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A Correspondence for the Generalized Hecke
Algebra of the Metaplectic Cover

SL(2, F ), F p-adic

David Joyner

Abstract. We prove, using a technique developed for GL(n) in Howe and
Moy [H], a bijection between generalized Hecke algebras of G = SL(2, F )

over a p-adic field and those of its n-fold metaplectic cover G. This result
implies that there is a canonical correspondence between irreducible admissible
representations of G and genuine irreducible admissible representations of G
of “sufficiently large level” (depending on n, p).
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Let F be a p-adic field of characteristic 0, with uniformizer π, ring of integers
O, and let q denote the cardinality of the residue field. Let µn(F ) denote the
group of nth roots of unity in F and assume |µn(F )| = n. We will identify µn(F )
with a subgroup of C× (via some fixed isomorphism θ : µn(F ) → µn(C)). Write
µn = µn(F ). Let G = SL(2, F ) and let g denotes its Lie algebra. Let G = SL(2, F )
denote the n-fold metaplectic cover defined by the cocycle

β(g1, g2) =
(
x(g1g2)
x(g1)

,
x(g1g2)
x(g2)

)
,
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for g1, g2 ∈ G, where

x

(
a b
c d

)
=

{
c if c 6= 0
d otherwise

and where ( , ) is the nth power Hilbert symbol. By §1 of Kubota [K], β is a
2-cocycle (called a “factor set” in [K]) which is trivial near the identity in G ×G,
so G is a topological covering group of G. We denote elements of G by x = (x, ζ),
x ∈ G, ζ ∈ µn, and multiplication by

x1x2 = (x1, ζ1)(x2, ζ2) = (x1x2, β(x1, x2)ζ1ζ2).

Let ρ : G → G denote the natural surjection. If H is any subgroup of G then we
define H = ρ−1(H). We choose a Haar measure on G, to be normalized below, and
a Haar measure on µn normalized so that vol(µn) = 1. Let the Haar measure on
G be the product measure.

We prove, using a technique developed for GL(n) in [H], a bijection between
generalized Hecke algebras of G and those of G. A precise statement will be given
in Theorem 11. This result implies that there is a canonical one-to-one correspon-
dence between irreducible admissible representations of G and genuine irreducible
admissible representations of G of “sufficiently large level” (depending on n, p). For
the precise statement, see Corollary 12.

The study of genuine admissible representations on p-adic groups has its origins
in the book [G] by S. Gelbart. Flicker [F] determined a comparison of Hecke
algebras of smooth functions on GL(2, F ) and GL(2, F ) using the matching of
orbital integrals. This was then used, with the Arthur-Selberg trace formula, to
establish a global “Shimura correspondence”. Neither of these two works used the
Hecke algebras considered here. G. Savin [S] has given an isomorphism between
the Iwahori-Hecke algebras in the case when p is relatively prime to 2n and G
is any reductive p-adic group which splits over O. This isomorphism generalized
a result of Flicker and Kazhdan [FK] who considered the special case of GL(r).
(Savin’s result is discussed briefly in §6 below.) The works Rallis-Schiffmann [RS]
and Schultz [Sch] also dealt with a correspondence between representations on G
and on G (or a closely related group), though from a different perspective and using
different methods. Our hope is that the result in the present paper will form one
small step, along with Waldspurger’s multiplicity one theorem for SL(2, F ) [W]
and the Arthur-Selberg trace formula, in an eventual proof Labesse’s muliplicity
one conjecture for SL(2).

1. Some notation

Let

s1 =
(

0 −1
1 0

)
, s2 =

(
0 −π−1

π 0

)
, t =

(
0 −1
π 0

)
, t0 =

(
π 0
0 π−1

)
.

Note t0 = s−1
1 s2, t /∈ G and ts1t

−1 = s2.
Let

u+(x) =
(

1 x
0 1

)
, u−(x) =

(
1 0
x 1

)
, h(x) =

(
x 0
0 x−1

)
.
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Let

B =
{( O O

πO O
)}
∩G

denote the Iwawori subgroup,

b =
{( O O

πO O
)}
∩ g

denote its Lie algebra, and let

Bk =
(
I + t2k

( O O
πO O

))
∩G

denote a kth filtration subgroup. Let

bk =
{(

a b
πc −a

) ∣∣∣∣ a, b, c ∈ πkO}
denote the Lie algebra of Bk.

Definition 1. Let H denote a locally compact unimodular group and let K denote
an open compact subgroup of H with Haar measure on H normalized so that K has
measure one. Let H(H//K) denote the space of functions on H which are locally
constant, compactly supported, and bi-K-invariant. This forms an algebra under
convolution,

(f ∗ g)(x) =
∫
H

f(y)g(y−1x)dy,

called the generalized Hecke algebra.

We shall study the algebra H(G//Bk) in Section 3.
Recall that a 2-cocycle α : H × H → µn of a group H is trivial if there is a

function s : H → µn (called a splitting) such that α(h1, h2) = s(h1)s(h2)s(h1h2)−1,
for h1, h2 ∈ H. In this case the cover of H defined by α is said to split.

Recall that a complex-valued function f on G is called genuine if f(g, ζ) =
θ(ζ)f(g, 1), for g ∈ G and ζ ∈ µn. Here θ is a fixed isomorphism θ : µn → µn(C).
It being agreed that we may identify µn and µn(C), we shall, from this point on,
drop the θ from the notation.

Definition 2. Assume that k > 0 is chosen so large that Bk splits. Assume that
the Haar measure on G is normalized so that Bk has measure 1. Let H(G//Bk)gen
denote the space of functions on G which are genuine, locally constant, compactly
supported, and bi-Bk-invariant. This is the (metaplectic) generalized Hecke algebra
on G.

We will study this algebra in Section 4. Note that it depends on the splitting of
the cocycle on Bk. To have a measure on G which fits with the measure on G used
in §3, we shall also assume that µn has measure 1.

2. Some lemmas

Let Fq denote the residue field of F .

Lemma 3. For k > 0, Bk/Bk+1
∼= bk/bk+1

∼= F3
q, as abelian groups. (The second

isomorphism is not canonical.)
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Proof. The graph of the the first isomorphism is

{(g ·Bk+1, X + bk+1) | (1 +X + bk+1) ∩ g ·Bk+1 6= ∅}.
It is also a special case of a general result of Morris (Proposition 3.4 in [M]). The
second isomorphism is due to the fact that the map(

a b
πc −a

)
7−→

(
a (mod π) b (mod π)
π(c (mod π)) −a (mod π)

)
has kernel ∼= F3

q. �

The following result is stated as Proposition 2.2 in Chapter 3 of [H].

Lemma 4. In the notation of Definition 1, let fh denote the characteristic function
of the double coset KhK in H. We have, f1 is a unit of H(H//K). More generally,
if

vol(Kh1K)vol(Kh2K) = vol(Kh1h2K)

then fh1 ∗ fh2 = fh1h2 .

We need a version of the previous lemma for genuine functions.
For x = (x, ζ) ∈ G and g ∈ G, let

fg(x) =
{
ζ, x ∈ BkgBk,
0, otherwise.

Note that fg is genuine. Let

φ1 ∗ φ2(g) =
∫
G

φ1(x)φ2(x−1g)dx, g ∈ G.

Now we prove a genuine analog of the general Lemma 4 above.

Lemma 5. If vol(Bk) = 1 and if

vol(Bkg1Bk)vol(Bkg2Bk) = vol(Bkg1g2Bk), for g1, g2 ∈ G,
then fg1

∗ fg2
= fg1g2

.

Proof. We compute

fg1
∗ fg2

(g, 1) =
∫
G

fg1
(x)fg2

(x−1(g, 1))dx

=
∫
G

fg1
(x, 1)fg2

((x−1g, 1))β(x, x−1g)−1dx

=
∫
G

char(Bk(g1, 1)Bk)(x, 1)char(Bk(g2, 1)Bk)(x−1g, 1)β(x, x−1g)−1dx

=
∫
G

fg1(x, 1)fg2(x−1g, 1)β(x, x−1g)−1dx.

The above equations imply that the support of this integral is contained in the
support of fg1 ∗ fg2 . By Lemma 4, fg1 ∗ fg2 = fg1g2 , so

supp(fg1
∗ fg2

) ⊂ supp(fg1g2
).

Since the support each element of the Hecke algebra contains at least one double Bk-
coset, the above inclusion must be an equality. Therefore, we must have fg1

∗fg2
=
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cfg1g2
for some constant c. Integrating both sides over G and using the hypothesis

implies c = 1. �
As in the above proof, we have the following expression for the convolution in

terms of the cocycle.

Lemma 6. We have

fg1
∗ fg2

(g, ζ) = ζ
∫
G
fg1

(x, 1)fg2
(x−1g, 1)β(x, x−1g)−1dx,

for any g1, g2 ∈ G.

Note that the generalized metaplectic Hecke algebra depends on the cocycle β
so let us denote this dependence temporarily by Hβ(G//Bk)gen. If the cocycle is
changed to an equivalent one, say to β′, where

β(g, h) = β′(g, h)s(g)s(h)s(gh)−1

is the cocycle modified by s and s : G→ µn is any function satisfying s(1) = 1 (for
example, the Kubota splitting [KP]), then the two algebras are isomorphic.

Lemma 7. Let β, β′ be as above and let s : G → µn satisfy s(1) = 1. There is a
canonical isomorphism

φ : Hβ(G//Bk)gen ∼= Hβ′(G//Bk)gen,

as algebras, defined by sending f(g, ζ) = ζf(g, 1) to φ(f)(g, ζ) = ζs(g)f(g, 1). In
other words, under this mapping, we have

φ(f1 ∗β′ f2)(g, ζ) = (φ(f1) ∗β φ(f2))(g, ζ),

where ∗β denotes the convolution with respect to the β cocycle

(φ1 ∗β φ2)(g, ζ) = ζ

∫
G

φ1(x, 1)φ2((x−1g, 1))β(x, x−1g)−1dx

and, similarly, ∗β′ denotes the convolution with respect to the β′ cocycle.

Proof. The verification of this is straightforward. �

3. The structure of H(G//Bk)

We want to determine the structure of the generalized Hecke algebra as a finitely
generated algebra with generators and relations. Then we will do the same for the
metaplectic analog and compare the two.

The affine Weyl group Wa of G is generated by s1, s2 and the Weyl group W is
generated by s1. We will use the Iwahori decomposition

G = BWaB

to determine the structure of the generalized Hecke algebra.
Recall (Ad g)(x) = gxg−1. Let S = {s1, s2, t0, t

−1
0 } ∪B.

Proposition 8. The algebra H(G//Bk) is generated by the functions fg, g ∈ S.
Assume that vol(Bk) = 1. These elements are subject to the relations below.
(A) Relations for the si’s:

(i) fs1 ∗ fs1 = c
∑
x fx, for x ∈ ((−1) · (Ad s1)(Bk) · Bk)/Bk, where c =

vol(Bks1Bk),
(ii) ft0 ∗ fs1 = fs1 ∗ ft−1

0
.
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(B) Relations for elements of B:
(i) f1 is the identity of H(G//Bk),
(ii) fx ∗ fy = fxy, for x, y ∈ B,
(iii) fxg = fgx = fg, for all x ∈ Bk, g ∈ G.

(C) Mixed relations:
(i) fsi ∗ fx = fAd si(x) ∗ fsi , for x ∈ B ∩ (Ad si)(B),
(ii) fs1 ∗ fu+(x) ∗ fs1 = cfAd s1(u+(x)) = cfu−(−x), for x ∈ O×, where c =

vol(BksiBk)2,
(iii) fs2 ∗ fu+(x) ∗ fs2 = cfAd s2(u+(x)) = cfu−(πx), for x ∈ O×, where c =

vol(BksiBk)2,
(iv) ft0 ∗ fg ∗ ft−1

0
= cft0gt−1

0
, for all g ∈ B, where

c = vol(Bkt0Bk)2/vol(Bkt0gt−1
0 Bk).

(The relations C(ii), C(iii) must be expressed in terms of the generators, as in [H].
The relation corresponding to C(ii) is

fs1 ∗ fu+(x) ∗ fs1 = c(fu+(−x−1) ∗ fs1 ∗ fh(−x) ∗ fu+(−x−1)).

The relation corresponding to C(iii) is similar.)
Furthermore, these relations form a defining set of relations for H(G//Bk) as

an algebra.

Remark 1. 1. This proposition has an analog for G replaced by GL(n) [H],
Theorem 2.1, Chapter 3.

2. Note that though S is infinite, the set of generators {fg | g ∈ S} is finite (and
depends on k), so the algebra is indeed finitely generated.

3. Possibly B(iii) and C(iii) are superfluous relations.
4. Note that s1 has order 4, not order 2 as the analogous generator in [H] does.
5. The constants are computed as follows:

vol(Bks1Bk) = vol(Bks1Bks
−1
1 ) = vol(Bks1Bks

−1
1 )/vol(Bk) = vol(U−k Bk/Bk).

For g ∈ B, we have

vol(Bkt0gt−1
0 Bk) = vol(Bkt0Bk ·BkgBk ·Bkt−1

0 Bk)

= vol(Bkt0Bk)vol(BkgBk)vol(Bkt−1
0 Bk) = vol(Bkt0Bk)2.

Here are some general facts we will use in the proof below.

Lemma 9. (a) Bk is a normal subgroup of B.
(b) Let U+

k = {u+(x) | x ∈ πkOF } and U−k = {u−(x) | x ∈ πkOF }. We have

Bk · (s−1
1 Bks1) = (s−1

1 Bks1) ·Bk = U−k Bk,

and U−k Bk is a group with Bk as a normal subgroup.
(c) In general, we have

fg1 ∗ fg2(x) =
∫
G

fg1(y)fg2(y−1x)dy = vol(Bkg1Bk ∩ xBkg−1
2 Bk).

(d) In general, we have∫
G

f ∗ g(x)dx =
∫
G

f(y)dy
∫
G

g(x)dx,∫
G

(f ∗ g ∗ h)(x)dx =
∫
G

f(x)dx
∫
G

g(y)dy
∫
G

h(z)dz.
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Proof. Parts (a) and (b) may be proven by direct matrix calculations. Parts (c),
(d) are simple consequences of the definitions. �

Proof of Proposition 8. We shall follow the ideas in [H], proof of Theorem 2.1.
We begin by verifying A(i): fs1 ∗fs1 = q

∑
x∈X fx, where x runs over a complete

set X of representatives of ((−1) · (Ad s1)(Bk) ·Bk)/Bk.
As in [H], parts (a), (b) of Lemma 9 imply that

fs1 ∗ fs1 = c · χ(−1)·U−k Bk ,

where χS denotes the characteristic function of a subset S of G and where c 6= 0 is
some constant. In other words,

fs1 ∗ fs1(g) = c
∑
x∈X

fx(g), g ∈ G.

Plugging g = 1 into both sides, we obtain

vol(Bks1Bk) = c.

For part A(ii), note that part (c) of Lemma 9 immediately reduces the proof of
A(ii) to the comparison of two volume integrals. The equality of these two expres-
sions follow from the claim vol(Bkt−1

0 Bkg ∩ Bks1Bk) = vol(gBkt0Bk ∩ Bks1Bk).
This is not trivial but the hard part is to show that Bkt0Bks1Bk = Bks1Bkt

−1
0 Bk.

To see this, pick b1, b2, b3 ∈ Bk and note

b1t0b2s1b3 = b1t0s1u1b
′
2 = b1s1t

−1
0 u1b

′
2

for some u1 ∈ U−k and b′2 ∈ Bk (we’ve used part (a) of Lemma 9). A matrix
calculation shows that this is equal to b1s1b4t

−1
0 b′2, for some b4 ∈ Bk. This shows

that Bkt0Bks1Bk ⊂ Bks1Bkt
−1
0 Bk. The other inclusion is proven similarly. From

this A(ii) follows without too much difficulty.
Part (c) of Lemma 9 implies part B(i) of the proposition.
We now verify part B(ii). We know vol(Bk) = 1 implies vol(bBk) = 1, for each

b ∈ B. This and Lemma 4 implies part B(ii).
Part B(iii) follows from the definition of fg.
We shall now verify C(i). Since Bk is normal in B, we have

vol(BksibBk) = vol(BksibBkb−1b) = vol(BksiBkb).

Thus vol(BksibBk) = vol(BksiBkb) = vol(BksiBk). This and Lemma 4 implies
fsi ∗ fx = fsix, for x ∈ B. Likewise, if sixs−1

i ∈ B then fsixs−1
i
∗ fsi = fsix. This

implies C(i).
We next verify C(ii). The proof of this part is sketched in [H]. The argument in

[H] gives fs1 ∗ fu+(x) ∗ fs1 = cfu−(−x), for x ∈ O×, for some constant c 6= 0. Here c
may be evaluated using part (d) of Lemma 9, which implies

c =
vol(BksiBk)2vol(Bku+(x)Bk)

vol(Bku−(x)Bk)
= vol(BksiBk)2.

(Here we’ve used the fact that u+(x) ∈ B, so vol(Bku+(x)Bk) = vol(Bku+(x)) =
vol(Bk) = 1, and the fact that, for k > 0, s−1

1 Bks1 is also a normal subgroup of
B, so vol(Bku−(x)Bk) = vol(s−1

1 Bks1u+(−x)s−1
1 Bks1) = vol(s−1

1 Bks1u+(−x)) =
vol(s−1

1 Bks1) = 1.)
The proof of C(iii) is very similar to part (ii), so is omitted.
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We shall now verify C(iv). We already know that, as a consequence of Lemma 4,
we have ft0 ∗ fg = ft0g for all g ∈ B. This and part (c) of the above lemma implies
that

ft0 ∗ fg ∗ ft−1
0

(x) = vol(Bkt0gBk ∩ xBkt0Bk).

This volume depends on g and x, or more precisely on the left cosets gBk and xBk.
In other words, we may replace g by any gb, b ∈ Bk, without changing the value of
the volume. The above volume is non-zero if and only if xb1t0b2 = b3t0gb4, for some
b1, b2, b3, b4 in Bk. By replacing g by a suitable element in gBk, we may assume
x ∈ Bkt0gt−1

0 Bk. The support of ft0 ∗ fg ∗ ft−1
0

is therefore contained in (and thus
must be equal to) the support of ft0gt−1

0
. Therefore, there is a constant c such that

ft0 ∗ fg ∗ ft−1
0

= c · ft0gt−1
0

. Part C(iv) follows from part (d) of the above lemma.
It remains to show that this list of relations is a defining set of relations for the

algebra. To this end, we slightly modify the proof of [H], Chapter 3, Theorem 2.1,
as follows.

For g ∈ S, let f̃g denote an abstract element. Let H̃ denote the free algebra
generated by these elements satisfying the relations (A)-(C) in the proposition. We
want to show that the obvious map

H̃ → H(G//Bk)(1)

is an isomorphism.
If w ∈Wa =< s1, t0 > has the expression w = sa1t

b
0, where a ∈ {0, 1} and b is an

integer, then define f̃w = fas1 ∗f bt0 . Let J̃ denote the vector space span generated by
the elements f̃g = f̃x ∗ f̃w ∗ f̃y, where g = xwy, for x, y ∈ B and w ∈Wa. As in [H],
pages 38-39, the relations (B,C) imply that f̃g depends only on BkgBk, not on the
particular representation g = xwy. We claim that J̃ is invariant under convolution
by an abstract generator f̃g, g ∈ S. The proof of this invariance property, in [H]
pages 38-39, uses a subset of the relations (or ones very similar) given in (A)-(C)
above. Therefore, it works in this case almost verbatim and we omit the details.
From this invariance property it follows that J̃ contains the abstract generators.
However, this forces J̃ to contain all of H̃. We conclude that each element of H̃
may be written as a sum of elements of the form f̃g = f̃x ∗ f̃w ∗ f̃y, where g = xwy.
(One may think of this as a “canonical form” for the generators.) This, using a
relatively simple argument involving the definitions (see [H]), implies that the map
(1) is injective.

Since Bk is normal in B, we have

vol(Bkb1gb2Bk) = vol(b1b−1
1 Bkb1gb2Bkb

−1
2 b2) = vol(b1BkgBkb2) = vol(BkgBk).

This and Lemma 4 implies fb1 ∗ fg ∗ fb2 = fb1gb2 , for g ∈W a. Combining this with
the Bruhat decomposition, we see that H(G//Bk) is generated by elements of the
form fb1 ∗ fg ∗ fb2 , for g ∈W a. Therefore, the map (1) is surjective. �

4. The structure of H(G//Bk)gen

This section is the metaplectic analog of the previous section. We want to
determine the structure of the metaplectic generalized Hecke algebra as a finitely
generated algebra with generators and relations.
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We shall always assume that k is chosen so large that Bk splits. By Lemma 7,
we can (and do) choose the cocycle β′ defining H(G//Bk)gen = Hβ′(G//Bk)gen in
such a way that the splitting of Bk is trivial. If the residual characteristic of F is
relatively prime to 2n then this condition is vacuous since in that case, in fact, B
splits.

Let the Haar measure on G be normalized so that Bk has measure one. Convo-
lution gives H(G//Bk)gen the structure of an algebra.

Proposition 10. Assume that vol(Bk) = 1, that k is chosen so large that Bk splits,
and choose the splitting cocycle as above. The algebra H(G//Bk)gen is generated
by the functions fg, g ∈ S. These elements are subject to the same relations as in
Proposition 8, except that fg must be replaced by fg. Furthermore, these relations
form a defining set of relations for H(G//Bk)gen as an algebra.

Proof. First we must verify that the claimed relations do indeed hold.
A(i): By Lemma 6, we have

fs1 ∗ fs1(x) =
∫
Bks1Bk

fs1(y−1x)β′(y−1, x)β′(y, y−1)dy.

Because of this, for basically the same reason as in the non-metaplectic case, fs1 ∗
fs1 is supported on ((−1) · (Ad s1)(Bk) ·Bk). The same reasoning as in the non-
metaplectic case implies A(i).

A(ii): Both f t0 ∗ fs1 and fs1 ∗ f t−1
0

are genuine functions which, by the proof of
part A(ii) in Proposition 8, have the same support, in a neighborhood of (t0s1,±1).
We have, as in the proof of A(ii) in the non-metaplectic case,

f t0 ∗ fs1(g, 1) =
∫
Bks1Bk

f t0((g, 1)y−1)dy =
∫
Bkt
−1
0 Bkg∩Bks1Bk

β′(y−1, g)dy

and

fs1 ∗ f t−1
0

(g, 1) =
∫
gBkt0Bkg∩Bks1Bk

β′(y−1, g)dy.

We know that the ranges of these two integrals are equal, by the proof in the
non-metaplectic case above. The validity of A(ii) follows.

B(i): For example, for g ∈ Gs we have

φ ∗ f1(g) =
∫
G

φ(gx−1)f1(x)dx =
∫
Bk

φ(gx−1)dx = φ(g).

Similarly, f1 ∗ φ = φ, so f1 is an identity in H(G//Bk)gen.
B(ii): We have

fx ∗ fy(g, 1) =
∫
BkxBk

fy(h−1g)β′(h−1, g)β′(h, h−1)dh.

This is non-zero if and only if gy−1 = xb for some b ∈ Bk, since Bk is normal in B.
But this implies supp(fx ∗ fy) ⊂ BkxyBk. The claimed equality now follows.

B(iii): This is an immediate consequence of Lemma 5.
C(i): The proof of this identity is analogous to the proof in the non-metaplectic

case (using Lemma 5 in place of Lemma 4 where appropriate) and is omitted.
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C(ii), C(iii), C(iv): These are proven exactly as in the non-metaplectic case so
we only sketch the argument. The idea is that the proof in the non-metaplectic case
shows that each of these triple convolutions is supported on a single double Bk-
coset. On the other hand, the support of each function in the Hecke algebra contains
at least one double Bk-coset, since different double Bk-cosets are disjoint. Since
convolutions preserve genuineness, those functions whose support is precisely one
double Bk-coset are the constant multiples of the generators. This identity holds
on all of G. The constant multiple can be computed as in the non-metaplectic case
and since the measures differ only by the measure on µn, the volume computations
are similar.

It remains to show that this list of relations is a defining set of relations for
the algebra. This, too, is exactly the same as the non-metaplectic case, so is
omitted. �

5. Application to representation theory

The following is our main result:

Theorem 11. If k > 0 is such that Bk splits then the map fg 7−→ fg, g ∈ S,
defines a bijection of algebras H(G//Bk)→ H(G//Bk)gen.

Proof. This is an immediate consequence of Propositions 8 and 10. �
Corollary 12. If k > 0 is such that Bk splits then the bijection H(G//Bk) →
H(G//Bk)gen induces a set-theoretic bijection H(G//Bk)∧gen → H(G//Bk)∧ on the
sets of equivalence classes of irreducible (genuine, in the case of G) representations.
Furthermore, if

H(G//Bk) → H(G//Bk)gen
f 7−→ f

and
H(G//Bk)∧gen → H(G//Bk)∧

π 7−→ π

then tr(π(f)) = tr(π(f)).

Proof. Let η : H(G//Bk)→ H(G//Bk)gen and let

η∗ : H(G//Bk)∧gen → H(G//Bk)∧.

Suppose π(f) = π′(f), for all f ∈ H(G//Bk)gen. If f = φ(f), for some f ∈
H(G//Bk), and if π = η∗(π) and π′ = η∗(π′), for some π, π′ ∈ H(G//Bk)∧, then
π(f) = π′(f), for all f ∈ H(G//Bk). This implies π = π′, so η∗ is injective.

The equality of the traces is by definition of η. �
Definition 13. Let K denote a compact open subgroup of G. A locally constant
complex-valued function f on G is called left (resp., right) Hecke finite if the vector
space spanned by all functions of the form h ∗ f (resp., f ∗ h), for h ∈ H(G//K), is
finite dimensional. Let Agen(G) denote the space of all locally constant complex-
valued genuine functions f on G for which
• f is double K-finite,
• f is right- and left-Hecke finite.
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This space is called the space of matrix coefficients of G. If (π, V ) is a genuine
admissible representation of G then the span of the elements f(g) = 〈v∗0 , π(g)v0〉
(g ∈ G), for all v0 ∈ V and v∗0 ∈ V ∗, the contragredient of V , is called the space of
matrix coefficients of π and is denoted Agen(π).

Let ρ (resp, λ) denote the right (resp., left) regular representation of G on
Agen(G). The next proposition establishes that the metaplectic analogs of (the
relevant parts of) Corollary 1.10.6 in [Sil] for G are true. The result below implies
that we can “explicitly” realize the space of any genuine irreducible representation
of G as a subspace of Agen(G), a fact we will make use of later.

Proposition 14. Let f ∈ Agen(G) and let Vf denote the G-module spanned by the
translates ρ(g)f , g ∈ G, and let π denote the restriction of ρ to Vf . We have

(a) There exist elements v0 ∈ Vf and v∗0 ∈ V ∗f , the contragredient of Vf , such that
f(g) = 〈v∗0 , π(g)v0〉, for all g ∈ G.

(b) Agen(π) is spanned by λ(x)ρ(y)f , x, y ∈ G.

Proof. The proof of this follows from the general arguments given in [Sil]. The
results in that part of the book [Sil] hold for more general totally disconnected
groups, so one need only check that the argument remains valid when “genuineness”
is also assumed. �

We need to recall some facts regarding the relationship between smooth represen-
tations of G and finite dimensional H(G//Bk)gen-modules. To this end, we recall
briefly how one can construct smooth representations of G from finite dimensional
H(G//Bk)gen-modules - both the so-called “induced” and “produced” modules in
§2 of Borel [Bo] will do this job. The “inverse” construction is then given along
with some of the basic properties of these constructions in Proposition 16 below.

Definition 15. If (r,W ) is a finite dimensional H(G//Bk)-module then we define
(I(r), I(W )) to be the induced G-module and (P (r), P (W )) to be the (smooth) pro-
duced G-module constructed in [Bo]. Analogously, if (r,W ) is a finite dimensional
H(G//Bk)gen-module then we define (Igen(r), Igen(W )) to be the induced genuine
G-module and (Pgen(r), Pgen(W )) to be the produced genuine G-module obtained
by replacing Cc(G//Bk) by Cc(G//Bk)gen in the contructions in [Bo].

Proposition 16. Let (r,W ) be a finite dimensional H(G//Bk)gen-module and let
(π, V ) be a genuine smooth representation of G.

(a) There are natural H(G//Bk)gen-module isomorphisms

W ∼= Igen(W )Bk and W ∼= Pgen(W )Bk .

(b) Igen(W ) is generated, as a G-module, by Igen(W )Bk .
(c) The natural restriction maps yield isomorphisms

ρP : HomG(V, Pgen(W ))→ HomH(G//Bk)gen
(V Bk ,W ).

and

ρI : HomG(Igen(W ), V )→ HomH(G//Bk)gen
(W,V Bk).
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(d) (r,W ) is an irreducible H(G//Bk)gen-module if and only if (Igen(r), Igen(W ))
is an irreducible representation of G. Moreover, if (r,W ) is an irreducible
H(G//Bk)gen-module then Igen(r) ∼= Pgen(r).

Proof. In the case n = 1, the statements in the proposition above are either in
§§1-2 [Bo] as stated or follow from Borel’s results using Schur’s lemma (see for
example, Lemma 3.14 in [CR]). In general, one need only check that the argument
remains valid when “genuineness” is also assumed. �

Definition 17. We define a genuine admissible irreducible representation of G to
be supercuspidal if and only if its matrix coefficients are compactly supported. We
define a genuine admissible irreducible representation of G to be square-integrable
if and only if its matrix coefficients belong to L2(G).

We define an irreducible finite dimensional H(G//Bk)gen-module (r,W ) to be
supercuspidal (resp., square-integrable) if and only if Igen(r) is a supercuspidal
(resp., square-integrable) representation of G.

Next we observe that, as in the case of GL(n), the correspondence of Corollary 12
preserves supercuspidals and discrete series representations ([H], page 33).

Corollary 18. Assume k > 0 is as in Corollary 12.
• An admissible genuine representation π ∈ H(G//Bk)∧gen is supercuspidal if

and only if π is, where π, π are as in Corollary 12.
• π is square-integrable if and only if π is, where π, π are as in Corollary 12.

Proof. Suppose that the mapping H(G//Bk)∧gen → H(G//Bk)∧ sends a repre-
sentation (r,W ) to a representation (r,W ). Note that the construction of cor-
respondence in Corollary 12 implies that W = W . From the construction of
Igen(W ) = Cc(G/Bk)gen ⊗H(G//Bk)gen

W (more precisely from the definition of
⊗H(G//Bk)gen

), we see that the r(fg)-action on W ∼= Igen(W )Bk corresponds to
the fg-action (via convolution) on Cc(G/Bk)gen. Identifying W with Igen(W )Bk ,
we see that each element of W is Hecke-finite and may therefore be regarded as a
matrix coefficient of G. Let (π, V ) denote the G-module generated by an element
w ∈ W ∼= Igen(W )Bk . By Proposition 14 (or Proposition 16 (b)), π = Igen(r).
From this and the fact that W = W , it follows that if the elements of W are
compactly supported (when regarded as matrix coefficients of G) then the elements
of W are also are compactly supported (when regarded as matrix coefficients of
G). Now assume that (r,W ) is supercuspidal, so the matrix coefficients of Igen(r)
have compact support. As indicated above, (r,W ) is supercuspidal as well. This
established the first part of the corollary.

The second part of the corollary is proved similarly, hence is omitted. �

6. The Iwahori algebra

In the case where k = 0 and gcd(p, 2n) = 1, our result is a special case of a
general isomorphism between Iwahori algebras, due to Savin [S], which we recall:

Theorem 19. (Savin) Assume gcd(p, 2n) = 1. There is an isomorphism of alge-
bras H(G//B)gen → H(G//B).
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Corollary 20. Assume gcd(p, 2n) = 1. The isomorphism

H(G//B)gen → H(G//B)

induces a set-theoretic bijection H(G//B)∧gen → H(G//B)∧ on the sets of equiva-
lence classes of irreducible (genuine, in the case of G) representations with a B-fixed
vector. Furthermore, if

H(G//B) → H(G//B)gen
f 7−→ f

and
H(G//B)∧gen → H(G//B)∧

π 7−→ π

then tr(π(f)) = tr(π(f)).
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