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Algebraic Non-Integrability of the Cohen Map

Marek Rychlik and Mark Torgerson

Abstract. The map φ(x, y) = (
√

1 + x2−y, x) of the plane is area preserving
and has the remarkable property that in numerical studies it shows exact
integrability: The plane is a union of smooth, disjoint, invariant curves of the
map φ. However, the integral has not explicitly been known. In the current
paper we will show that the map φ does not have an algebraic integral, i.e.,
there is no non-constant function F (x, y) such that
1. F ◦ φ = F ;
2. There exists a polynomial G(x, y, z) of three variables with

G(x, y, F (x, y)) = 0.

Thus, the integral of φ, if it does exist, will have complicated singularities. We
also argue that if there is an analytic integral F , then there would be a dense
set of its level curves which are algebraic, and an uncountable and dense set
of its level curves which are not algebraic.
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1. Introduction

The area-preserving map φ : R2 → R2 given by the formula

φ(x, y) = (
√

1 + x2 − y, x)(1)

and the question of its integrability has been attributed to H. Cohen [Mos] and we
learned about it from O. Knill. This map is a particular example in the family of
area-preserving maps of the form (x, y) 7→ (f(x)− y, x). When f(x) = 2x+ k sinx,
this map is equivalent to the standard map introduced in [Chi79].

When studied numerically, the map φ exhibits numerical integrability. Thus, up
to the precision of floating point arithmetic, this system has the following properties
(cf. Figure 1):

For every initial condition (x0, y0) the trajectory of the map φ calculated
according to the formula (xn, yn) = φ(xn−1, yn−1) lies on a smooth,
possibly analytic, Jordan curve, except for the singularity at the fixed
point

(
1√
3
, 1√

3

)
.

It has been conjectured that there exists an integral F : R2 → R of φ with good
analytic properties. By an integral we mean a non-constant function satisfying the
equation

F ◦ φ = F.(2)

This integral is called algebraic iff there is a polynomial G : R3 → R such that

G(x, y, F (x, y)) = 0.(3)

In the current paper we show that this conjecture is false:

Theorem 1.1. There is no algebraic integral for the map φ.

Let us briefly explain the reasoning which may lead one to conjecture that the
map φ does have an algebraic integral. Let us define the following family of map-
pings:

φε(x, y) = (
√
ε2 + x2 − y, x).(4)

Every mapping in this family, except for ε = 0, is linearly equivalent to the map
φ = φ1 via the map (x, y) 7→ (εx, εy). On the other hand, the piecewise-linear map
φ0(x, y) = (|x| − y, x) has a piecewise linear and thus algebraic integral:

F0(x, y) = y + |y − |x||+ |x− |y − |x|||+ |y − |x− |y|||+ |x− |y|+ |y − |x− |y||||.
(5)

This formula is due to O. Knill. Thus, we may expect that the conjectured integral
for φε may arise from F0 in the same way as φε arises from φ0 by replacing |x|
with

√
ε2 + x2. Thus, this integral would be an algebraic function and obtained by

successively taking quadratic algebraic extensions of the field of rational functions
R(x, y). Theorem 1.1 shows that this is not the case.

Let us suppose that the map (1) does have an integral F (x, y) which is analytic
in the plane. Moreover, let us assume that the family of the level curves {γc}c∈I ,
where I = F (R2) ⊂ R is a certain segment and γc = F−1(c) is a level curve of F .
Let us assume that this is a real-analytic family of invariant curves diffeomorphic
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to the circle. In the remainder of this introduction we will study the implications
of this assumption and of our theorem.

For every curve γc of this analytic family, the map φ|γc has a rotation number
ρ(c) varying continuously with c. The rotation number may not be constant. For
instance, near the fixed point P0 = (1/

√
3, 1/
√

3) this number must be close to
ρ0 = arg(λ)/(2π), where λ is one of the two complex eigenvalues of the derivative
Dφ(P0). It is clear that λ + λ−1 = 1. From this equation we deduce that ρ0 is
irrational and diophantine (badly approximated by rationals).

On the other hand, the map φ near ∞ resembles the map φ0. Let ηc = F−1
0 (c)

be a level curve of F0. One can see that ηc is a non-convex polygon with 9 sides.
The rotation number of φ0|ηc is 2/9 and does not depend on c. This is explained
in Figure 3. Numerical studies indicate that the invariant curves of φ near infinity
only roughly approximate the polygonal invariant curves of φ0 (Figure 2). We note
that φ9

0 = id. Thus there are many other continuous integrals of φ0.
The slight non-linearity of the invariant curves persists and even near ∞ the

segments of the invariant curves of φ cannot be approximated by straight line
segments. This effect can be studied analytically [AE90]. One discovers that the
limit

X(x, y) = lim
ε→0

1
ε2
[
φ9
ε(x, y)− (x, y)

]
(6)

exists as a vector field, and is analytic except for a set of singularities along 9 rays
contained in the lines x = 0, y = 0 x = ±y, y = 1/2x (x > 0) and y = 2x (x > 0).
The integral curves of this vector field give the first-order approximation to the
invariant curves of φ near infinity. We know an explicit expression for X(x, y).
Fortunately, the calculation of X(x, y) is within the reach of symbolic computation
systems, and even calculation by hand. In [AE90, pp. 219–221], one finds a slightly
more general example than φε and an expression forX(x, y). We find that the vector
field X(x, y) on the quadrant x < 0, y < 0 is given by the following equations:

X(x, y) =
1
2

(
2

x+ 2y
+

1
x+ y

+
1

2x+ y
,−
(

1
x+ 2y

+
1

x+ y
+

2
2x+ y

))
.(7)

One can even calculate the first integral of this vector field:

H(x, y) =
1
2

log [(x+ 2y)(x+ y)(2x+ y)] .(8)

One finds that X(x, y) is a Hamiltonian vector field with respect to the symplectic
form dy ∧ dx and that H is the corresponding Hamiltonian, i.e., X = (Hx,−Hy).
Similar expressions in the other 8 sectors of the plane can be obtained by linear
changes of variables (x, y) 7→ (±x − y, x) and their suitable compositions. We
would like to emphasize that the form of the expression for X(x, y) will change
under these coordinate changes. It is the vector field X(x, y) whose integral curves
approximate the invariant curves of the map φ near ∞. These integral curves are
the level curves of H and thus are algebraic. Moreover, in [AE90] the authors
showed (using KAM theory) that indeed there are uncountably many invariant
curves near ∞ approximated by the integral curves of X(x, y). It is the nature of
KAM theory that the rotation number on these curves is irrational and it assumes
a positive measure set of values.
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Figure 1. Numerically found invariant curves of the map φ in the
square [0, 5]× [0, 5]. These are simply very long orbits of φ.
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Figure 2. Integral curves of the map φ in the square [−20, 20]× [−20, 20].

It is reasonable to conjecture that the rotation number ρ(c) depends analytically
on c (except for the singularity at P0). Near P0 this function must be close to ρ0

and near ∞ it must be close to 2/9. It is not constant in any open subset of the
plane. Thus, ρ(c) takes on rational values on a dense set of values c ∈ I. The
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Figure 3. An invariant partition of the plane into 9 invariant
sectors for φ0. The axes and the dashed rays partition the plane
into 9 sectors. Moreover, φ0 is affine on each of the sectors and
φ9

0 = id. The orbit of (1, 0) consists of 9 points marked in the
figure. The 9-gon with vertices at these 9 points is invariant.

analyticity of the family and area preservation imply that the conditional measures
of the partition of the plane into the invariant curves γc are absolutely continuous,
and indeed have analytic densities. Thus, if ρ(c) is rational then indeed γc consists
of periodic orbits of φ of a fixed period. In view of the fact that the equation
φn(x, y) = (x, y) is algebraic, we conclude that γc is an algebraic curve. Hence, our
assumptions lead to the conclusion that algebraic curves are dense in the family
{γc}. We have justified the following:

Conjecture 1.2. The map φ has a non-constant, real-analytic integral F : R2 →
R. The family of its level curves γc = F−1(c) contains a countable, dense in R2 set
of algebraic curves and a dense in R2, non-countable set of non-algebraic curves.

It is not obvious how to construct real-analytic or even C∞ functions F with the
property described in the above conjecture, even without the property F ◦ φ = F .
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3. Algebraic Relations

In the course of the proof of Theorem 1.1 we complexify our map. However,
one immediately observes that the map φ : C2 → C2 given by formula (1) is
multi-valued. This creates some problems. However, a systematic approach to
the dynamics of algebraic relations has been developed in [Ryc97, Ryc96], at least
in some respects. For instance, criteria for the existence of invariant algebraic
manifolds can be developed. Such criteria are key to the current result.

Let us consider the following algebraic set in C2 × C2:

R = {((x1, y1), (x2, y2)) : (x2 + y1)2 = 1 + x2
1, y2 = x1}(9)

It is not difficult to verify that this set is the Zariski closure of the union of the
graphs of the local branches of the multi-valued map φ. This set replaces the map
φ naturally in many dynamical considerations and allows one to carry out many
standard constructions in a rigorous manner. We will often write graph(φ), or even
φ in place of R, in order to clearly distinguish the algebraic relation induced by φ
from other relations that may be discussed.

We recall that an algebraic variety W is called pure-dimensional if all irreducible
components of W have the same dimension. If not explicitly stated, every algebraic
variety under consideration is assumed to be pure-dimensional.

Definition 3.1. A pure-dimensional sub-variety R ⊂ X × Y , where X and Y are
pure-dimensional projective varieties, is called a non-singular algebraic relation if
the following properties hold:

1. dimR = dimX = dimY ;
2. For every irreducible component S ⊂ R and a coordinate projection πj , j =

1, 2, the set πj(S) is Zariski-dense in an irreducible component of X or Y
(π1 : X × Y → X and π2 : X × Y → Y );

3. π1(R) = X and π2(R) = Y . (If X or Y is irreducible then this assumption
follows from the previous assumptions.)

By a global branch (or simply a branch) of the relation R we simply mean an
irreducible component of R, which by itself is also a non-singular algebraic relation.
When R is irreducible as a variety we will call it an irreducible algebraic relation.
Thus an irreducible algebraic relation has only one (perhaps multi-valued) branch.

By a (non-singular) local branch of an algebraic relation we mean any diffeomor-
phism ψ : U → Y where U ⊆ X is an open (in the standard, i.e., not Zariski,
topology) set and such that graph(ψ) ⊆ R, where

graph(ψ) = {(P, ψ(P )) : P ∈ U}.
It is easy to see that the number of local branches defined in an open neighborhood
of a point P ∈ X is constant on a (Zariski) open and dense subset of X. We will
say that an algebraic relation is k-valued if generically there are k local branches of
this algebraic relation.
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Remark 3.2. In much of the algebraic geometry literature it is assumed that a
variety is an algebraic set which is irreducible. In our paper the word variety is
synonymous with an algebraic set. When we speak of an irreducible algebraic set,
we will make this assumption explicit.

From the dynamical systems point of view, the most interesting case of an al-
gebraic relation is obtained when X = Y because then R can be considered as a
multi-valued self-map and a dynamical system.

We note that relations can be composed and inverted in the usual way: if Rj ⊂
Xj−1 × Xj is an algebraic relation for j = 1, 2, . . . , k then R1 ◦ R2 ◦ · · · ◦ Rk is
defined as the set:{

(P0, Pk) ∈ X0 ×Xk :

∃ P1 ∈ X1, P2 ∈ X2, . . . , Pk−1 ∈ Xk−1

∀ j ∈ {1, 2, . . . , k} (Pj−1, Pj) ∈ Rj
}
.

The inverse of R is defined as

R−1 = {(P,Q) ∈ Y ×X : (Q,P ) ∈ R}.(10)

We note that in general R−1 ◦R 6= ∆, where ∆ = {(x, x) ∈ X ×X} is the graph of
id. For example, the graph of φ has this property, as will be shown in the proof of
Lemma 5.1.

The notation Rk abbreviates R ◦ R ◦ · · · ◦ R (k times). A composition of (non-
singular) algebraic relations is again an (non-singular) algebraic relation. The in-
verse of an (non-singular) algebraic relation is an (non-singular) algebraic relation.

It follows from this definition that R (and R−1) are unions of graphs of local dif-
feomorphisms, except for an algebraic subset of R of positive co-dimension. We will
call this exceptional set the singular set of R and denote it by Rsing. This restric-
tion can always be satisfied in practice because if it is violated, the dynamics can be
restricted to a smaller variety and the restricted relation will satisfy the property
that Rsing has positive co-dimension. We note that the singular set includes points
due to the singularity of X, Y or the map itself. The sets πi(Rsing), i = 1, 2, will
also be called the singular sets, with little room for confusion. Strictly speaking,
C2 is not a projective variety but an open subset of P1(C)2. The projectivization of
our problem can be performed by using homogeneous coordinates. However, this
would introduce an unnecessary burden on our notation. We will avoid this incon-
venience in a standard way: we will consider P1(C) = C ∪ {∞} (Riemann sphere)
and in suitable places we will extend arguments for “finite” points by considering
neighborhoods of x =∞ and y =∞ separately.

It can happen that the composition of an irreducible relation with itself is re-
ducible. For example, φ−1◦φ is reducible as will be shown in the proof of Lemma 5.1.
However, we have the following lemma:

Lemma 3.3. Let R = graph(φ). For every k the algebraic relation Rk is irre-
ducible.

Proof. First we observe that the 4-point set K = {(±i,±i)} is completely invari-
ant, i.e., whenever (x, y) ∈ K then every value of φ(x, y) is also in K. Moreover, for
every point (x, y) in this set there is only one value of φ(x, y) and thus by analogy
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with the theory of functions of one complex variable the members of K are called
branch points of the multi-valued map φ. The set K is mapped periodically into
itself, according to the rule:

-

?

6

�

(−i, i)

(−i,−i)(i,−i)

(i, i)

The idea of our argument is to show that the k-th image of the curve γ(t) = (±i+t, i)
is an irreducible curve which is branched over t = 0 of order 2k. If Rk is reducible
then also this image would be reducible. Thus, proving 2k-fold branching for the
test curve γ is sufficient to show our result. In order for this argument to work we
need to require of the test curve γ that it is not contained in the singular set of the
multi-valued map φ, i.e., that x(γ(t)) is not identically ±i.

We will show that if γ(t) = (±i+ ct+O(t2),±i+O(t2)) is a germ of an analytic
curve at t = 0 and c 6= 0 then there is a germ of an analytic curve η of the same
form as γ and such that

φ ◦ γ(s2) = η(s).(11)

Moreover, for every t 6= 0 sufficiently close to 0 and for every two values of the
composition φ ◦ γ(t) there is exactly one root of the equation s2 = t such that
φ ◦ γ(t) = η(s), i.e., the new parameterization is locally 1:1 near 0. The following
calculation proves this fact:

φ(γ(t)) = (
√

1 + (±i+ ct+O(t2))2 ∓ i−O(t2),±i+ ct+O(t2))

= (∓i+
√

2ict+O(t3/2),±i+ ct+O(t2))

= (∓i+
√

2ics+O(s3),±i+O(s2))

and the last expression is clearly analytic in s. Now by induction we show that for
every k the curve φk ◦ γ can be parameterized locally 1:1 by an analytic function
of s, where s2k = t. �

Remark 3.4. We have shown that the monodromy group of the curve Rk ◦ γ(t) at
0 is a cyclic group of order 2k.

4. Invariant Varieties

The local theory of invariant manifolds for algebraic relations is identical to
the standard local theory of dynamical systems, provided that we stay away from
the singular set. However, the global theory is richer than that of single-valued
diffeomorphisms. For instance, the global invariant curve of a hyperbolic fixed
point can have genus ≥ 1. In particular, it does not have to be an embedded copy
of C (cf. [Ryc97]).

We adopt the following definition:
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Definition 4.1. Let R ⊂ X×X be a non-singular algebraic relation. A sub-variety
V ⊂ X is called invariant if there is a non-singular algebraic relation S on V such
that S ⊆ R under the natural inclusion V × V ⊆ X ×X.

In practical terms, this definition means that a sub-variety V ⊆ C2 is invariant
under the multi-valued map φ if for every point (x, y) ∈ V at least one of the two
values of φ(x, y) = (±√1 + x2 − y, x) belongs to V . This condition can be relaxed
to hold on V except for a sub-variety V1 ⊂ V of positive co-dimension. If V is of
dimension 1 (the most interesting case) then V1 is a finite set.

We will use the terms “multi-valued map” and “non-singular algebraic relation”
interchangeably. Arguments using the notion of a “branch of a multi-valued map”
tend to be somewhat non-rigorous but very intuitive. Typically such arguments
can be easily formalized. The usual procedure introduces a non-singular algebraic
relation which is the Zariski closure of the union of the graphs of the local branches
of the multi-valued map.

5. The Existence of a Single-Valued Branch

Let us suppose that V is a pure-dimensional invariant variety of dimension 1 for
the multi-valued map φ. We will simply refer to such a variety as curve. A priori
it cannot be assumed that V is irreducible. The condition that locally at least one
branch of φ maps V to V allows us to show the following:

Lemma 5.1. Let V be a φ-invariant curve which does not contain a horizontal line
C×{y0} for any y0 ∈ C (equivalently, it does not contain a vertical line {x0}×C).
Let S ⊂ graph(φ) ∩ (V × V ) be a non-singular sub-relation of φ on V such that V
is still invariant under S.

The following objects exist:
1. An invariant curve V ′ ⊂ V and a decomposition

V ′ =
r−1⋃
j=0

Vj(12)

of V ′ into irreducible components;
2. For every j ∈ {0, 1, . . . , r−1} there is a choice of a bi-rational map φj : Vj →
Vj+1 such that graph(φj) ⊂ S and φj is a single-valued branch of φ|Vj. We
assume that j + 1 = 0 for j = r − 1, i.e., the index arithmetic is modulo r.

Proof. We note that if we replace φj with a relation Sj then the theorem is true.
In other words, the lemma is obvious if we allow φj to be multi-valued. Thus,
we need to see that φj is indeed single-valued except for a finite set of removable
singularities. It is known that any such map is bi-rational [Sha94], Volume II,
p. 179, Theorem 1.

First, we observe that for every variety W the map φ|W has either one 2-valued
branch or 2 single-valued branches. This holds iff the algebraic function

√
1 + x2 is

2-valued on W or it splits into two single-valued branches, respectively. This state-
ment can be made even more explicit. Let Q = {P1, P2, . . . , Ps} be the intersection
of the variety W with the set 1 + x2 = 0, i.e., with the union of the lines x = ±i.
Let Pj = (±i, yj) be one of these points. There is a punctured neighborhood of
0 in C and a 1:1 meromorphic function ψj : U → V ⊂ C2 which parameterizes a
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neighborhood of Pj in V . Let ψj = (ψ1
j , ψ

2
j ). There is an expression of 1 + x2 in

terms of the local uniformizing parameter

1 + (ψ1
j (ζ))2 =

∞∑
k=νj

akζ
k = ζνjhj(ζ)(13)

where aνj 6= 0 and hj is analytic at 0 and hj(0) 6= 0. We note that the left-hand
side is not identically 0. It is easy to see that locally

√
1 + x2 is 2-valued iff ν is

odd. Otherwise, it has two single-valued branches. It is clear that the function√
1 + x2 has two single-valued branches on W iff it has a single-valued branch at

every point Pj ∈ Q, i.e., for all j the number νj is even.
Let us assume that the map ψj is 2-valued for some j. We may assume without

loss of generality that ψ0 : V0 → V1 is 2-valued. Let us consider the inverse (multi-
valued map) φ−1(x, y) = (y,

√
1 + y2 − x) on V1. A formal calculation shows that

φ ◦ φ−1(x, y) = (x±
√

1 + y2 ±
√

1 + y2, y).(14)

Any combination of signs is permitted. We note that the right-hand side represents
a 3-valued map on C2. This is seemingly contradictory, as we should obtain a
4-valued map by composing two 2-valued maps. However, this contradiction can
be removed by considering the following generalization of Definition 3.1 including
multiplicities:

Definition 5.2. A system of non-singular algebraic relations is a formal finite lin-
ear combination

∑
j njRj , where Rj is a non-singular algebraic relation contained

in X × Y and nj is a positive integer coefficient . Thus Rj is a non-singular alge-
braic relation. Let rj denote the number of branches of Rj . We will say that R is
r-valued, where r =

∑
j njrj .

An ordinary non-singular algebraic relation R in the sense of Definition 3.1 is
represented as 1 · R or by an ambiguous but convenient abbreviation R. If R =∑
j njRj is a system of non-singular algebraic relations in X×Y and S =

∑
lmlSl

is another such system in Y × Z then the composition S ◦ R is well defined as a
system of non-singular algebraic relations in X × Z. Formally,

S ◦ R =
∑
j,l

mlnj (Sl ◦Rj)(15)

with the understanding that a pair of varieties Sl ◦Rj and Sl′ ◦Rj′ in X ×Z could
coincide. When this happens, we combine the corresponding terms in the above
sum. One can show easily that if R is r-valued and S is s-valued then S ◦ R is
rs-valued.

The intuition behind the notion of a system of non-singular algebraic relations is
that the term njRj represents nj copies of Rj which are “infinitely close”. We also
note that an algebraic variety R ⊆ X × Y which is not necessarily irreducible but
R =

⋃
j Rj where Rj is a non-singular algebraic relation, is naturally represented

by a system of non-singular algebraic relations
∑
j Rj .

Compositions of non-singular algebraic relations may naturally be systems of al-
gebraic relations, as formula 14 demonstrates. We interpret the calculations leading



Algebraic Non-Integrability of the Cohen Map 67

to formula 14 by writing

φ ◦ φ−1 = S + 2∆,(16)

where S is the graph of the 2-valued map (x, y) 7→ (x ± 2
√

1 + y2, y) and ∆ is
the diagonal (the graph of id). This formalism can be developed further and made
completely rigorous and analogous to the notion of a divisor, but we will not pursue
this level of generality here.

We claim that regardless of whether φ−1|V1 is multi-valued or not, there is a
branch of φ−1◦φ (single- or multi-valued) different from id for which V1 is invariant.
Let us consider both cases separately:

1. There exist two single-valued branches of φ−1|V1. In this case, one of them
maps V1 to V0. The composition of this branch with φ1 (the outer function
is φ1) is a 2-valued map V1 → V1 and is given by (14) for some choice of the
signs. Moreover, since the resulting multi-valued map has two distinct values
for some values of the argument, there must be a branch of it given by the
formula:

φ ◦ φ−1(x, y) = (x± 2
√

1 + y2, y).(17)

In view of the fact that
√

1 + y2 has two single-valued branches on V1, the
above formula represents two single-valued maps, one of which preserves V1.
The two maps are inverses of each other and thus both preserve V1.

2. The map φ−1|V1 is 2-valued. In this case, for every point (x, y) ∈ V1 and
for all choices of signs in (14) the right-hand side belongs to V1. Thus, all
branches of φ ◦ φ−1 preserve V1.

In both cases there is a branch of the map (x, y) 7→ (x±2
√

1 + y2, y) (single-valued
in the first case and 2-valued in the second case) which preserves V1. In particular,
by iterating this branch we show that for every integer n the multi-valued map
(x, y) 7→ (x ± 2n

√
1 + y2, y) has a branch that preserves V1. Thus V1 has an

infinite intersection with a line C × {y0} for some y0 6= ±i and therefore it must
coincide with this line. This is a contradiction with our assumptions. �

We note that if there exists an algebraic integral F (x, y) then only a finite number
of its level curves can contain a vertical or horizontal line or F is constant. Perhaps
with a little more work we could show that φn does not preserve any vertical or
horizontal line. This result is not needed in the proof of our main theorem, but it
is of interest while pursuing the sharpest result possible.

6. The Functional Equation

Let us assume that V =
⋃r−1
j=0 Vj is an invariant curve for the map φ and that

φj : Vj → Vj+1 is a bi-rational map between the variety Vj and Vj+1 and a branch
of φ. The arithmetic of the index j is modulo r.

For a given algebraic curve W , let Ŵ denote the Riemann surface associated
with the curve W . Let πW : Ŵ →W be the natural projection. There exist many
constructions of (Ŵ , πW ) but this pair is determined uniquely up to an isomorphism
by the following property: There exists a finite subset B ⊂ W such that if B̂ =
π−1
W (B) then the restriction πW |Ŵ\B̂ : Ŵ\B̂ → W\B is a biholormorphic map.

Moreover, if W is a projective algebraic curve then Ŵ is compact. We will implicitly
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U φ̂r−1

V̂1
p0

p1

V̂r−1
Vr−1

πr−1

π1

π0

φr−1

φ0

φ1

φr−2

φ̂0

φ̂1

φ̂r−2

pr−1

V̂0 V0

V1

Figure 4. The diagram of maps and curves

assume that each algebraic curve which we are dealing with in the current paper is
a projective curve, i.e., that the points at ∞ have been added to it.

Using Uniformization Theory, we may translate the condition that V is invari-
ant into a sequence of functional equations for meromorphic functions on simply
connected Riemann surfaces: C, D or P1(C) (Riemann sphere). Indeed, we have
a commuting diagram pictured in Figure 4. In this diagram U is one of the three
models (C, D or P1(C)) of simply connected Riemann surfaces which is a universal
covering space of V̂0. As V̂0 is isomorphic to each of V̂j , we also have universal
covering maps pj : U → V̂j . For every covering map pj , let Γj be the corresponding
group of deck transformations. Thus Γj ⊂ Aut(U), where Aut(U) stands for the
group of automorphisms of U .

Each of the bi-rational maps φj lifts to a bi-holomorphic map φ̂j : V̂j → V̂j+1

and to an automorphism µj : U → U . Moreover, for j = 0, 1, . . . , r − 1 we have
Γj+1 = µjΓjµ−1

j .
The map µ = µr−1 ◦ µr−2 ◦ · · · ◦ µ0 is an automorphism of U . We may assume

that

1. If U = P1(C) then µ(z) = az is a multiplication by a complex number a 6= 0
(elliptic, hyperbolic and loxodromic case) or a translation µ(z) = z + 1 (the
parabolic case).
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2. If U = C then V0 is an elliptic curve. There is a 2-dimensional lattice Γ ⊂ C
and the automorphism µ(z) = az + b is a composition of a translation and a
periodic rotation, where an = 1 and n = 1, 2 or 3.

3. If U = D then µ is an element of the Poincaré group and moreover, since µ
must have a fixed point as a lift of an automorphism of a compact Riemann
surface of genus ≥ 2, we may assume that this fixed point is 0. Hence,
µ(z) = az is a multiplication by a number again. Moreover, there is n such
that an = 1, i.e., a is a root of unity. We note that every automorphism of a
compact Riemann surface is periodic because the group of automorphisms of
such a surface is finite [GH78, p. 275].

Let πj ◦ pj = (fj , gj), where fj , gj : U → C are meromorphic functions. The
equation

φ(fj(z), gj(z)) = (fj+1(µjz), gj+1(µjz))(18)

follows directly from our definitions. Thus

fj+1(µjz) =
√

1 + fj(z)2 − gj(z),
gj+1(µjz) = fj(z).

The function gj can be eliminated from the first equation by using the second one,
and we arrive at the following functional equation:

fj+1(µjz) + fj−1(µ−1
j−1z) =

√
1 + fj(z)2(19)

valid for j = 0, 1, . . . , r − 1. Moreover, without loss of generality, we may assume
that µ0 = µ1 = . . . = µr−2 = 1 and µr−1 = µ. This is obtained by a simple change
of coordinates involving compositions of µj . Also, in view of the fact that there
is always an automorphism λ satisfying λr = µ, we may change coordinates again
and obtain an equation involving λ only:

fj+1(λz) + fj−1(λ−1z) =
√

1 + fj(z)2.(20)

This is the form of the functional equation that we are going to use in the future.
The standarization of λ is compatible with the following standarization of Γj : we
may assume that fj is invariant under an action of a discrete subgroup Γj ⊂ Aut(U),
acting discretely and co-compactly. For j = 0, 1, . . . , r−1 we have Γj+1 = λΓjλ−1,
thus the groups Γj , j = 0, 1, . . . , r − 1 are all conjugate.

In each case, U is an open subset of the Riemann sphere and fj : U → C are
meromorphic functions. Furthermore, we may make the following assumptions:

1. If U = P = C ∪ {∞} then fj are rational functions, and λ is a multiplication
by a complex number a 6= 0 or a translation by 1.

2. If U = C then λ(z) = az + b is a composition of a translation and a periodic
rotation (arn = 1, where n = 1, 2 or 3). The group Γi is a 2-dimensional
lattice in C.

3. If U = D then λ(z) = az, |a| = 1 and a is a root of unity. In this case, the
group Γi is a discrete subgroup of the Poincaré group, acting discretely and
co-compactly on D, so that D/Γ is a compact Riemann surface of genus ≥ 2.
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7. The Poles of the Solution

The system of equations (20) permits one to draw conclusions about the poles
of the functions fj . Since each of these functions is meromorphic on a compact
Riemann surface, the poles and the principal parts of fj at a finite number of these
poles determine fj completely. Thus, this information provides us with rather sharp
criteria for the existence of solutions.

Lemma 7.1. Let (fj)r−1
j=0 be a solution to the system of equations (20) and let

z0 ∈ U be a pole of fj for some j. Then z0 is a periodic point of λ.

Proof. Let ν be the maximal order of z0 as a pole of fj for j = 0, 1, . . . , r − 1.
Let us write zm = λmz0 for all integer m. Let us consider the leading term of the
Laurent series of fj at zj :

fj(z) =
Aj

(z − zj)ν + · · · .(21)

We compose the functional equation (20) with λj and obtain

fj+1(λj+1z) + fj−1(λj−1z) =
√

1 + fj(λjz)2.(22)

Calculating the most singular term of the Laurent expansion at z0 leads to the
following equation:

Aj+1

(
(λj+1)′(z0)

)−ν
+Aj−1

(
(λj−1)′(z0)

)−ν
= ±Aj

(
(λj)′(z0)

)−ν
.(23)

Let Bj = Aj
(
(λj)′(z0)

)−ν . We obtain:

Bj+1 +Bj−1 = ±Bj .(24)

Thus, [
Bj+1

Bj

]
=
[±1 1
−1 0

] [
Bj
Bj−1

]
.(25)

Thus, the vector (Bj+1, Bj) is obtained from (Bj , Bj−1) by multiplying by a non-
singular matrix. Hence, if (Bj+1, Bj) 6= (0, 0) for some j then the same is true for
all j. Hence, if all zj are distinct then for some k the function fk has infinitely
many poles of the form zjr+k. But this is impossible since the poles are isolated
and there is only a finite number of them on the compact Riemann surface U/Γk.
Thus, for some k and l 6= k we have zk = zl. In particular λk−l(z0) = z0. �

8. Periodicity Considerations

In this section we develop criteria for establishing periodicity of a non-singular
algebraic relation. A single-valued map φ : X → X is periodic if for some n we
have φn = id. The following definition will be useful when φ is multi-valued:

Definition 8.1. A non-singular algebraic relation R ⊂ X × X is said to have a
periodic component of period n iff ∆ ⊆ Rn where ∆ = graph(id) is the diagonal of
X ×X. If there exists n such that Rn = ∆ then R is called a periodic non-singular
algebraic relation of period n.
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The following weaker definition of periodicity can also be considered: R is peri-
odic if for every finite sequence of local branches (φj)

p−1
j=0 such that the composition

φp−1 ◦ φp−2 ◦ · · · ◦ φ0 is defined on a non-empty open set there exists q ≥ p and
local branches (φj)

q−1
j=p such that φq−1 ◦ φq−2 ◦ · · · ◦ φ0 ≡ id on an open set. It can

be shown that this definition is equivalent to the previous one.
The main goal of this section is the proof of the following:

Proposition 8.2. The mapping φ is periodic on every invariant variety V , i.e.,
for every invariant variety V the non-singular algebraic relation graph(φ)∩(V ×V )
is periodic.

Before proceeding with the proof of Proposition 8.2 we will prove a corollary
which motivates the importance of this proposition.

Corollary 8.3 (of Proposition 8.2). If there exists an algebraic integral for the the
map φ then φ is periodic, i.e., the non-singular algebraic relation graph(φ) is peri-
odic.

Proof of Corollary 8.3. By definition of algebraic integrability, if φ has an alge-
braic integral then there exists a non-constant polynomial G(x, y, z) with complex
coefficients such that for every c ∈ C the curve

Vc = {(x, y) ∈ C2 : G(x, y, c) = 0}
is invariant in the sense of Definition 4.1. We apply Proposition 8.2 to each curve
Vc. Let R = graph(φ). The restricted relation R ∩ (Vc × Vc) is periodic. For every
non-negative integer n let Cn denote the set of these c ∈ C for which ∆c ⊆ Rn.
There exists n such that Cn is (Zariski) dense in C, where ∆c is the diagonal of
Vc × Vc. Rn has only a finite number of components. Hence, there exists a single
irreducible component S ⊆ Rn such that ∆c ⊆ S ∩ (Vc × Vc) for a (Zariski) dense
set of c ∈ Cn. It is easy to see that we must have S = ∆, where ∆ is the diagonal
of C2 × C2.

By Lemma 3.3, Rn is an irreducible variety, and thus if ∆ ⊆ Rn then Rn = ∆,
i.e., R is periodic of period n. �
Corollary 8.3 results in a contradiction because Rn is not periodic. A detailed
argument will be presented in Lemma 8.8 and Section 9.

The next lemma deals with invariant curves of high genus.

Lemma 8.4. If V is an invariant variety of φ and V has genus ≥ 2 then graph(φ)∩
(V × V ) is a periodic algebraic relation.

Proof. If V has genus ≥ 2 then V does not contain a line C × {y0} or {x0} × C.
Hence, we can apply Lemma 5.1 and without loss of generality we may assume that
φ restricted to V is single-valued. Let V =

⋃r−1
j=0 Vj and let φj : Vj → Vj+1 be the

single-valued and thus bi-rational branch of φ restricted to V (see the beginning of
Section 6). Let V̂j be the corresponding Riemann surfaces and φ̂j : V̂j → V̂j+1 the
corresponding bi-holomorphic maps. Thus, the composition ψ̂ = φ̂r−1◦φ̂r−2◦· · ·◦φ̂0

is an element of Aut(V̂0). It is well-known that the group of automorphisms of a
compact Riemann surface of genus ≥ 2 is finite. Thus, ψ̂ has a finite rank, i.e., for
some n we have ψ̂n = idV̂0

. It is easy to see that this is equivalent to φ restricted
to V being periodic of period nr. �
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The case of genus 1 can also be settled easily.

Lemma 8.5. If V is an invariant variety of φ and V has genus 1 then graph(φ)∩
(V × V ) is a periodic algebraic relation.

Proof. If the genus of V is 1 then the automorphism λ obtained in the previous
section is of the form λ(z) = az+b where a is a root of unity. We know that there is
at least one pole of any non-constant function fj . Thus, there exists a point which
is fixed by λn for some n. But this means that λn is equivalent to a rotation by an

and thus for some m ≥ n we have λm = id. �

The least trivial case is that of genus 0. But in this case we have the following:

Lemma 8.6. Let U = P1(C) = C∪ {∞}. Let us suppose that λ has infinite order,
i.e., λm 6= id for all integers m. Then there are no rational solutions to the system
of equations 20, except for the constant ones.

Proof. We note that if for some j ∈ {0, 1, . . . , r − 1} the functions fj have a pole
different from 0 and ∞ then λm = id (Lemma 7.1). Thus, the only poles of fj can
be 0 and ∞. Hence, we may write

fj(z) =
ν2∑
l=ν1

fj,lz
l(26)

where ν1 ≤ 0 and ν2 ≥ 0.
Equation (20) can be transformed into

(fj+1(λz) + fj−1(λ−1z))2 − fj(z)2 = 1.(27)

After factoring we obtain:(
fj+1(λz) + fj−1(λ−1z) + fj(z)

) (
fj+1(λz) + fj−1(λ−1z)− fj(z)

)
= 1.(28)

We claim that there exists a sequence of εj ∈ {−1, 1}, j = 0, 1, . . . , r− 1 such that
the equation

fj+1(λz) + fj−1(λ−1z) = εjfj(z) + uj(z)(29)

is satisfied, where uj(z) is a function analytic at 0. We may say that the principal
part of the equation

fj+1(λz) + fj−1(λ−1z) = εjfj(z)(30)

is satisfied.
Indeed, equation (28) implies that if one of the factors in the left hand side has

a pole at 0 then the other one is analytic. Hence, for every j we may fix εj so that
(29) is satisfied. A similar argument with 0 and ∞ switched shows that

fj+1(λz) + fj−1(λ−1z) = ηjfj(z) + vj(z)(31)

holds as well, but now vj(z) is analytic at ∞. Moreover, by analytic continuation
along a path connecting 0 to∞ we can see that ηj = εj . Indeed, we may assume that
γ is a path connecting 0 to ∞ and not passing through any roots of the equations
fj(z) = ±i. The fact that we can take

√
1 + fj(z)2 = fj(z)

√
1 + fj(z)−2 and

obtain a rational function means that the winding number of fj ◦ γ with respect to
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±i is even. Thus, the analytic continuation of
√· along the closed path 1+(fj ◦γ)−2

results in no change of branch at 1. Hence εj = ηj . Thus the function

fj+1(λz) + fj−1(λ−1z)− εjfj(z)(32)

is a bounded meromorphic (rational) function, and therefore it is constant. By
comparing this equation with the original equation (20) we conclude that for every
j the function

√
1 + fj(z)2−fj(z) must be constant. It is easy to see that this is only

possible when fj(z) is constant. Indeed, we may rewrite the equation
√

1 + fj(z)2−
fj(z) = c as

1 + fj(z)2 = (c+ fj(z))2 = c2 + 2cfj(z) + fj(z)2

which implies c 6= 0 and fj(z) = (1− c2)/(2c) for all z. �

Corollary 8.7. For every genus 0 invariant curve V of φ, the map φ|V has a
periodic branch.

We note that Proposition 8.2 follows from Lemmas 8.4, 8.5 and Corollary 8.7.
It is not difficult to verify that a non-singular algebraic relation is not periodic.

The following argument can be used in the case of the map φ:

Lemma 8.8. The mapping φ has uncountably many real-analytic invariant curves
on which φ is non-periodic.

Proof. This is a consequence of the KAM theory . For instance, the fixed point
(1/
√

3, 1/
√

3) has an irrational rotation number satisfying the usual diophantine
and non-degeneracy conditions. Hence, there are uncountably many invariant
curves nearby. On each of these curves the dynamics is non-periodic. �

As we have mentioned in the introduction, in [AE90] we find a version of KAM
theory suitable for proving that also there is a large set of closed, real-analytic
invariant curves for φ near∞, close to the integral curves of the vector field X(x, y)
given by (6).

9. The Conclusion of the Proof of the Main Theorem

Proposition 8.2 implies that every branch of φ is periodic on each of its algebraic
invariant curves, except for a finite number of horizontal lines of the form C×{y0},
where y0 ∈ C (see Lemma 5.1). Corollary 8.3 states that if there exists an algebraic
integral for φ then φ is periodic.

On the other hand, Lemma 8.8 implies that φ is non-periodic on a large set of
1-dimensional invariant curves. This contradiction concludes the proof of the main
Theorem 1.1.

10. Open Problems

The map φ without a doubt has an integral which is analytic in the real domain.
It is not clear how to prove this, except for explicitly writing down the integral.

Problem 10.1. Can the integral of φ be written in “closed form”?
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Integrals written in closed form typically have only mild singularities. It is
possible that the singularities of the integral in question are not mild. For instance,
there could be a natural boundary for the natural continuation of the integral.
If this is the case, our approach could be sharpened to eliminate solutions with
increasingly complex singularities by considering more general analytic invariant
curves. Such curves give rise to Riemann surfaces which are not compact. However,
some arguments can be made even in this case, for instance, the functional equation
(20) is still valid.

Problem 10.2. Generalize the proof of our theorem to exclude stronger than alge-
braic singularities. For instance, exclude integrals of the form F (x, y) + logG(x, y)
where F and G are algebraic functions.

Finally, let us note that there are formal procedures for producing the Taylor
expansion of the integral of φ near the finite fixed point or near ∞.

Problem 10.3. Prove convergence of these formal expansions.
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