. Although we
will not follow it exactly, it is helpful in understanding the approach which we do
employ. Also, the result here about the convergence of the v1-periodic UNSS for
E7/F4 will play a key role in our later deduction of v−1

1 π∗(E7). Throughout the
remainder of the paper, we will have p = 3.

The fibration

F4 → E7 → E7/F4(4.1)

induces a long exact sequence of v1-periodic homotopy groups. The groups v∗(F4)
were computed in [10], while v∗(E7/F4) could be computed by the methods of this
paper. Then we would need to determine the boundary homomorphism and exten-
sions in the exact sequence associated to (4.1). This determination is complicated
by the fact that the Bockstein β is nonzero in H∗(F4; Z/3), which causes BP∗(F4)
to be not a free BP∗-module, and therefore the UNSS of F4 cannot be calculated
directly by known methods. (In [10], v∗(F4) was determined by a combination of
topological and UNSS methods.) Moreover, applying Ω to the fibration does not
help much, because BP∗(ΩE7) is not a free commutative algebra, and so we cannot
apply Theorem 2.6 to compute its v1-periodic UNSS. Hence UNSS methods cannot
be used directly to analyze the exact sequence in v∗(−) associated to (4.1).

Our proof could be expedited slightly if we were assured of the validity of the
following conjecture, due to Mimura.

Conjecture 4.2. Localized at 3, E7/F4 is spherically resolved by spheres of di-
mension 19, 27, and 35, and attaching maps α2. That is, there is a fibration
S19 → E7/F4 → B2(27, 35) and a fibration S27 → B2(27, 35) → S35, with at-
taching maps from 19 to 27 and from 27 to 35 both equal to the element α2 which
generates π7(S0)(3) ≈ Z/3.

Although we cannot use this proposed topological description of E7/F4, we can
say enough about this space to compute its v1-periodic UNSS and prove that it
converges to v∗(E7/F4). However, the specific results of this computation will not
be needed for the reasons cited earlier in this section, and the methods will be
applied again in computing the v1-periodic UNSS of the space Y7, which will be
our approach to v∗(E7), and so we shall wait until the next section to use them.

The following first steps toward proving Conjecture 4.2 will be useful to us later.
They were pointed out by Mimura.
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Proposition 4.3. (a) H∗(E7/F4; Z) is an exterior algebra on classes of dimension
19, 27, and 35. (b) The 35-skeleton of E7/F4 is S19 ∪±α2 e

27 ∪α2 e
35, where α2

generates π7(S0)(3) ≈ Z/3.

The proof of this proposition requires the following result of Kono and Mimura.

Proposition 4.4. ([29]) There is an algebra isomorphism

H∗(E7; Z3) ≈ Z3[e8]/(e3
8)⊗ Λ[e3, e7, e11, e15, e19, e27, e35]

with only nonzero action of β or Ppr on generators given by βe7 = e8, βe15 = −e2
8,

P1e3 = e7, P1e11 = e15, P1e15 = ±e19, P3e7 = e19, P3e15 = e27.

Proof of Proposition 4.3. Part (a) was proved in [30, 9.4]. To prove part (b), let
Φ denote the secondary cohomology operation associated with the relation P1βP1−
βP2 − P2β = 0. This secondary operation detects the map α2 and satisfies P3 =
P1Φ. (See [29, p.353].) In [29, 7.2], it is shown that Φ(ẽ27) = ẽ35 in H∗(Ẽ7), where
Ẽ7 denotes the fiber of E7 → K(Z, 3), from which it follows that Φ(e27) = e35 in
H∗(E7).

Since P1e15 = ±e19 and P3e15 = e27 in H∗(E7), we can use a dual relation
P3 = ΦP1 to deduce that Φ(e19) = ±e27. The dual relation is deduced by applying
the original relation in the S-dual, and then noting that P1, P3, and Φ are all self-
dual. Here duality is given by the antiautomorphism of the Steenrod algebra, while
Φ is self-dual since it is defined by a symmetric Adem relation involving self-dual
terms. �

We close this section by proving the following result, which will be crucial for
us, since we will use it later to deduce that the v1-periodic UNSS of Y7 converges
to v∗(Y7).

Theorem 4.5. The v1-periodic UNSS of E7/F4 converges to v∗(E7/F4). Indeed,
Theorem 2.14 holds if X = E7/F4.

Note that this result would be immediate from 2.14 if we knew that Conjecture
4.2 were true. Instead, we must call upon the following result, which was proved by
Bendersky and Thompson at the request of the author. The statement and proof
of this result rely heavily on the work of Bousfield ([17]), who defined a space to be
K/p∗-durable when its K/p∗-localization map induces an isomorphism in v∗(−).

Theorem 4.6. ([15]) Suppose X is a K/p∗-durable space with K∗(X; Ẑp) isomor-
phic as a Z/2-graded p-adic λ-ring to Λ̂(M), where M = Mn is a p-adic Adams
module which admits a sequence of epimorphisms of p-adic Adams modules

Mn
pn−−−−→ Mn−1

pn−1−−−−→ · · · p2−−−−→ M1 = M(2m1 + 1)

with ker(pi) = M(2mi + 1) for 2 ≤ i ≤ n. Here M(2m + 1) ≈ K∗(S2m+1; Ẑp) as
a p-adic Adams module, and Λ̂(M) denotes the exterior algebra on M . Then the
(BP -based) v1-periodic UNSS of X converges to v∗(X).

Actually, what is proved in [15] is that if Xˆ denotes the K/p-completion, then
X → Xˆ induces an isomorphism in v∗(−). In [14], it is proved that the v1-periodic
UNSS converges to v∗(X )̂, which then implies Theorem 4.6. Theorem 4.5 is an
immediate consequence of Theorem 4.6 and the following two results.
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Theorem 4.7. There is an isomorphism of Z/2-graded p-adic λ-rings

K∗(E7/F4; Ẑp) ≈ Λ̂(M3),

with short exact sequences of p-adic Adams modules

0→M(35)→M3 →M2 → 0 and 0→M(27)→M2 →M(19)→ 0.

Theorem 4.8. E7/F4 is K/3∗-durable.

Proof of Theorem 4.7. We use Proposition 4.3 to give the E2-term of the Atiyah-
Hirzebruch spectral sequence converging to K∗(E7/F4; Ẑp) as Λ[x19, x27, x35] ⊗
KẐ∗p. The spectral sequence collapses to yield the claimed exterior algebra as
K∗(E7/F4; Ẑp). This collapsing can be deduced from Yagita’s result ([34]) that
there is a 3-local isomorphism

BP ∗(E7) ≈ BP ∗(F4)⊗ Λ[19, 27, 35],

or from Snaith’s result ([32]) that the spectral sequence

TorR(G)(Z, R(H))⇒ K∗(G/H)

collapses.
The claim about the decomposition of M3 as a p-adic Adams module will fol-

low once we show that the generators of the exterior algebra K1(E7/F4) satisfy
ψk(x35) = k17x35, ψk(x27) = k13x27 +α1x35, and ψk(x19) = k9x19 +α2x27 +α3x35

for some integers α1, α2, and α3. Note that K1(E7/F4) is spanned by x19, x27,
x35, and x19x27x35. We will show that the top cell of E7/F4, which corresponds to
this product class, splits off stably, and so cannot be involved in Adams operations
on the lower classes. Then the formula for the Adams operations follows from the
inclusions S19 → E7/F4, S27 → (E7/F4)/S19, and S35 → (E7/F4)/(E7/F4)(27).

To prove the stable splitting, we argue similarly to [22, 1.1]. By [2, 3.3], the
S-dual of the manifold E7/F4 is the Thom spectrum of its stable normal bundle.
However, K̃O(E7/F4)(3) = 0, since E7/F4 has no cells whose dimension is a multiple
of 4. Thus the bottom class splits off the Thom spectrum of the stable normal
bundle, and dually the top cell stably splits off the manifold itself. �

The following proof is due to Pete Bousfield.

Proof of Theorem 4.8. In [17], Bousfield utilizes a functor Φ from spaces to spec-
tra, which he had introduced in earlier papers. A map f induces an isomorphism
in v∗(−) if and only if Φ(f) is an equivalence. Let X = E7/F4, and consider the
commutative diagram

Φ(F4) −−−−→ Φ(E7) −−−−→ Φ(X)y y y
Φ((F4)K/p) −−−−→ Φ((E7)K/p) −−−−→ Φ(XK/p)

Since Φ preserves fibrations, the top row is a fibration, and since [17, 7.8] states
that H-spaces are K/p∗-durable, the first two vertical arrows are equivalences. We
will be done by the 5-lemma once we show that the bottom row is a fibration.

By [17, 6.3], K∗(G; Ẑp) ≈ Λ̂(PG), where PG = PK1(G; Ẑp)), for G = F4 or E7,
and by [17, 8.1] Φ(GK/p) ' ΦG is a KẐ∗p-Moore spectrum M(PG/ψp, 1), where
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PG/ψ
p is the quotient by the injective action of the Adams operation. Similarly,

by Theorem 4.7,
K∗(XK/p; Ẑp) ≈ K∗(X; Ẑp) ≈ Λ̂(M3),

and, since XK/p, being K/p-local, is certainly K/p∗-durable, we can apply [17,
8.1] to obtain Φ(XK/p) ' M(M3/ψ

p). There is a short exact sequence of Adams
modules, (e.g. from [34])

0→M3 → PK1(E7)→ PK1(F4)→ 0

and hence a fiber sequence

M(PF4/ψ
p, 1)→M(PE7/ψ

p, 1)→M(M3/ψ
p, 1)

which is the bottom row of the commutative diagram considered above, showing
that it is a fibration, as desired. �

5. E2 of periodic UNSS of ΩE7/Sp(2)

In this long section, we calculate the periodic UNSS of Y7 := ΩE7/Sp(2). In
Section 7, we perform the transition from these results to v−1

1 π∗(E7).
We begin by recalling the following result of Harper, which we used in [10].

Proposition 5.1. ([27, 4.4.1]) There is a 3-equivalence

F4 ≈ K ×B(11, 15),

where K is a finite mod 3 H-space satisfying

H∗(K;F3) = Λ(x3, x7)⊗ F3[x8]/(x3
8),

with x7 = P1x3 and x8 = βx7. Also, B(11, 15) is an S11-bundle over S15 with
P1x11 = x15. Moreover, there is a fibration B(3, 7) → K → W , where W is the
Cayley plane, and a fibration S7 → ΩW → ΩS23.

Because of the torsion in H∗(K; Z), and hence in H∗(E7; Z), we will work with
loop spaces, and use the following result of Hamanaka and Hara ([26]).

Proposition 5.2. The mod 3 homology as Hopf algebras over the Steenrod algebra
satisfies

H∗(ΩF4) ≈ F3[t2, t6, t10, t14, t22]/(t32)
H∗(ΩE7) ≈ F3[t2, t6, t10, t14, t18, t22, t26, t34]/(t32),

with the only nonzero reduced coproducts being

φ(t6) = −t22 ⊗ t2 − t2 ⊗ t22
and

φ(t18) = t22t
2
6 ⊗ t2 + t2t

2
6 ⊗ t22 − t26 ⊗ t6 − t22t6 ⊗ t2t6

−t2t6 ⊗ t22t6 − t6 ⊗ t26 + t22 ⊗ t2t26 + t2 ⊗ t22t26.
The only nonzero action of dual Steenrod operations P3r

∗ are P1
∗ (t6) = t2, P1

∗ (t14) =
t10, P1

∗ (t18) = εt14−t2t26, P1
∗ (t22) = κt36, P1

∗ (t26) = εt22, P1
∗ (t34) = −εt310, P3

∗ (t18) =
t6, P3

∗ (t26) = t14, and P3
∗ (t34) = t22. Here ε = ±1 and κ = ±1.
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Because of the relation t32 = 0 in H∗(ΩE7), Theorem 2.6 does not apply to
X = ΩE7. Instead, we will work with the space Y7 defined in the following theorem.
We begin by noting (see [10, p.296]) that the space B(3, 7) which occurs in 5.1 is
3-equivalent to Sp(2).

Theorem 5.3. Let E7/Sp(2) denote the quotient of the group inclusion Sp(2) →
F4 → E7, and let Y7 = ΩE7/Sp(2). Then

H∗(Y7;G) ≈ Λ[x7]⊗G[x10, x14, x18, x22, x26, x34]

for G = Z/3 or Z(3).

Proof. There is a commutative diagram of fibrations

Y7 → B(3, 7)→ E7

↓ ↓
y=(5.4)

ΩE7/F4 → F4 → E7,

and this, together with the fibration B(3, 7) → F4 → W × B(11, 15), which is a
consequence of 5.1, implies there is a fibration

ΩW × ΩB(11, 15)→ Y7 → ΩE7/F4.(5.5)

The last fibration in 5.1 determines H∗(ΩW ), and the Serre spectral sequence
of (5.5) collapses, yielding the claim of the theorem. The collapsing is proved
by observing that the only possible differential on one of the three polynomial
generators is d17(x18) = εx7 ⊗ x10, but this has ε = 0 by consideration of the map
from (5.5) to the fibration

ΩW × ΩB(11, 15)→ B(3, 7)→ F4.

�

We easily obtain the following consequence.

Corollary 5.6. BP∗(Y7) is a free commutative algebra on classes x7, x10, x14,
x18, x22, x26, and x34, with xi ∈ BPi(Y7).

Proof. By [1, 12.1], the rationalization of Y7 is homotopy equivalent to K(Q, 7)×
K(Q, 10) × · · · × K(Q, 34). Any differentials in the Atiyah-Hirzebruch spectral
sequence

Λ[x7]⊗ Z(3)[x10, x14, x18, x22, x26, x34]⊗BP∗ ⇒ BP∗(Y7)

must be seen rationally, and hence must be zero. That x2
7 = 0 is deduced from the

inclusion S7 → Y7. �

By Theorem 2.6, the UNSS of Y7 can be calculated as the homology of the
unstable cobar complex. This complex splits as the direct sum of the unstable
cobar complex for S7 plus the even-dimensional complex. That is, we have

Es,t2 (Y7) ≈
{
Es,t2 (S7) if t is odd
Exts,tV (BP∗〈x10, x14, x18, x22, x26, x34〉) if t is even

(5.7)

Our work in this section will go into computing

v−1
1 Exts,tV (BP∗〈x10, x14, x18, x22, x26, x34〉).
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This is the v1-periodic Ext which forms the E2-term of the v1-periodic UNSS of Y7.
In Section 7, we will use Theorem 4.6 to show that this spectral sequence converges
to v∗(Y7). Throughout the remainder of the paper, E2 and ExtV will always
refer to their v1-periodic versions, unless explicitly stated to the contrary.

To compute the homology of the unstable cobar complex of Y7, we will utilize
exact sequences in ExtV(−) induced by the injective extension sequences

A(26)→ A(26, 34)→ A(34),(5.8)

A(18)→ A(18, 26, 34)→ A(26, 34),(5.9)

and

A(10, 14)⊗A(22)→ BPev(Y7)→ A(18, 26, 34).(5.10)

Each of these A(−) is the subquotient of BP∗(Y7) on the generators of the indicated
dimensions. Each has an induced Γ-coaction. The sequence (5.10) is closely related
to the fibration

F4 → E7 → E7/F4,

with F4 ≈ B(11, 15)×K.
By [9, 4.3], each of these three injective extension sequences yields a long exact

sequence when ordinary (unlocalized) ExtV(Q(−)) is applied, and these Ext-groups
are the homology of the associated unstable cobar complexes. The v1-periodic
E2-term is the direct limit of a direct system of v1-power morphisms, and these
commute with the morphisms in the exact sequences just described. Since the
direct limit of exact sequences is exact, we obtain that there is an exact sequence
of v1-periodic E2-terms. As observed after Theorem 2.14, we can still work with
the unstable cobar complex, as long as we restrict attention to v1-periodic classes.
We will abbreviate ExtV(Q(A(n1, · · · , nk))) as E2(n1, · · · , nk), and the associated
unstable cobar complex as C(n1, · · · , nk).

In order to analyze ∂ in the long exact Ext sequences, we will need the following
crucial result about the Γ-coaction.

Proposition 5.11. If M is a Γ-comodule which as a BP∗-module is free on x10,
x14, x18, x26, and x34, and if

ψ(x34) = 1⊗ x34 + α2 ⊗ x26 + T1 ⊗ x18 + T2 ⊗ x14 + T3 ⊗ x10

ψ(x26) = 1⊗ x26 + α2 ⊗ x18 + T4 ⊗ x14 + T5 ⊗ x10

ψ(x18) = 1⊗ x18 + α1 ⊗ x14 + T6 ⊗ x10

ψ(x14) = 1⊗ x14 + α1 ⊗ x10,

then T6 = 1
2h

2, and, mod terms that desuspend lower than does the indicated term,
T1 ≡ 1

2v
2h2, T2 ≡ −5vh4, T3 ≡ 1

4vh
5, T4 ≡ h3, and T5 ≡ 1

4vh
3.

This proposition will be applied when M is a quotient of BP∗(Y7). The α2-
terms in ψ(x26) and ψ(x34) are present there by Proposition 4.3, since α2 is the
cycle which detects the homotopy class α2. We will see after the proof that our
application of this proposition to computing the homology of the unstable cobar
complex would not be affected if a unit coefficient were present on α2. Similarly, the
α1-terms in ψ(x18) and ψ(x14) are present because of P1

∗ (t18) and P1
∗ (t14) in 5.2,
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and the homology application would not be affected if they were multiplied by a
unit.

Proof. We begin with the determination of T1. Using also that ψx26 = 1⊗ x26 +
α2⊗x18 mod lower terms, the coassociativity formula (ψ⊗1)ψ(x34) = (1⊗ψ)ψ(x34)
implies that ψ(α2) = α2 ⊗ 1 + 1⊗α2 and ψ(T1) = T1 ⊗ 1 + 1⊗ T1 +α2 ⊗α2. Now,
α2 is given in Lemma 2.19, and one can verify that it is primitive. Let ψ be the
reduced coproduct in BP∗BP , defined by ψ(y) = y⊗ 1 + 1⊗ y+ψ(y). We use the
condition that ψ(T1) = α2 ⊗ α2 to find T1.

First, using Lemma 2.19 and Lemma 2.20(1), we compute

α2 ⊗ α2 = (2vh− 3h2)⊗ (2vh− 3h2)
= 4vh⊗ vh− 6h2 ⊗ vh− 6vh⊗ h2 + 9h2 ⊗ h2

= 4v2h⊗ h− 18vh2 ⊗ h+ 18h3 ⊗ h− 6vh⊗ h2 + 9h2 ⊗ h2.

Now T1 must be a combination of the following five terms, whose ψ are listed.

h4 7→ 4h3 ⊗ h+ 6h2 ⊗ h2 + 4h⊗ h3.(5.12)
vh3 7→ 3vh2 ⊗ h+ 3vh⊗ h2 + v ⊗ h3 − 1⊗ vh3

= 3vh2 ⊗ h+ 3vh⊗ h2 + 3h⊗ h3.

v2h2 7→ 2v2h⊗ h+ v2 ⊗ h2 − 1⊗ v2h2

= 2v2h⊗ h+ 6vh⊗ h2 − 9h2 ⊗ h2.

v3h 7→ v3 ⊗ h− 1⊗ v3h = 9v2h⊗ h− 27vh2 ⊗ h+ 27h3 ⊗ h.
h2 7→ 4h3 ⊗ h+ 6h2 ⊗ h2 + 3h⊗ h3 − vh⊗ h2 − vh2 ⊗ h.

We solve a system of linear equations for the coefficients of these five terms, to
see what combination T1 can have ψ(T1) = α2 ⊗ α2, as required. We find that the
desired term T1 is given by

T1 = 9
2h

4 − 6vh3 + 2v2h2 + c1(−3h4 + vh3 + 3h2)

+ c2(− 27
4 h

4 + 9vh3 − 9
2v

2h2 + v3h),

with c1 and c2 in Z(3). Replacing 3h by v− η(v) at several places, this simplifies to

T1 = 1
2v

2h2 + L,

where L desuspends to S3.
The other Ti’s are determined similarly. Coassociativity implies

ψ(T6) = α1 ⊗ α1

ψ(T4) = α2 ⊗ α1

ψ(T5) = α2 ⊗ T6 + T4 ⊗ α1(5.13)

ψ(T2) = α2 ⊗ T4 + T1 ⊗ α1

ψ(T3) = α2 ⊗ T5 + T1 ⊗ T6 + T2 ⊗ α1.

That T6 must equal 1
2h

2 is easily determined (since α1 = −h). To determine T4,
we write α2 ⊗ α1 = −2vh⊗ h+ 3h2 ⊗ h, and note that ψ acts as follows:

h3 7→ 3h2 ⊗ h+ 3h⊗ h2

vh2 7→ 2vh⊗ h+ 3h⊗ h2

v2h 7→ 6vh⊗ h− 9h2 ⊗ h
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Solving a system of equations for the coefficients of h3, vh2, and v2h yields

T4 = h3 − vh2 + c(3h3 − 3vh2 + v2h),(5.14)

with c ∈ Z(3). All terms except the first are defined on S5, and so T4 is as claimed.
We must have ψ(T5) = vh ⊗ h2 − 3

2h
2 ⊗ h2 − h3 ⊗ h + vh2 ⊗ h. The terms of

which T5 is a linear combination are the same as those in T4, which were listed with
their ψ(−) in (5.12). Solving this system of equations yields that the combination
whose ψ(−) is that required of T5 can be

− 1
4h

4 + 1
3vh

3 + c1(−h4 + 1
3vh

3 + h2) + c2(− 27
4 h

4 + 9vh3 − 9
2v

2h2 + v3h),

for any c1 and c2 in Z(3). However, fractions with 3 in the denominator do not
lie in Z(3). The only way to prevent this is to specify that c1 must be of the form
−1 + 3k, with k ∈ Z(3). This yields

T5 = 3
4h

4 − h2 + k(−3h4 + vh3 + 3h2) + L,

where L (the c2-term) desuspends to S3. In two places, we replace 3h4 by vh3−h3v,
yielding

T5 = 1
4vh

3 + L′,(5.15)

as desired. In our determination of T5, we should also take into account the homo-
geneous part of (5.14), as it contributes to the T4 ⊗ α1-term of ψ(T5). When the
resulting equations are solved, we obtain an additional homogeneous part of T5,
equal to

c′( 3
4h

4 − vh3 + 1
2v

2h2) = c′(− 3
4vh

3 − 3
4h

3v + 1
2v

2h2),

which desuspends farther than the leading term of (5.15). Thus T5 is as claimed.
Similarly, by (5.13) we must have (mod homogeneous terms that will be consid-

ered below)

ψ(T2) = (2vh− 3h2)⊗ (h3 − vh2)− ( 9
2h

4 − 6vh3 + 2v2h2)⊗ h
= 2vh⊗ h3 − 3h2 ⊗ h3 − 2v2h⊗ h2 + 9vh2 ⊗ h2 − 9h3 ⊗ h2

− 9
2h

4 ⊗ h+ 6vh3 ⊗ h− 2v2h2 ⊗ h.

The terms that can comprise T2 are listed below, with their ψ.

h5 7→ 5h⊗ h4 + 10h2 ⊗ h3 + 10h3 ⊗ h2 + 5h4 ⊗ h
vh4 7→ 3h⊗ h4 + 4vh⊗ h3 + 6vh2 ⊗ h2 + 4vh3 ⊗ h
v2h3 7→ −9h2 ⊗ h3 + 6vh⊗ h3 + 3v2h⊗ h2 + 3v2h2 ⊗ h
v3h2 7→ 27h3 ⊗ h2 − 27vh2 ⊗ h2 + 9v2h⊗ h2 + 2v3h⊗ h
v4h 7→ −81h4 ⊗ h+ 108vh3 ⊗ h− 54v2h2 ⊗ h+ 12v3h⊗ h
vh2 7→ 3vh⊗ h3 + 6vh2 ⊗ h2 + 4vh3 ⊗ h− v2h⊗ h2 − v2h2 ⊗ h+ 3h1 ⊗ h2

h1h2 7→ 3h⊗ h4 + 9h2 ⊗ h3 + 10h3 ⊗ h2 + 4h4 ⊗ h− vh⊗ h3

−2vh2 ⊗ h2 − vh3 ⊗ h+ h1 ⊗ h2 + h2 ⊗ h1

v2h1 7→ 24h4 ⊗ h− 35vh3 ⊗ h+ 18v2h2 ⊗ h− 4v3h⊗ h+ 3h2 ⊗ h1
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We solve a system of equations to find the combination of these terms having ψ as
desired. We obtain

T2 = − 9
10h

5 + 3
2vh

4 − 2
3v

2h3 + c1( 81
5 h

5 − 27vh4 + 18v2h3 − 6v3h2 + v4h)

+c2(− 12
5 h

5 + 7vh4 − 17
3 v

2h3 + 2v3h2 + vh2 − 3h1h2 + v2h1).

As in the previous case, in order to prevent 3 in a denominator, we choose c2 =
−1 + 3c. This yields

T2 = 3
2h

5 − 11
2 vh

4 + 5v2h3 − 2v3h2 − vh2 + 3h1h2 − v2h1

plus two homogeneous terms which are defined on S7. The first two terms in T2

combine to 1
2vh

4 − 1
2h

4v − 11
2 vh

4, and so, mod terms that are defined on S7, we
have T2 ≡ −5vh4, as claimed. We have omitted here consideration of homogeneous
parts of T4 and T1 already obtained. These yield additional homogeneous terms in
T2 which are, in fact, defined on S5.

Finally we apply a similar method to determine T3. It is again a matter of
solving a system of linear equations for the coefficients of the monomials that can
comprise T3. We list the terms involved for the convenience of the reader, who can
quite easily check that our claimed T3 does indeed have the required coproduct.
The lead term of this T3 will play an important role in our subsequent calculations.
Indeed, it caused the answer for v∗(E7) to turn out differently than the author had
anticipated.

Momentarily ignoring some homogeneous parts, T3 must satisfy

ψ(T3) = (2vh− 3h2)⊗ ( 3
4h

4 − h2) + ( 9
2h

4 − 6vh3 + 2v2h2)⊗ 1
2h

2

+( 3
2h

5 − 11
2 vh

4 + 5v2h3 − 2v3h2 − vh2 + 3h1h2 − v2h1)⊗ (−h).

= − 9
4h

2 ⊗ h4 + 9
4h

4 ⊗ h2 − 3
2h

5 ⊗ h+ 3
2vh⊗ h4 − 3vh3 ⊗ h2

+ 11
2 vh

4 ⊗ h+ v2h2 ⊗ h2 − 5v2h3 ⊗ h+ 2v3h2 ⊗ h+ 3h2 ⊗ h2

−3hh2 ⊗ h− 2vh⊗ h2 + vh2 ⊗ h+ v2h⊗ h(5.16)

We list the terms that can comprise T3 along with their coproducts.

h6 7→ 6h⊗ h5 + 15h2 ⊗ h4 + 20h3 ⊗ h3 + 15h4 ⊗ h2 + 6h5 ⊗ h
vh5 7→ 3h⊗ h5 + 5vh⊗ h4 + 10vh2 ⊗ h3 + 10vh3 ⊗ h2 + 5vh4 ⊗ h
v2h4 7→ −9h2 ⊗ h4 + 6vh⊗ h4 + 4v2h⊗ h3 + 6v2h2 ⊗ h2 + 4v2h3 ⊗ h
v3h3 7→ 27h3 ⊗ h3 − 27vh2 ⊗ h3 + 9v2h⊗ h3 + 3v3h⊗ h2 + 3v3h2 ⊗ h
v4h2 7→ −81h4 ⊗ h2 + 108vh3 ⊗ h2 − 54v2h2 ⊗ h2 + 12v3h⊗ h2 + 2v4h⊗ h
v5h 7→ 243h5 ⊗ h− 405vh4 ⊗ h+ 270v2h3 ⊗ h− 90v3h2 ⊗ h+ 15v4h⊗ h
v2h2 7→ 3v2h⊗ h3 + 6v2h2 ⊗ h2 + 4v2h3 ⊗ h− v3h⊗ h2 − v3h2 ⊗ h

−9h2 ⊗ h2 + 6vh⊗ h2

vhh2 7→ 3vh⊗ h4 + 9vh2 ⊗ h3 + 10vh3 ⊗ h2 + 4vh4 ⊗ h− v2h⊗ h3

−2v2h2 ⊗ h2 − v2h3 ⊗ h+ 3h⊗ hh2 + vh⊗ h2 + vh2 ⊗ h
h2h2 7→ 3h⊗ h5 + 12h2 ⊗ h4 + 19h3 ⊗ h3 + 14h4 ⊗ h2 + 4h5 ⊗ h− vh⊗ h4

−3vh2 ⊗ h3 − 3vh3 ⊗ h2 − vh4 ⊗ h+ 2h⊗ hh2 + h2 ⊗ h2

+2hh2 ⊗ h+ h2 ⊗ h2

v2h
2 7→ 24h4 ⊗ h2 − 35vh3 ⊗ h2 + 18v2h2 ⊗ h2 − 4v3h⊗ h2 + 3h2 ⊗ h2

+2v2h⊗ h
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vv2h 7→ −72h5 ⊗ h+ 129vh4 ⊗ h− 89v2h3 ⊗ h+ 30v3h2 ⊗ h− 4v4h⊗ h
−9hh2 ⊗ h+ 3vh2 ⊗ h+ 3v2h⊗ h

The solution of the resulting system of linear equations is

T3 = 3
4h

6 − 1
2v

2h4 + 1
2v

3h3 − 1
2v

2h2 + vhh2 − 3
2h

2h2 + 1
2v2h

2(5.17)

+c1(− 81
2 h

6 + 81vh5 − 135
2 v2h4 + 30v3h3 − 15

2 v
4h2 + v5h)

+c2(9h6 − 45
2 vh

5 + 21v2h4 − 59
6 v

3h3 + 2v4h2 + 1
2v

2h2

−3vhh2 + 9
2h

2h2 − 3
2v2h

2 + vv2h).

The first term is rewritten as 1
4 (vh5−h5v), in order to see it with a unit coefficient.

All other terms desuspend to S9.
The terms T1, T5, and T2 which appear in the equation (5.13) for ψ(T3) which

gave rise to the system of equations which we just solved have homogeneous parts
whose coefficients we do not know. For example, T5 includes a summand of c(−3h4+
vh3 + 3h2). Thus added on to the RHS of (5.16) must be α2⊗ c(−3h4 + vh3 + 3h2)
and 7 other homogeneous parts arising similarly. For each of these we solve a
system of equations similar to the one just solved, but with the RHS equal to the
appropriate homogeneous term. These give homogeneous summands to T3. All
resulting terms desuspend to S7, and so may be ignored. We spare the reader the
details. �

The terms α2⊗x26, α2⊗x18, α1⊗x14, and α1⊗x10 appear in the hypothesis of
Proposition 5.11 because of attaching maps in ΩE7. One might think that care is
required as to the coefficients (±1) of the α2 and α1 in Proposition 5.11. However,
this is not the case. For if the four terms listed at the beginning of this paragraph are
multiplied by units u1, u2, u3, and u4, respectively, then the terms T1 to T6 which
are determined in Proposition 5.11 are multiplied by units u1u2, u1u2u3, u1u2u3u4,
u2u3, u2u3u4, and u3u4, respectively. This can be seen by consideration of the first
part of the proof of 5.11. For example, we would have ψ(T1) = u1α2 ⊗ u2α2.

The terms α1, α2, and Ti in 5.11 will be used in the proofs of the theorems
throughout the remainder of this section to determine boundary morphisms in exact
sequences, and in pulling back terms whose boundary is 0. If units ui were present
as we are discussing here, it will only have the effect of multiplying boundaries
and pullbacks by unit amounts. The point is that all terms in a boundary will be
multiplied by the same unit, so that cancellation due to different units cannot take
place. For example, suppose that a term hI1x34 pulled back to hI1x34 + hI2x26

in the case where all ui = 1. Then, with units ui present, hI1x34 pulls back to
hI1x34+u1h

I2x26, and the boundary sends this to hI1⊗u1u2T1x18+u1h
I2⊗u2α2x18,

which is just u1u2 times what it would have been. These uniform units do not affect
whether terms are zero, and hence can be ignored.

Now we can compute Es,2j2 (Y7), dividing into cases depending upon the parity
and mod 9 value of j. These will be delineated in Theorems 5.18, 5.23, 5.29, 5.32,
5.34, and 6.1. Note that the exact sequences in E2 induced by (5.8), (5.9), and
(5.10), together with (5.19), imply that if t is even, then Es,t2 (Y7) = 0 unless s = 1
or 2.

The first case is as follows.
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Theorem 5.18. If j is odd, and j ≡ 1 or 7 mod 9, then

E1,2j
2 (Y7) ≈ E2,2j

2 (Y7) ≈ Z/3⊕ Z/3min(8,ν(j−43)+5).

Proof. Let j be as in the theorem, and ν = ν(j − 7). Formally, we obtain the
result by computing first the exact sequence in E2(−) associated to (5.8), then
that associated to (5.9), and then that associated to (5.10). We know from (2.5)
and 2.15 that

Es,2j2 (2m) ≈
{

Z/3min(m,ν(j−m)+1) if j ≡ m mod 2, and s = 1 or 2
0, otherwise

(5.19)

and we know from [13, 2.4] how to compute E2(10, 14) from E2(10) and E2(14).
These are the building blocks, but the glue is the boundary morphisms in the exact
sequences, and computing these requires much care.

A convenient way to picture the calculations is by Diagram 5.20, which we think
of as resembling an Adams spectral sequence chart.

Diagram 5.20.

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •
2 2 4 4 5 5 6 6 7 7

34

26

18

14

10

22

ν = 1 ν = 3 ν = 4 ν = 5 ν ≥ 6

B
B
B
B
B
B
B
BM

A
A
A
A
AAK

A
A
A
A
AAK

A
A
A
A
AAK

A
A
A
A
AAK

J
J
J
JJ]

S
S
S
So

A
A
A
A
A
AK

A
A
A
A
A
AK

S
S
S
So

S
S
S
So

S
S
S
So

S
S
S
So
Q

Q
Qk Q
Q
Qk

Each • represents a Z/3, and each integer e represents a Z/3e. These groups
correspond to E2(2m), where 2m is the integer indicated on the left side of the
diagram. The vertical lines indicate nontrivial extensions (multiplication by 3).
These are true because of the α1 and α2 attaching maps and Theorem 3.1. The
positioning of the 22-class is due to (5.5), i.e., that it is split away from the 10-,
14-, and 18-classes.

For example, the diagram for the case ν = 3 means that if ν(j − 7) = 3
the boundary morphisms in (5.8) and (5.9) are 0, yielding E1,2j

2 (18, 26, 34) ≈
E2,2j

2 (18, 26, 34) ≈ Z/34, while in (5.10)

E1,2j
2 (18, 26, 34) ∂−→E2,2j

2 (22)⊕ E2,2j
2 (10, 14) ≈ Z/3⊕ Z/35

is 0 into the first summand and has image of order 32 in the second summand.
Using either the exact sequence (5.10) or the diagram, this implies that in this case

E1,2j
2 (Y7) ≈ E2,2j

2 (Y7) ≈ Z/3⊕ Z/37.

The case ν = 2 omitted from Diagram 5.20 has groups of order 33, i.e. labeled
“3,” on the 14-cell, and otherwise has the same groups as do the other values of ν.
If (j − 7)/18 ≡ 1 mod 3, then it has a differential like that in the case ν = 1, while
if (j − 7)/18 ≡ 2 mod 3, then it has no nonzero differentials.
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Of course, we still have to verify that the differentials are as claimed in Dia-
gram 5.20 and the above paragraph describing the case ν = 2. The reader can
easily verify that this will imply Theorem 5.18. The Z/3 on the 22-cell splits for
algebraic reasons.

We analyze the differentials by the methods used extensively in [23] and [20],
involving the unstable cobar complex. One convention is that we often omit writ-
ing powers of v1 on the left; they can always be determined by consideration of
total degree. The boundary E1,2j

2 (34) ∂−→E2,2j
2 (26) sends the generator hι34 to

h ⊗ α2ι26 = h ⊗ (hv + vh)ι26. This is obtained from ψ(x34) = 1 ⊗ x34 + α2 ⊗ x26

in 5.11, and from 2.19. The relationship of ∂ with the coaction is standard; see,
e.g., [20, 2.7].

We use 2.20 to write h⊗vh = vh⊗h−3h2⊗h, and 3h2⊗h = h2⊗ (v−ηv) = 0.
Also, h ⊗ hv is defined on S1 and hence is 0 in E2(−). So the image of ∂ equals
vpwrh ⊗ hι26. By 2.18(second part of (2)), this cycle equals d((h3 + L)ι26), with
ν = ν(j − 13) = 1 in 2.18. Here we have omitted a unit coefficient, which will
be done routinely unless the coefficient plays a significant role. Here L desuspends
lower than the associated term, in this case h3, a notation that will be employed
frequently, with the L’s sometimes adorned with primes to distinguish them from
one another.

Thus the generator hι34 pulls back to hι34 + (h3 + L)ι26 in E1,2j
2 (26, 34), and ∂

in (5.9) sends this to (h ⊗ ( 1
2v

2h2 + L′) + (h3 + L) ⊗ α2)ι18 ∈ E2,2j
2 (18). Here we

have used 5.11. The leading term here is

1
2h⊗ v2h2 = 1

2 (ηv)2h⊗ h2 = 1
2 (v − 3h)2h⊗ h2,

which has leading term 1
2h⊗ h2. Note how v’s on the left are absorbed into other

unstated v’s. By 2.18(2), this equals d((h3 + L′′)ι18) (omitting unit coefficients),
and so our generator pulls back to

z ≡ hι34 + h3ι26 + h3ι18 ∈ E1,2j
2 (18, 26, 34).

Here, and subsequently, “≡” will mean “mod L,” with the lower terms varying from
term to term.

We analyze the two components of ∂(z) in the exact sequence of E2 derived from
(5.10). We begin by showing that the component ∂2 into E2,2j

2 (22) is 0. We have
∂2(z) = (h⊗ (h3 +L)+h3⊗h)ι22. Here we use the α1 attaching map from 22 to 26
in ΩE7, which causes the ⊗hι22. The ⊗(h3 +L) is obtained by the same calculation
that gave T4 in Proposition 5.11. But these terms don’t even matter very much,
for such terms desuspend far below S22, and hence are 0 in E2,2j

2 (22) ≈ Z/3.
Here we use a fact that we will use frequently, essentially from 2.15(5), that if
E2,2j

2 (2n + ε) ≈ Z/p, then an element in it which is in the image of the double
desuspension is 0.

Similar, although much more delicate, considerations apply to obtaining the
other component

∂1 : E1,2j
2 (18, 26, 34)→ E2,2j

2 (10, 14).(5.21)

First we determine the composite when ∂1 is followed (by ρ) into E2,2j
2 (14). Using

Proposition 5.11 and the usual relationship between the coaction and the boundary
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morphism, we obtain

ρ∂1(z) ≡ (h⊗ vh4 + h3 ⊗ h3 + h3 ⊗ h)ι14.(5.22)

Here all terms except h⊗ vh4 desuspend to S7, while, mod S7, h⊗ vh4 ≡ h⊗ h4.
If ν ≥ 3, then, by 2.18(1), this element has order 3min(4,ν−2) in E2,2j

2 (14), and
this is as claimed in Diagram 5.20, with the arrows above the lowest one being a
consequence of the lowest one and the extensions.

If ν = 1, then by 2.18(2) and (5.22), ρ∂1(z) = d((h6 +L)ι14). Thus z pulls back
to

z′ ≡ hι34 + h3ι26 + h3ι18 + h6ι14 ∈ C(14, 18, 26, 34).

Using 5.11, this satisfies

∂(z′) ≡ (h⊗ vh5 + h3 ⊗ vh3 + h3 ⊗ h2 + h6 ⊗ h)ι10.

Here there can be “lower” terms associated with the factor on either side of the
tensor sign, omitted v’s occur only on the left, and, as usual, unit coefficients are
omitted. All terms here except the first desuspend to S9, while that term generates
E2,2j

2 (10), so the image of ∂1 in this case has order 3 in E2,2j
2 (10, 14), as claimed.

Finally we consider the delicate case when ν = 2. In this case, there are two
terms with the potential to cancel, and so we must keep track of unit coefficients.
We write j = 7 + 18c, with c 6≡ 0 mod 3. As before, E1,2j

2 (18, 26, 34) is generated
by z ≡ hι34 + h3ι26 + h3ι18. The unit coefficients of the second and third terms
will not be important, and so are omitted. The leading term of ρ∂1(z) in E2,2j

2 (14)
is, by 5.11, h ⊗ (−5vh4)ι14 ≡ h ⊗ h4ι14, where we have used that −5 ≡ 1 mod
3. By Lemma 2.21(3), d(h7) ≡ −9ch ⊗ h6 in this stem. ((` + n + 1) of the
lemma multiplied by 2(p − 1) equals 2j − 14.) Thus, since 9h6 ≡ h4, we obtain
ρ∂1(z) = d((− 1

ch
7 + L)ι14), and so z pulls back to

z′ ≡ hι34 + h3ι26 + h3ι18 + 1
ch

7ι14.

This satisfies

∂(z′) ≡ (h⊗ 1
4vh

5 + uh3 ⊗ vh3 + u′h3 ⊗ h2 + 1
ch

7 ⊗ (−h))ι10

with u and u′ units in Z(3). The middle terms desuspend, while the first and last
combine, using 2.21(2), to give 1

4 + 1
c times the generator of E2,2j

2 (10) ≈ Z/3. This
is nonzero if c ≡ 1 mod 3, and 0 if c ≡ 2 mod 3, as claimed in the paragraph earlier
in the proof which described the case ν = 2. �

The statement and proof for the case j ≡ 4 mod 9 are quite similar to the cases
just completed.

Theorem 5.23. If j is odd, and j ≡ 4 mod 9, then

E1,2j
2 (Y7) ≈ E2,2j

2 (Y7) ≈ Z/3⊕ Z/3min(14,ν(j−13−4·38)+5).

Proof. Let j be as in the theorem, and ν = ν(j−13). As in the previous theorem,
the way in which the result stated in the theorem is obtained is most conveniently
expressed in a diagram.
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Diagram 5.24.

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

E2,2j
2 E1,2j

2

•

•

•

•

•

•

2 2

• •

ν + 1 ν + 1 10 10 11 11 12 12 13 13

34

26

18

14

10

22

ν ≤ 7 ν = 9 ν = 10 ν = 11 ν ≥ 12

B
B
B
B
B
B
B
BM

A
A
A
A
AAK

A
A
A
A
AAK

A
A
A
A
AAK

A
A
A
A
AAK

J
J
J
JJ]

A
A
A
A
AAK

A
A
A
A
AAK

S
S
S
So

S
S
S
So

S
S
S
So

S
S
S
So

S
S
S
So

Q
QQk
Q

QQk

The omitted case ν = 8 is like the case ν ≤ 7 if (j−13)/(2 ·38) ≡ 1 mod 3, while
it has all differentials 0 if (j − 13)/(2 · 38) ≡ 2 mod 3. In most cases, the Z/3 from
the 22-class splits for algebraic reasons. The splitting in the cases when ν ≥ 11
require a bit of care, which will be dealt with later in the proof. The boundary in
the diagram in these cases is meant to be hitting the sum of the classes on the 22
and the 18.

We begin with the case ν ≤ 7. We start as in the proof of 5.18, but this time
the boundary of hι34 in E2,2j

2 (26) is d((hν+2 + L′)ι26), by 2.18(2). (In the proof
of 5.18, we had ν(j − 13) = 1.) Thus the generator of E1,2j

2 (26, 34) equals, mod
lower terms, hι34 + hν+2ι26. The next term is found by writing

(h⊗ ( 1
2v

2h2 + L) + (hν+2 + L′)⊗ (2vh− 3h2))ι18(5.25)

as a boundary in the unstable cobar complex. The first term will dominate if
ν ≤ 4, while the second term will dominate if 4 ≤ ν ≤ 7. (If ν = 4, there could be
cancellation that would cause it to desuspend even lower, but that won’t affect the
final result.) We obtain that

z ≡ hι34 + hν+2ι26 + hmax(3,ν−1)ι18

generates E1,2j
2 (18, 26, 34). The hν−1ι18 when ν ≥ 4 is obtained since

hν+2 ⊗ vh ≡ hν ⊗ h ≡ h⊗ hν−2 = d(hν−1),

using 2.21(1,2,3). Now

ρ∂1(z) ≡ (h⊗ vh4 + hν+2 ⊗ h3 + hmax(3,ν−1) ⊗ h)ι14,

which has leading term a multiple, k, of h ⊗ h4. By 2.18(2) this is d(kh6ι14)
since ν(2j − 14) = 1, and so z pulls back to z′ ≡ z − kh6ι14 in C(14, 18, 26, 34).
The leading term of ∂(z′) in E2,2j

2 (10) is h ⊗ vh5, which is a generator. It is also
important to know here that E1,2j

2 (18, 26, 34) ∂−→E2,2j
2 (22) is 0, for if it were nonzero

then E2,2j
2 (Y7) would be cyclic. The leading term of this ∂ is hν+2 ⊗ hι22 which

desuspends and hence is 0 in E2.
Next we consider the case ν = 8, in which we have to keep track of unit coeffi-

cients because of the possibility of two cancelling terms. Let j − 13 = 2 · 38c, with
c 6≡ 0 mod 3. By 2.21(3), we have d(h10ι26) ≡ −38ch⊗ h9ι26 ≡ −ch⊗ hι26, where
the second step utilizes 38h8 = (v − ηv)8. Then E1,2j

2 (34) ∂−→E2,2j
2 (26) sends the

generator to h ⊗ (−h)ι26 = d(( 1
ch

10 + L)ι26), and so the generator pulls back to
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z ≡ hι34− 1
ch

10ι26. The leading term of ∂(z) in E2,2j
2 (18) is − 1

ch
10⊗2vhι18, which,

using 2.21(1,2), is equivalent to −2
ch

8 ⊗ hι18 ≡ 2
ch⊗ h6ι18. By 2.21(3),

d(h7ι18) ≡ −1
2 (j − 9)h⊗ h6ι18 = −(2 + 38c)h⊗ h6ι18 ≡ −c∂(z).

Thus z pulls back to z′ ≡ z + 1
ch

7ι18. The leading term of ρ∂1(z′) in E2,2j
2 (14) is

1
ch

7 ⊗ (−h)ι14. By 2.21(3) again,

d(h7ι14) ≡ −1
2 (j − 7)h⊗ h6ι14 ≡ −h⊗ 3h6ι14 ≡ −h⊗ h5ι14 ≡ −c∂(z′),

where we have used 2.21(1) at the last step. Thus z′ pulls back to z′′ ≡ z′+ 1
ch

7ι14

in C(14, 18, 26, 34). There are two leading terms in ∂(z′′) ∈ E2,2j
2 (10). These are

h⊗ 1
4vh

5 and 1
ch

7 ⊗ (−h). They combine to give 1
4 + 1

c times a generator, and this
is 0 if c ≡ 2 mod 3, and nonzero if c ≡ 1 mod 3, as claimed. The ∂ into the 22-part
is 0 as in the case ν ≤ 7.

If 9 ≤ ν ≤ 10, the situation is much easier. Similarly to the previous cases, but
ignoring units, the generator of E1,2j

2 (18, 26, 34) is z ≡ hι34+hν+2ι26+hν−1ι18. The
leading term of ρ∂1(z) in E2,2j

2 (14) is hν−1 ⊗ hι14, which is a generator if ν = 10,
and is 3 times the generator if ν = 9. The boundary E1,2j

2 (18, 26, 34) ∂2−→E2,2j
2 (22)

is 0 because its leading term is hν+2 ⊗ hι22 which is 0 in E2 for ν ≤ 10.
When ν = 11, the boundary from E1,2j

2 (26, 34) to E2,2j
2 (18) is now nonzero.

Indeed, its image, given in (5.25), has leading term

h13 ⊗ 2vhι18 ≡ 2h11 ⊗ hι18 ≡ h⊗ h9ι18,

which is a generator. Here we have used 2.21(1) and 2.21(2). The boundary from
E1,2j

2 (26, 34) to E2,2j
2 (22) is also nonzero since the generator z ≡ hι34 + h13ι26

satisfies ∂(z) ≡ h13 ⊗ hι22, and this is a generator. The chart would then suggest
(accurately) that the boundary hits into the sum of the two classes, and the ex-
tension is also into this sum. One way to formalize this uses the exact sequence

E1,2j
2 (26, 34) ∂−→E2,2j

2 (10, 14, 18, 22)→ E2,2j
2 (Y7)→ E2,2j

2 (26, 34).(5.26)

The first and last groups are Z/313, while the second is Z/3⊕Z/34. The boundary
∂ hits the sum of the two generators. There is a cycle representative z in E2,2j

2 (Y7)
which projects to an element of order 3 in E2,2j

2 (26, 34) and satisfies that 3 times
this generator is the image of the sum of the two generators of E2,2j

2 (10, 14, 18, 22).
This implies E2

2(Y7) ≈ Z/3⊕ Z/313.
Actually, a little bit more care is required here with regard to coefficients of the

generators. It is conceivable that the boundary could hit the sum of generators but
the extension be into their difference, and then the extension group would be cyclic
of order 314. What really happens is that, if c is defined as before by j−13 = 2·311c,
then a generator z ≡ hι34 − 1

ch
13ι26 satisfies

∂(z) ≡ 1
ch

13 ⊗ hι22 − 1
ch

13 ⊗ 2vhι18,(5.27)

while on the other hand, the argument of Theorem 3.1 shows that the element
d(3j−27hj−13)ι26 of order 3 extends to a cycle z′ in C(18, 22, 26) such that, mod
classes that desuspend farther, 3z′ is homologous to

3j−26hj−13 ⊗ (−h)ι22 + 3j−26hj−13 ⊗ 2vhι18.(5.28)
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The classes in (5.27) and (5.28) are clearly unit multiples of one another. In each
case, we use h13 ⊗ vh ≡ h11 ⊗ h to see that the second term is a generator.

This completes the case ν = 11. The case ν ≥ 12 is very similar. Actually it is a
bit easier, for the consideration of the previous paragraph need not be addressed,
since the initial differential hits into a cyclic group. �

The case j ≡ 0 mod 3 introduces no new ideas.

Theorem 5.29. If j is odd, and j ≡ 0 mod 3, then

E1,2j
2 (Y7) ≈ E2,2j

2 (Y7) ≈ Z/3⊕ Z/3min(10,ν(j−9−2·35)+4).

Proof. Let j be as in the theorem, and ν = ν(j − 9). We will show that the
diagram encapsulating the exact sequences of (5.8), (5.9), and (5.10) is as depicted
in Diagram 5.30 for certain values of ν. This diagram, together with the subsequent
discussion of what happens for values of ν not included in the diagram, implies
Theorem 5.29.

Diagram 5.30.

34
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•
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•

•

•
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�
��
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•

•
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B
BB
�
��
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• ν + 1

•

•

•

B
BB

�
��

•

• ν + 1

•

•

•

B
BB

�
��

A
A
A
A
A
AAK

A
A
A
A
A
AAK

J
J
J
J
J
J
J]

B
B
B
B
B
B
B
B
BBM

B
B
B
B
B
B
B
B
BBM

C
C
C
C
C
C
C
C
C
C
C
CO

E2,2j
2 E2,2j

2 E2,2j
2E1,2j

2 E1,2j
2 E1,2j

2

ν = 7 ν = 6 ν ≤ 4

If ν ≥ 8, then the group corresponding to the 18-cell has order 39, and by [13,
2.4] there is a nonzero boundary morphism from E1,2j

2 (26) to E2,2j
2 (18) (hitting the

element of order 3, of course), and three other boundary morphisms (one below and
two above it) follow from it by the extensions in a diagram similar to that of 5.30.

We will show below that the case ν = 5 is like the case ν ≤ 4 if (j−9)/(2 ·35) ≡ 2
mod 3, while it has no differentials if (j−9)/(2·35) ≡ 1 mod 3. But first we establish
that the cases in Diagram 5.30 are as depicted.

Let ν = 7. The nonzero differential from E1,2j
2 (34) ≈ Z/3 to E2,2j

2 (18) ≈ Z/38 is
established similarly to that in the case ν = 11 in the preceding theorem. Indeed,
the boundary E1,2j

2 (34) ∂−→E2,2j
2 (26) sends the generator to

h⊗α2ι26 = h⊗ (2vh−3h2)ι26 = (2vh⊗h−6h2⊗h−3h⊗h2)ι26 = d(vh2−2h3)ι26,

and so it pulls back to hι34 + (2h3 − vh2)ι26. This in turn has boundary (h ⊗
( 1

2v
2h2 +L) + (2h3 − vh2)⊗α2)ι18, whose leading term 1

2h⊗ v2h2ι18 ≡ 1
2h⊗ h2ι18

has order 3 by Theorem 2.18(1). The two differentials above this differential then
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follow from the extensions. They could also be obtained by the method of pulling
back cycles that we have been using.

When ν ≤ 6, the generator of E1,2j
2 (18, 26, 34) is z ≡ hι34 + h3ι26 + hν+3ι18.

To obtain the last term, we used 2.21(3) to write h ⊗ h2ι18 as d(hν+3ι18) mod
lower terms. The leading term of ρ∂1(z) in E2,2j

2 (14) is hν+3 ⊗ hι14, which is a
generator if ν = 6. If ν < 6, then this is d((hν+2 + L)ι14), and so z pulls back to
z′ ≡ z + hν+2ι14. Then ∂(z′) in E2,2j

2 (10) is

(h⊗ vh5 + h3 ⊗ vh3 + hν+3 ⊗ h2 + hν+2 ⊗ h)ι10,(5.31)

using Proposition 5.11. If ν < 5, then the first term is the leading term, and it is a
generator. If ν = 5, we must keep track of unit coefficients, since the first and last
terms have the same excess.

Let j− 9 = 2 · 35c, with c 6≡ 0 mod 3. We start with hι34. The next term (h3ι26)
is insignificant. The leading term of the image under ∂−→E2,2j

2 (18) is h⊗ 1
2v

2h2 ≡
1
2h ⊗ h2. Incorporating coefficients into the analysis of the previous paragraph,
2.21(3) actually says that d(h8ι18) ≡ −35ch ⊗ h7ι18 ≡ −ch ⊗ h2ι18, and so z is
actually equivalent to hι34 + h3ι26 + 1

2ch
8ι18. The leading term of ρ∂1(z) is

1
2ch

8 ⊗ (−h)ι14 ≡ 1
2ch⊗ h6ι14 ≡ −d( 1

2ch
7ι14),

since by 2.21(3) d(h7ι14) ≡ −1
2 (2 · 35 + 2)h⊗h6ι14. Thus the refined form of z′ has

significant terms hι34 + 1
2ch

7ι14, and so the leading terms of ∂(z′) are

(h⊗ 1
4vh

5 + 1
2ch

7 ⊗ (−h))ι10 ≡ (1
4h⊗ h5 + 1

2ch⊗ h5)ι10,

and this is 0 in E2 if c ≡ 1 mod 3, and is a generator if c ≡ 2 mod 3.
The boundary into E2,2j

2 (22) is (h⊗ h3 + h3 ⊗ h)ι22, which is 0 when the group
is isomorphic to Z/3. �

The next result also follows by the methods already employed. Note however
the excluded case, which requires major refinements, deferred to the next section.

Theorem 5.32. If j is odd, and j ≡ 5 or 8 mod 9, but ν(j − 17) 6= 13, then

E1,2j
2 (Y7) ≈ E2,2j

2 (Y7) ≈ Z/32 ⊕ Z/3min(17,ν(j−17)+4).

Proof. The proof when j ≡ 5 is particularly simple. The result here is just that
E1,2j

2 (Y7) ≈ E2,2j
2 (Y7) ≈ Z/32 ⊕ Z/35. It is most conveniently seen with charts

such as those of the earlier proofs in this section. In this case, the two main towers
have groups of exponent 2, 1, 1, 1, and min(ν(j − 5) + 1, 5), reading from bottom
to top. These are the groups corresponding to generators of dimensions 34, 26, 18,
14, and 10, respectively. There is also a group of exponent 2 from the 22-class, and
it extends cyclically above the lowest 1.

We will show that the boundary is nonzero from enough of the bottom groups of
the E1,2j

2 -tower to just kill the group of exponent min(ν(j − 5) + 1, 5) at the top of
the E2,2j

2 -tower. That leaves a Z/35 in each tower, and the Z/32 coming from the
22-class cannot be involved in differentials and must split off for algebraic reasons.

Let ν = ν(j − 5). To see these boundary morphisms, we show that the element
at the top of the E2,2j

2 -tower (i.e., the element of order 3 in E2,2j
2 (10)) is hit by the

Z/3 on 14 if ν ≥ 4, by the Z/3 on 18 if ν = 3, and by the Z/3 on 26 if ν = 2. Other
differentials are seen from the cyclic extensions by reading down the towers. The
differential when ν ≥ 4 was proved in [13, 2.4]. The differential when ν = 3 is seen
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by pulling the generator of E1,2j
2 (18) back to z ≡ hι18 + h2ι14 and then using 5.11

to obtain ∂(z) ≡ h⊗ 1
2v

2h2ι10. The v2 can be moved to the left using 2.20(1), and
by 2.18(1) 1

2h⊗h2ι10 is an element of order 3 in E2,2j
2 (10) ≈ Z/34. The case ν = 2

is similar, with the leading term of ∂(hι26 + h2ι18 + h4ι14) being h⊗ vh3ι10, which
has order 3 in E2,2j

2 (10) ≈ Z/33. This completes the proof when j ≡ 5 mod 9.
Now suppose j ≡ 8 mod 9, and let ν = ν(j − 17). The picture is similar to that

just described, with groups of exponent min(17, ν + 1), 1, 1, 1, and 2, from bottom
to top, and a group of exponent 2 extending just above the lowest 1. These groups
correspond to generators of dimensions 34, 26, 18, 14, 10, and 22, as in the case
j ≡ 5 just considered. The claim is that differentials from the E1,2j

2 -tower kill all
but the bottom 317 elements in the E2,2j

2 -tower if ν ≥ 14, and that they kill the
top Z/32 if ν ≤ 12. Actually, when ν ≥ 14, the initial element hit also involves
a summand in the 22-summand, but these elements hit are just the appropriate
3-power times the element at the bottom of the E2,2j

2 -tower. The E2,2j
2 (22) ≈ Z/32

is a split summand in E2,2j
2 (Y7) even though it may be a summand of a class hit

by a boundary. We will illustrate this carefully in the case ν = 15 below.
When ν ≥ 16, the differential from the bottom of the tower into the class on the

26-class follows from [13, 2.4]. Of course, the remaining differentials in this case
follow from the extensions.

When ν = 15, the generator of E1,2j
2 (34) has leading term h16ι34 by 2.15(2), and

this pulls back to z ≡ h16ι34 + uh13ι26, where u is a unit in Z(3). Usually we don’t
bother to list these unit coefficients, and here the value of u will not be important,
but because cancellation issues will come into play, we feel that the unit should at
least be given lip service. The leading term of ∂(z) in E2,2j

2 (18)⊕ E2,2j
2 (22) is

uh13 ⊗ 2vhι18 + uh13 ⊗ (−h)ι22.(5.33)

Using 2.21, each of these terms is a generator of its summand. On the other hand,
as in the case ν = 11 of the proof of 5.23, there is a cycle z′ in C(18, 22, 26)
which restricts to a generator of E2,2j

2 (26), and has 3z′ homologous to a unit times
(5.33). To clarify the splitting, that E2,2j

2 (22) ≈ Z/32 splits as a direct summand of
E2,2j

2 (Y7), we again use the exact sequence (5.26). The argument following (5.26)
applies verbatim, with Z/313 and Z/3 replaced by Z/317 and Z/32, respectively.

The case ν = 14 is similar, but involves a 2-step extension process. In the
diagram of the type 5.30, E2,2j

2 (26) extends into E2,2j
2 (22) ≈ Z/32 and into a Z/32

built from E2,2j
2 (18) and E2,2j

2 (14).1 The boundary hits into an element of order 3
in each of these summands, which in the case of the second summand means that
it hits a generator of E2,2j

2 (14). In order to know that the splitting is as claimed,
we must verify that the element hit is 32 times a generator of E2,2j

2 (26). This is
the same sort of verification that we have been making in some other cases, i.e.
that the boundary and the extension involve classes that are unit multiples of one
another, but here the extension is a 2-step process.

Boundary: The generator of E1,2j
2 (34) pulls back to z ≡ h15ι34 +uh12ι26, with

u a unit. The component of the boundary of this in E2,2j
2 (22) is uh12 ⊗ (−h)ι22.

1E2,2j
2 (10) is in the image of ∂, and hence does not figure into the extension question being

considered here.
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On the other hand, the boundary into E2,2j
2 (18) satisfies

∂(z) ≡ uh12 ⊗ vhι18 ≡ 2uh10 ⊗ hι18 ≡ −2uh⊗ h8ι18 = d(2uh9ι18).

Here we have used the three parts of 2.21, with the last step using that 2j − 18 =
2(2 · 314c+ 8), and so 1

4 (2j− 18) ≡ 1 mod 3. Thus z pulls back to z′ ≡ z− 2uh9ι18,
and the leading term of ∂(z′) is 2uh9 ⊗ hι14.

Extension: Similarly to (5.28), d(h14)ι26 is an element of order 3 in E2,2j
2 (26),

and it extends to a cycle z′ in C(18, 22, 26) such that, mod lower classes, 3z′ is
homologous to

h13 ⊗ (−h)ι22 + h13 ⊗ 2vhι18.

To evaluate 32z′, we use the second 3 to reduce each h13 to h12. The second term
becomes

2h10 ⊗ hι18 ≡ −2h⊗ h8ι18 ≡ d(2h9)ι18 ≡ −2h9 ⊗ (−h)ι14.

Here we have applied (3.2) at the last step.
Thus we have a unit times h12⊗ (−h)ι22 +2h9⊗hι14 as the leading term of both

the image of the boundary, and the 32-multiple of the generator.
The case ν ≤ 12 is much easier. The generator of E1,2j

2 (34) pulls back to z ≡
hν+1ι34 +hν−2ι26 +hν−5ι18 +hν−6ι14 and this satisfies ∂(z) ≡ hν+1⊗vh5ι10, which
is a generator since it does not desuspend. �

The final case differs from the others in that E1,2j
2 (Y7) and E2,2j

2 (Y7) are not
isomorphic.

Theorem 5.34. Assume j is odd and j ≡ 2 mod 9. Then E2,2j
2 (Y7) ≈ Z/32 ⊕

Z/3min(13,ν(j−11)+4), while

E1,2j
2 (Y7) ≈

{
Z/33 ⊕ Z/35 if ν(j − 11) = 2
Z/34 ⊕ Z/3min(11,ν(j−11)+2) if ν(j − 11) > 2.

Proof. Let j be as in the theorem, and ν = ν(j − 11). The picture when ν < 8 is
as in Diagram 5.35.

Diagram 5.35.
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ν < 8
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The indicated boundary is seen by pulling back the generator αm/2ι34 to a cycle
z on C(14, 18, 22, 26, 34), and then obtaining αm/2 ⊗ vh5ι10 as the leading term of
∂(z). This generates E2,2j

2 (10). This generator αm/2 is as described in 2.15(1). The
slash does not mean division; this notation was introduced in papers preceding [8],
where it was first applied unstably.

The boundary from C(26, 34) into the large group E2,2j
2 (22) has leading term

αm/2 ⊗ h3ι22, which is 0 if ν < 8. Here we have m = 1
2 (j − 17), and we use the

argument of 5.11 to see the factor on the RHS of the ⊗. (Because of α2 and α1

attaching maps, going from 34 to 22 is like going from 26 to 14, with coefficient
T4 ≡ h3 in Proposition 5.11.) The claimed splitting when ν < 8 follows for algebraic
reasons from Diagram 5.35.

If ν = 8, then αm/2 ⊗ h3ι22 has order 3 in E2,2j
2 (22), by 2.18(1). If we let g

denote a generator of E2,2j
2 (34), then similarly to Diagram 5.35, 33g = a+ b, where

a is detected on the 22-class, and b on the 18-class. We have relations in E2,2j
2 (Y7)

39a, 34b, and (from the boundary) 32b+ 38ua, with u a unit in Z(3). The quotient
group is easily seen to be Z/312 ⊕ Z/32, with generators g and (1 − 36u)a − 33g.
The case ν = 9 is extremely similar.

If ν ≥ 10, then E2,2j
2 (22) ≈ Z/311, and the component of the boundary into

this part hits 38 times the generator, as before. But this implies now that the
class on E1,2j

2 (26) hits the element of order 3 in E2,2j
2 (22). Whereas in the cases

ν = 8 and 9, the hitting into the 22-part was without much consequence, because
it just adjoined another summand to the classes on the 10-cell which were being
hit, the boundary described in the preceding sentence causes one less element in
the kernel and cokernel. In the sort of description given in the previous paragraph,
the relation 39a is changed to 311a. Now we have

313g = 310a = − 1
u34b = 0,

and the claimed splitting follows. �

6. The final case

In this section, we establish the final and most difficult case of E1,2j
2 (Y7), with

ν(j − 17) = 13. We will explain why we cannot say for exactly which such values
of j the maximal order is achieved.

Theorem 6.1. If j is odd, and ν(j − 17) = 13, then for δ equal to one of the
numbers 2, 5, or 8,

E1,2j
2 (Y7) ≈ E2,2j

2 (Y7) ≈ Z/32 ⊕ Z/3min(19,ν(j−17−2δ·313)+4).

The methods of this paper do not allow us to determine which of the three
numbers equals δ.

Proof. Let j − 17 = 2 · 313c, with c 6≡ 0 mod 3. The proof begins just like that of
the case j ≡ 8 mod 9 in Theorem 5.32. In the diagram of the type that we have
been using, the main tower has groups of exponent 14, 1, 1, 1, and 2, reading from
bottom to top, and a group of exponent 2 extending above the lowest 1. We choose
as the generator of E1,2j

2 (34) the element −αm/14ι34, where m = 1
2 (j−17). We use

(2.16) to write it as (h14 +L)ι34, with L defined on S27. (We choose the minus on
α to remove the minus signs in (2.16) and (2.17).)
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The boundary E1,2j
2 (34) ∂−→E2,2j

2 (26) sends this generator to a class congruent
mod lower terms to

h14 ⊗ 2vhι26 ≡ 2h12 ⊗ hι26 ≡ −2h⊗ h10ι26 = d((h11 + L′)ι26).

Here we use all three parts of 2.21, with the last step using that j− 13 = 2c313 + 4,
and so 1

2 (j − 13) ≡ 2 mod a high power of 3. Thus the generator pulls back to
z ≡ h14ι34 − h11ι26.

Next we consider ∂(z) in both E2,2j
2 (22) and in E2,2j

2 (18). The former has
leading term (h14 ⊗ h3 − h11 ⊗ (−h))ι22. This desuspends to S19 and hence is 0 in
E2,2j

2 (22) ≈ Z/32. Since the 22-cell factor is split from C(10, 14), we do not need
to write this as a boundary and append to z. In C2(18), we have

∂(z) ≡ (h14 ⊗ 1
2v

2h2 − h11 ⊗ 2vh)ι18 ≡ −2h9 ⊗ hι18 ≡ 2h⊗ h7ι18 = d(− 1
2h

8ι18),

similarly to the previous paragraph. Thus z pulls back to z′ ≡ z + 1
2h

8ι18.
The leading term of ∂(z′) in E2,2j

2 (14) is 1
2h

8 ⊗ (−h)ι14 ≡ 1
2h ⊗ h6ι14, and so

∂(z′) = d((− 1
10h

7 + L)ι14), since 1
2 (j − 7) ≡ 5 mod a high power of 3. As we will

be working at most mod 9, we replace the 10 by 1. Thus z′ pulls back to

z′′ ≡ −αm/14ι34 − h11ι26 + 1
2h

8ι18 + h7ι14.(6.2)

Now we use (2.17) for αm/14, and obtain terms in ∂(z′′) due to the first and last
terms of (6.2):

∂(z′′) ≡ (ch⊗ 1
4vh

5 + h7 ⊗ (−h))ι10 ≡ (1
4c+ 1)h⊗ h5ι10.(6.3)

This is a generator if c ≡ 1 mod 3, in which case the diagram described at the
beginning of the proof has differential from the generator of E2,2j

2 (34) and 3 times
the generator killing E2,2j

2 (10), yielding Z/32 ⊕ Z/317 as the groups E1,2j
2 (Y7) and

E2,2j
2 (Y7), as claimed in this case. The splitting is true for algebraic reasons.
If c ≡ 2 mod 3, then ∂(z′′) is not a generator of E2,2j

2 (10) ≈ Z/9, but it might be
3 times the generator. This requires second-order information throughout the entire
analysis above. This is something that we have not had to do in past applications.
In particular, we need finer information in all three parts of Lemma 2.21, in both
descriptions of αm/e in Theorem 2.15(2), and in Proposition 5.11.

We now write c = 3k + 2. The cycle z′′ above can be written as

z′′ = −αm/14ι34 + (−h11 +A10 + L10)ι26 + ( 1
2h

8 +A7 + L7)ι18(6.4)

+ (h7 +A6 + L6)ι14,

where Ai has excess exactly i, and Li has excess less than i. When we evaluate
∂(z′′), the terms of excess 5 will cancel out as in (6.3) with c ≡ 2, and so we
can desuspend ∂(z′′) to S9. Our differential into E2,2j

2 (10) is equal to 3 times the
generator if and only if the desuspension of ∂(z′′) yields a generator of E2,2j−1

2 (S9).
Let B4 be the terms of excess exactly 4 in T3 of Proposition 5.11. The terms of

excess 4 or 5 in ∂(z′′) are

−αm/14 ⊗ ( 1
4vh

5 +B4) + 1
2h

8 ⊗ 1
2h

2 + (h7 +A6)⊗ (−h).(6.5)

Note how certain terms such as ∂A10 and ∂A7 were dropped because they yield
terms whose excess is less than 4.
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By an analysis similar to [13, 2.11(5)] we have, when p = 3 and c 6≡ 0 mod 3,

αc3e−1/e ≡ −chvc3
e−1−1 + 3

2ch
2vc3

e−1−2 − 3ch3vc3
e−1−3 mod 9.

Let h7 ⊗ (−h) = h⊗ h5 +C4 + L4, where C4 has excess 4, and L4 excess less than
4. Omitting terms of excess less than 4, (6.5) becomes

(6.6) ((3k + 2)(h+ 3h2)− 3h2 + 6h3)⊗ ( 1
4vh

5 +B4)

+ 1
4h

8 ⊗ h2 + h⊗ h5 + C4 −A6 ⊗ h,

where the (h+ 3h2) comes from hvc3
e−1−1 = (v − 3h)c3

e−1−1h. Now write h⊗ vh5

as h ⊗ h5 − 3h2 ⊗ h5. Using coefficients of 3 to reduce the excess of terms on the
right side of the ⊗, we can rewrite (6.6) in excess 4 as

3
4kh⊗ h5 + 3

2 (h+ 1
2h

2 + h3)⊗ h5 + 2h⊗B4 + 1
4h

8 ⊗ h2 + C4 −A6 ⊗ h,(6.7)

where the 3
2h ⊗ h5 comes from the 2h ⊗ 1

4h
5 and h ⊗ h5 in (6.6). Let D4 =

3
2 (h+ 1

2h
2 + h3)⊗ h5 + 1

4h
8 ⊗ h2 + C4, a specific class of excess 4, independent of

the value of k and of any choices of the sort that we are about to mention.
The term B4 is the terms of excess 4 in (5.17). It could also have included any

terms of excess 4 in the homogeneous part of T3 discussed in the paragraph after
(5.17), but as discussed there, this homogeneous part has excess less than 4. Then
B4 contains a term − 1

2v
2h4 which appears in (5.17), and it could contain a term

9c2h6 if c2 6≡ 0 mod 3. However, because of a term with coefficient 59
6 which has c2

as coefficient, we can infer that c2 ≡ 0 mod 3. Thus B4 = − 1
2v

2h4, and so we can
let D′4 = D4 − h⊗ v2h4, still a specific element of excess 4, and we have

1
4kh⊗ h4 +D′4 −A6 ⊗ h(6.8)

as our new expression for ∂(z′′) mod L.
Next we study A6. To find it, we apply ∂−→E2,2j

2 (14) to the sum z3 = X1 +X2 +
X3 of the first three terms of (6.4), and write the result as d(A6). The terms in
∂(X1) will have excess less than 5, and so may be omitted from the analysis. There
is one term, 1

2h
8⊗ (−h), of excess 6, which accounts for the h7 in (6.2). There are a

number of terms of excess 5, which contribute toward A6. In particular, note that
d(h6) ≡ h⊗ h5, and so each occurrence of h⊗ h5 in ∂(z3) affects the coefficient of
h6 in A6. The leading part of ∂(X2) is −h11 ⊗ T4, where T4 is as in 5.11. The full
form of T4 is given in (5.14) and involves a homogeneous part whose coefficient c
we do not know. Two parts of this homogeneous part have a factor of 3, which can
be used to reduce the excess, but ch11 ⊗ v2h ≡ ch7 ⊗ h ≡ −ch ⊗ h5 will cause a
ch6-term in A6, and hence a ch⊗h4 in (6.8). Thus the coefficient of h⊗h4 in (6.8)
is k + D + c ∈ Z/3, where D is something which we could compute if we really
needed to. Note also that for our purposes (6.8) lies in Z/3 generated by h ⊗ h4.
The coefficient c has a value; we just don’t know how to find it. Therefore, there is
one value of k in Z/3 for which (6.8) is 0. (The diligent reader can check that such
considerations cannot affect earlier parts of the argument.) Thus the differential
into E2,2j

2 (10) is 0 if and only if k, defined by j − 17 = 2(3k + 2)313, has this value
mod 3. Letting δ = 3k + 2 mod 9, this establishes the theorem. �
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7. Periodic homotopy of E7

In this section we use the results for Es,2j2 (Y7) already achieved to deduce that
v∗(E7) is as claimed in Theorem 1.1. The first result almost finalizes v∗(Y7), given
the results for Es,2j2 (Y7) determined in the previous two sections.

Theorem 7.1. The v1-periodic UNSS of Y7 converges to v∗(Y7). If j is odd, then
v2j+1(Y7) = 0, v2j(Y7) ≈ v2j(S7), v2j−2(Y7) ≈ E2,2j

2 (Y7), and there is an exact
sequence

0→ v2j−1(S7)→ v2j−1(Y7)→ E1,2j
2 (Y7)→ 0.

Proof. One thing that we have to worry about in proving convergence of the
v1-periodic UNSS is to rule out the possibility of a v1-periodic homotopy class
which is not seen in v1-periodic E2. This could come about by having a sequence
of homotopy classes related by a filtration-increasing v1-multiplication. We must
also rule out the existence of elements in v1-periodic E∞ which do not correspond
to elements of v1-periodic homotopy. This could come about from a sequence of
E2-classes related by filtration-preserving v1-periodicity in E2, which support arbi-
trarily large differentials into a sequence of classes related by filtration-increasing
v1-multiplications. The way that we will show that these things cannot happen
for Y7 is to note that Y7 is built by fibrations from spaces where we have already
established convergence.

In (5.7), it was noted how the v1-periodic UNSS of Y7 splits into the part from S7

and the part from even-dimensional classes. As all of this is confined to filtrations 1
and 2, we obtain the following schematic picture for Es,t2 (Y7), which must necessarily
equal E∞.

s = 2 ev S7

s = 1 ev S7

t− s = 2j − 2 2j − 1 2j 2j + 1 j odd

Here a box labeled S7 means the corresponding group Es,t2 (S7), while a box
labeled “ev” (for “even”) means the corresponding group Es,t2 (10, 14, 18, 22, 26, 34),
as computed in Section 5. This E2 calculation is consistent with the fibrations (5.5)
and S7 → ΩW → ΩS23 of Proposition 5.1.

For X = ΩS23, ΩB(11, 15), or ΩE7/F4, the v1-periodic UNSS collapses to iso-
morphisms, if j is odd,

v−1
1 π2j+ε(X) ≈


0 if ε = 0 or 1
E2,2j

2 (X) if ε = −2
E1,2j

2 (X) if ε = −1.

This is true for ΩS23 by [9, 6.1], for ΩB(11, 15) by the fibration

ΩS11 → ΩB(11, 15)→ ΩS15,

and for ΩE7/F4 by Theorem 4.6. (Although 4.6 dealt with convergence for E7/F4,
the methods of Section 5 show that the calculation for E2(ΩE7/F4) is just that for
E2(E7/F4) shifted back by 1 dimension, and of course the same is true of v1-periodic
homotopy groups.)

Let j be odd. We can use a Five Lemma argument once we establish that, for
ε = 1 or 2, there are morphisms v2j−ε(−)→ Eε,2j2 (−) for these spaces. To see that
such morphisms exist, we note that since compact Lie groups and spheres have
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H-space exponents ([28]), the spaces with which we deal here all have H-space
exponents. By [21], this implies that each v1-periodic homotopy group is a direct
summand of some actual homotopy group, and then we can take the morphism from
homotopy to homotopy mod filtration greater than ε, which is (unlocalized) Eε∞,
then to (unlocalized) Eε2 as the kernel of the differentials, and then to v1-periodic
Eε2. This argument is similar to that used in [19].

Thus, letting X = E7/F4 and B = B(11, 15), there is a commutative diagram of
exact sequences

v2j−1(ΩX) → v2j−2(ΩS23 × ΩB) → v2j−2(Y7) → v2j−2(ΩX) → 0
≈↓ ≈↓ ↓ ≈↓

E1,2j
2 (ΩX) → E2,2j

2 (ΩS23 × ΩB) → E2,2j
2 (Y7) → E2,2j

2 (ΩX) → 0

which implies that v2j−2(Y7)→ E2,2j
2 (Y7) is an isomorphism.

Similarly, there is a commutative diagram with exact rows and the first column
exact

0
↓

E2,2j+1
2 (S7) ≈ E2,2j+1

2 (Y7)
↓ ↓

0 → v2j−1(ΩW × ΩB) → v2j−1(Y7) → v2j−1(ΩX) → v2j−2(ΩW × ΩB)
↓ ↓ ≈↓ ≈↓

0 → E1,2j
2 (ΩS23 × ΩB) → E1,2j

2 (Y7) → E1,2j
2 (ΩX) → E2,2j

2 (ΩS23 × ΩB)
↓
0

which implies that the second column fits into a short exact sequence.
The portion of the theorem about v2j+1(Y7) and v2j(Y7) is immediate from the

exact sequence in v∗(−) associated to the fibration (5.5). �
We restate the following result from [13, 1.3(1)].

Lemma 7.2. The projection map B(3, 7)→ S7 induces an isomorphism in v2j−1(−)
unless j is odd and j ≡ 21 mod 27, in which case it is a surjection Z/34 → Z/33.
The isomorphic groups are 0 if j is even, while if j is odd, they are cyclic of order
3min(3,1+ν(j−3)).

The next result, combined with the above results and Theorems 5.18, 5.23, 5.29,
5.32, and 6.1 gives v∗(E7) for most values of ∗.
Theorem 7.3. (a) If j is odd, j 6≡ 2 mod 9, and j 6≡ 21 mod 27, then the exact
sequence of the fibration Y7 → B(3, 7)→ E7 breaks up into isomorphisms

v2j(Y7) ≈−→v2j(B(3, 7)) and v2j−1(E7) ≈−→v2j−2(Y7)

and a short exact sequence

0→ v2j(E7)→ v2j−1(Y7)
φ−→v2j−1(B(3, 7))→ 0.

If E1,2j
2 (Y7) ≈ Z/3e1 ⊕ Z/3m, with 1 ≤ e1 ≤ 2, is as given in Theorems 5.18, 5.23,

5.29, 5.32, and 6.1, and v2j−1S
7 ≈ v2j−1(B(3, 7)) ≈ Z/3e2 is as in 7.2, then

v2j−1(Y7) ≈ Z/3e1+e2 ⊕ Z/3m,(7.4)

and φ sends the first summand onto Z/3e2 .
(b) If j is even, then v2jE7 = v2j−1E7 = 0.
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Note that even if φ sent the second summand nontrivially, its kernel would
still be Z/3e1 ⊕ Z/3m, since m ≥ e1 + e2. Thus if j is as in Theorem 7.3(a.),
there are abstract isomorphisms v2j(E7) ≈ E1,2j

2 (Y7) and v2j−1(E7) ≈ E2,2j
2 (Y7),

with Es,2j2 (Y7) as given in Theorems 5.18, 5.23, 5.29, 5.32, and 6.1. This implies
Theorem 1.1 in these cases.

Proof of Theorem 7.3. There is a commutative diagram of fibrations

ΩW → B(3, 7)→ K

↓
y= ↓(7.5)

Y7 → B(3, 7)→ E7

where the last map is the composite K → F4 → E7. Since by [10, 2.10(i)] the
composite S7 → ΩW → B(3, 7) → S7 has degree 3, we deduce the same of the
composite S7 → Y7 → B(3, 7) → S7. We already know that v2jS

7 → v2jY7 is an
isomorphism, and v2jB(3, 7)→ v2jS

7 is multiplication by 3 on isomorphic groups.
It follows that v2jY7 → v2jB(3, 7) is an isomorphism.

There is a commutative diagram of fibrations

S7 → ΩW → ΩS23

↓ ↓(7.6)
S7 → Y7 .

The cyclic extension in v2j−1(ΩW ) was established in [10, pp.294-5]. This implies
the nontrivial extension in v2j−1Y7 claimed in the theorem from the Z/3e1 on the
22-class in E1,2j

2 (Y7) to v2j−1(S7) in the exact sequence of Theorem 7.1.
There cannot be an extension in v2j−1Y7 from the Z/3m-summand of E1,2j

2 Y7

because of the splitting F4 = K × B(11, 15). The element of order 3 in the large
summand of v2j−1Y7 comes from B(11, 15), while the S7 lies in K. This is made
explicit in the commutative diagram of fibrations

ΩB(11, 15)× ΩW → B(3, 7)→ F4

↓ ↓ ↓(7.7)
Y7 → B(3, 7)→ E7

That φ sends the first summand of (7.4) onto v2j−1B(3, 7) follows from the diagram
(7.7) and the surjectivity of v2j−1(ΩW )→ v2j−1B(3, 7) established in [10, pp.297-
8]. �

One of the cases omitted in the previous theorem is covered in the following
result, the proof of which is very similar.

Theorem 7.8. If j is odd and j ≡ 21 mod 27, then the exact sequence (with
B = B(3, 7))

0→ v2jY7
φ1−→v2jB → v2jE7 → v2j−1Y7

φ2−→v2j−1B → v2j−1E7 → v2j−2Y7 → 0

has φ1 an injection Z/33 ↪→ Z/34, and φ2 a surjection from the first summand in
Z/34 ⊕ Z/3m → Z/34. Moreover,

v2jE7 ≈ cokerφ1 ⊕ kerφ2 ≈ Z/3⊕ Z/3m.
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Proof. Similarly to the previous proof, the morphism φ1 follows from [13, 2.5]
and [10, 2.10(i)], the structure of v2j−1Y7 follows from (7.6), and the morphism φ2

follows from (7.7). The Z/3m in v2j−1Y7 cannot extend cyclically with cokerφ1

in v2jE7 because the element of order 3 in Z/3m lies in v2j−1ΩB(11, 15), while
cokerφ1 lies in v2jK, and these cannot be related by a ·3-extension due to the
splitting F4 = K ×B(11, 15). �

We begin working toward determination of v2j−εE7 when j ≡ 2 mod 9 with the
following proposition.

Proposition 7.9. If j is odd and j ≡ 2 mod 9, then the exact sequence of the
fibration Y7 → B(3, 7)→ E7 yields
• v2jY7 → v2jB(3, 7) is an isomorphism of Z/3’s;
• v2j−1E7 → v2j−2Y7 is an isomorphism;
• v2jE7 ≈ ker(v2j−1Y7

φ−→v2j−1B(3, 7) ≈ Z/3).

Proof. Surjectivity of v2j−1Y7 → v2j−1B(3, 7) follows from (7.7), while v2jY7 →
v2jB(3, 7) is bijective as in the proof of 7.3. �

By 7.9, 7.1, and 5.34, v2j−1E7 is seen to be as claimed in Theorem 1.1 when j ≡ 2.
It remains to determine v2j−1Y7 and φ, from which v2jE7 follows.

Theorem 7.10. Let j be odd, and ν = ν(j − 11). If 2 ≤ ν ≤ 9, then

v2j−1Y7 ≈ Z/3ν+3 ⊕ Z/34

and φ sends Z/34 nontrivially. Thus kerφ ≈ Z/3ν+3⊕Z/33, regardless of φ
∣∣ Z/3ν+3.

Proof. Similarly to the proof of Theorem 7.3, the extension in

Z/3 ≈ v2j−1S
7 → v2j−1Y7 → E1,2j

2 Y7 ≈ Z/3ν+2 ⊕ Z/34

is nontrivial from the first summand. From [10, 2.12], v2j−1(ΩW ) → v2j−1B(3, 7)
is a surjection Z/3ν+2 → Z/3, and from (7.5) it factors as

v2j−1(ΩW )→ v2j−1Y7
φ−→v2j−1B(3, 7).

From (7.6), v2j−1(ΩW )→ v2j−1Y7 is an injection Z/3ν+2 → Z/3ν+3 ⊕ Z/34, since
the element of order 3 in v2j−1(ΩW ), which comes from v2j−1(S7), maps nontriv-
ially. The result now follows from elementary algebra. �

The same ingredients imply the following result.

Theorem 7.11. If j is odd and ν(j − 11) ≥ 10, but j 6≡ 11 + 2 · 310 mod 2 · 311,
then

v2j−1Y7 ≈ Z/312 ⊕ Z/34

and φ is surjective in Proposition 7.9.

We cannot deduce from this which summand(s) of v2j−1Y7 maps nontrivially
under φ, and so we cannot tell whether kerφ is Z/312⊕Z/33 or Z/311⊕Z/34. We
suspect that Z/34 maps across, which would imply the first splitting.

Finally we have the following result in the exceptional case. In order to keep the
statement of Theorem 1.1 readable, we did not distinguish there between this case,
in which we know the precise structure of v2j−1E7, and the case of Theorem 7.11,
where we do not.
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Theorem 7.12. If j ≡ 11 + 2 · 310 mod 2 · 311, then

v2jE7 ≈ Z/312 ⊕ Z/33.

Proof. As in the proof of 7.10, v2j−1Y7 ≈ Z/312⊕Z/34. It was shown in [10, 2.12]
that v2j−1(ΩW )→ v2j−1B(3, 7) is 0 if j ≡ 11 + 2 · 310 mod 2 · 311.

Let G denote the fiber of K → E7. There is a commutative diagram of fibrations

ΩW =−→ ΩW
↓ ↓
Y7 → B(3, 7)→ E7

↓ ↓ ↓
G → K → E7.

It follows from the Serre spectral sequence of the fibration ΩW → Y7 → G that

BP∗(G) ≈ BP∗[x10, x14, x18, x26, x34],

and so charts for v∗G are like charts for Es,2j2 (Y7) without the part on the 22-class.
The chart for v2j−1G and v2j−2G whenever j ≡ 2 mod 9 is like Diagram 5.35
without the ν + 1. In particular, v2j−1G is cyclic with generator on the 26-class.
The proof of Theorem 5.34 in the case ν ≥ 10, where it says that the class on
E1,2j

2 (26) hits the element of order 3 in E2,2j
2 (22), implies that v2j−1G → v2j−1K

sends the generator to the element of order 32. Now it follows from the following
commutative diagram with exact rows that φ is surjective on the Z/34 summand.

Z/311 Z/312 ⊕ Z/34 Z/35

0→ v2jW → v2j−1Y7 → v2j−1G→ v2j−1Wyφ ↓
y=

v2j−1B → v2j−1K → v2j−1W
Z/3 Z/312 Z/311

�
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