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On the Braiding on a Hopf Algebra in a Braided
Category

Peter Schauenburg

Abstract. By definition, a bialgebra H in a braided monoidal category (C, τ)
is an algebra and coalgebra whose multiplication and comultiplication (and
unit and counit) are compatible; the compatibility condition involves the braid-
ing τ .

The present paper is based upon the following simple observation: If H is
a Hopf algebra, that is, if an antipode exists, then the compatibility condition
of a bialgebra can be solved for the braiding. In particular, the braiding
τHH : H ⊗H → H ⊗H is uniquely determined by the algebra and coalgebra
structure, if an antipode exists. (The notions of algebra and coalgebra (and
antipode) need only the monoidal category structure of C.)

We list several applications. Notably, our observation rules out that any
nontrivial examples of commutative (or cocommutative) Hopf algebras in non-
symmetric braided categories exist. This is a rigorous proof of a version of
Majid’s observation that commutativity is too restrictive a condition for Hopf
algebras in braided categories.

Hopf algebras in braided categories are generalizations of ordinary Hopf algebras.
For the definition of a k-Hopf algebra one needs the tensor product of vector spaces
and the canonical flip of tensor factors V ⊗W ∼= W ⊗ V , used in the compatibility
condition between multiplication and comultiplication. The structure of a monoidal
category formalizes tensor products and the structure of a braiding formalizes the
flip of tensor factors. An older formalization of the properties of flipping tensor
factors in a tensor product of vector spaces is the notion of a symmetric monoidal
category. The key difference is that in a symmetric monoidal category, flipping
factors twice acts as the identity. Braided monoidal categories are obtained from
symmetric ones by omitting this one axiom. Through relations to the braid groups
they are endowed with a rich topological flavor and have applications in knot and
manifold theory. They are also related strongly to quantum group theory. General
references to these relations are [1, 5]. The notion of a Hopf algebra in a symmetric
category is well known [4]. The definition of Hopf algebras in braided categories is
no different from that in the symmetric case. Apart from being interesting objects
in themselves, they arise naturally in the structure theory of ordinary Hopf algebras
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through Radford’s theorem [3]. A survey of the theory of Hopf algebras in braided
categories is [2].

Let us review some definitions. A prebraided monoidal category (C, τ) is a
monoidal category (whose tensor product, denoted ⊗, we assume to be strictly asso-
ciative with a strict unit object I) equipped with a prebraiding τ , that is, a natural
morphism τ = τXY : X ⊗ Y → Y ⊗X satisfying τX⊗Y,Z = (τXZ ⊗ Y )(X ⊗ τY Z),
τX,Y⊗Z = (Y ⊗ τXZ)(τXY ⊗ Z) and τXI = τIX = idX . A braiding is a prebraiding
which is an isomorphism. A symmetry is a (pre)braiding satisfying τXY τY X = 1.

A bialgebra (H,∇,∆) in a prebraided category is an algebra (H,∇) with unit
η : I → H and a coalgebra (H,∆) with counit ε : H → I such that

∆∇ = (∇⊗∇)(H ⊗ τHH ⊗H)(∆⊗∆),

∆η = η ⊗ η and ε∇ = ε ⊗ ε hold. A Hopf algebra is a bialgebra that has an
antipode, that is, an inverse for idH in the convolution monoid Mor(H,H), that is,
a morphism S : H → H with ∇(S ⊗H)∆ = ∇(H ⊗ S)∆ = ηε.

Let H be a bialgebra in the prebraided monoidal category (C, τ). A left-right
Hopf module over H is an object M of C that is a left H-module (with module
structure map µ : H⊗M →M) as well as a right H-comodule (with structure map
ρ : M →M ⊗H) such that

ρµ = (µ⊗∇)(H ⊗ τ ⊗H)(∆⊗ ρ) : H ⊗M →M ⊗H.

In particular, H is canonically a left-right Hopf module over itself.

Theorem. Let (H,∇,∆) be a Hopf algebra in the prebraided monoidal category
(C, τ). Then

τHH = (∇⊗∇)(S ⊗∆∇⊗ S)(∆⊗∆).

More generally, if M is a left-right Hopf module over H, then

τHM = (µ⊗∇)(S ⊗ ρµ⊗ S)(∆⊗ ρ).

Proof. Of course, we need only prove the more general statement on Hopf modules,
which was pointed out by the referee:

(µ⊗∇)(S ⊗ ρµ⊗ S)(∆⊗ ρ)

= (µ⊗∇)
(
S ⊗ (µ⊗∇)(H ⊗ τHM ⊗H)(∆⊗ ρ)⊗ S)(∆⊗ ρ)

= (µ⊗∇)(H ⊗ µ⊗∇⊗H)(S ⊗H ⊗ τHM ⊗H ⊗ S)

◦ (H ⊗∆⊗ ρ⊗H)(∆⊗ ρ)

= (µ⊗∇)
(∇(S ⊗H)∆⊗ τHM ⊗∇(H ⊗ S)∆

)
(∆⊗ ρ)

= (µ⊗∇)(ηε⊗ τHM ⊗ ηε)(∆⊗ ρ)
= τHM

�
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Remark. In the widely used graphical calculus for braided categories (many ex-
amples of which are found in [2]), the picture

H H

H H

=

H H����
	hS hS��
	
	
H H

represents the equation obtained above for the braiding on a Hopf algebra in a
braided monoidal category.

Let C,D be monoidal categories. Recall that a monoidal functor (F , ξ, ζ) : C → D
consists of an ordinary functor F , an isomorphism ζ : F(I) → I, and an isomor-
phism ξ : F(X ⊗ Y ) → F(X)⊗ F(Y ) which is natural in X,Y ∈ C, such that the
diagrams

F(X ⊗ Y ⊗ Z)
ξ−−−−→ F(X)⊗F(Y ⊗ Z)

ξ

y 1⊗ξ
y

F(X ⊗ Y )⊗F(Z)
ξ⊗1−−−−→ F(X)⊗F(Y )⊗F(Z)

commute and both

F(X ⊗ I)
ξ→ F(X)⊗F(I)

1⊗ζ−→ F(X)⊗ I and

F(I ⊗X)
ξ→ F(I)⊗F(X)

ζ⊗1−→ I ⊗F(X)

are identities. Given such a monoidal functor, an algebra (A,∇) and a coalgebra
(C,∆) in C, we obtain an algebra (F(A),F(∇)ξ−1) and a coalgebra (F(C), ξF(∆))
in D. The Theorem implies immediately that a monoidal functor between pre-
braided monoidal categories that maps, in this way, a Hopf algebra H to a Hopf
algebra, necessarily preserves the braiding on H ⊗H. More precisely:

Corollary 1. Let (C, τ) and (D, σ) be prebraided monoidal categories, and (F , ξ, ζ) :
C → D a monoidal functor. Let (H,∇,∆) be a Hopf algebra in (C, τ).

If
(F(H),F(∇)ξ−1, ξF(∆)

)
is a Hopf algebra in (D, σ), then

F(H ⊗H)
ξ−−−−→ F(H)⊗F(H)

F(τ)

y σ

y
F(H ⊗H)

ξ−−−−→ F(H)⊗F(H)
commutes.

A special case of this occurs in the study of Hopf algebras in categories built upon
the category of vector spaces and their tensor product. Examples are the category
of modules over quasitriangular Hopf algebras, comodules over coquasitriangular
Hopf algebras, or categories of Yetter-Drinfeld-B-modules over a k-bialgebra B.
A Yetter-Drinfeld-module V ∈ YDBB is by definition a right B-module and right
B-comodule satisfying the compatibility condition

v(0) ↼ h(1) ⊗ v(1)h(2) = (v ↼ h(2))(0) ⊗ h(1)(v ↼ h(2))(1)
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for all v ∈ V , h ∈ H, where we make free use of Sweedler’s notation for comodule
structures and comultiplications, leaving out the summation symbols. The category
YDBB is prebraided with

τ : V ⊗W 3 v ⊗ w 7→ w(0) ⊗ v ↼ w(1) ∈W ⊗ V
for V,W ∈ YDBB . The prebraiding is a braiding if Bop is a Hopf algebra, in
particular if B is a Hopf algebra with bijective antipode. Hopf algebras in the
category YDBB arise naturally in the context of Radford’s theorem on Hopf algebras
with a projection [3].

Corollary 2. Let B be a k-bialgebra and H a Hopf algebra in the category YDBB.
If H is a k-Hopf algebra, then τHH is the usual flip of vector spaces, that is

g(0) ⊗ h ↼ g(1) = g ⊗ h
holds for all g, h ∈ H, where g(0) ⊗ g(1) ∈ H ⊗ B is the image of g under the
B-comodule structure on H.

Let C be a monoidal category and H an object of C. Then one can construct
the full monoidal subcategory 〈H〉 of C generated by H. If C is prebraided, then
so is 〈H〉. If C is k-linear abelian, we denote by 〈H〉k the full monoidal k-linear
abelian subcategory generated by H. Note that if C = BM is the category of left
B-modules over a k-bialgebra B, then there is a quotient bialgebra B of B such
that 〈H〉k ∼= BM, and if C =MB then there is a subbialgebra B′ of B such that
〈H〉k ∼=MB′ . Explicitly, B′ is the subalgebra of B generated by the subcoalgebra
C = {〈ϕ, h(0)〉h(1)|h ∈ H,ϕ ∈ H∗}.
Corollary 3. Let B be a k-bialgebra and H a Hopf algebra in the category YDBB.
If H is a k-Hopf algebra, then there exists a subbialgebra B′ ⊂ B such that the
B′-comodule structure of H takes values in H ⊗ B′, and the action of B′ on H is
trivial.

In fact, in the notations preceding the Corollary, it suffices to show that C acts
trivially on H. Now

h ↼ 〈ϕ, g(0)〉g(1) = (ϕ⊗ id)(τHH(h⊗ g)) = 〈ϕ, g〉h = ε(〈ϕ, g(0)〉g(1))h.

By definition, a coquasitriangular k-bialgebra is a bialgebra B equipped with a
map R : B ⊗B → k such that

V ⊗W 3 v ⊗ w 7→ w(0) ⊗ v(0)R(v(1) ⊗ w(1)) ∈W ⊗ V
for V,W ∈MB defines a braiding forMB . Any subbialgebra of a coquasitriangular
bialgebra is again coquasitriangular. A quasitriangular k-bialgebra is a bialgebra
B equipped with an element R =

∑
ri ⊗ si ∈ B ⊗B such that

V ⊗W 3 v ⊗ w 7→
∑

siw ⊗ riv ∈W ⊗ V
for V,W ∈ BM defines a braiding on BM. Any quotient bialgebra of a quasitrian-
gular bialgebra is again quasitriangular.

Corollary 4. Let (B,R) be a quasitriangular (resp. coquasitriangular) bialgebra
and H a Hopf algebra in the braided monoidal category BM (resp. MB). Assume
that H is also a k-Hopf algebra. Then there is a quotient bialgebra B of B (resp. a
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subbialgebra B′ of B) such that H ∈ BM (resp. H ∈ MB′) and the image of R in
B ⊗B is R = 1 (resp. the restriction of R to B′ ⊗B′ is R|B′⊗B′ = ε.)

Finally, our Theorem rules out rigorously a naive notion of commutative (or
cocommutative) Hopf algebra in braided categories. Majid was the first to observe
that the condition ∇ = ∇τ on the multiplication of a Hopf algebra H in a braided
monoidal category appears to be too strong to admit interesting examples. We can
now prove that commutative Hopf algebras in this sense can only arise in symmetric
categories. More precisely, we will show that τ2

HH = id holds for a commutative
Hopf algebra H in a braided category (C, τ). This implies that 〈H〉 is symmetric
(and so is 〈H〉k if C is k-linear abelian).

Corollary 5. Let (C, τ) be a braided monoidal category and (H,∇,∆) a commu-
tative (resp. cocommutative) Hopf algebra in (C, τ). Then τ2

H,H = 1.
In particular, if H is a commutative or cocommutative Hopf algebra in the cate-

gory BM (resp.MB) of modules (resp. comodules) over a quasitriangular (resp. co-
quasitriangular) bialgebra, then there is a triangular quotient bialgebra B (resp. co-
triangular subbialgebra B′) of B such that H is contained in BM (resp. MB′).

For the proof observe that (C, τ−1) is a braided monoidal category, where τ−1
XY =

(τY X)−1. One can check that (H,∇τ−1,∆) is a Hopf algebra in (C, τ−1) whenever
(H,∇,∆) is a Hopf algebra in (C, τ). Now if ∇ = ∇τ , then τH,H = τ−1

H,H follows
directly from the Theorem, or one can apply Corollary 1 to the identical functor
on C.
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