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Abstract� Let T be an ergodic transformation of a nonatomic probability
space� f an L�
function� and K � � an integer� It is shown that there is
another L�
function g� such that the joint distribution of T ig� � � i � K�
is nearly normal� and such that the corresponding inner products �T if� T jf�
and �T ig� T jg� are nearly the same for � � i� j � K� This result can be used
to give a simpler and more transparent proof of an important special case of
an earlier theorem ���� which was a re�nement of Bourgain�s entropy theorem
����
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�� The Main Result

If a random vector Y � 	Y�� Y�� � � � � YK
 has the multivariate normal distribu�
tion� then the special structure allows one to make very precise statements about
the set where sup��i�K Yi � �� Consequently� if one can reduce a general situa�
tion to the case of the multivariate normal� then the knowledge of the multivariate
normal case can be used to obtain information about the general case� Thus� it is
useful to 
nd situations and techniques that allow us to make a reduction to the
multivariate normal situation� In this paper we consider a family of operators that
arise in ergodic theory� and show that such a reduction of the general case to the
multivariate normal is possible by using a Rohlin tower argument�

Let T be an ergodic transformation of a nonatomic probability space� f an
L��function� and K � � an integer� We will show below that there is another L��
function g� such that the joint distribution of T ig� � � i � K� is nearly normal� and
such that the corresponding inner products 	T if� T jf
 and 	T ig� T jg
 are nearly
the same for � � i� j � K� Using this approximation to the multivariate normal�
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and its well understood properties� we will be able to obtain information about the
sequence T if � � � i � K�

The particular application we have in mind is Bourgain�s celebrated entropy
theorem ���� which establishes a connection between the pointwise and L� behaviors
of sequences of L� contractions Tn� applied to L� functions� Such a connection does
exist� of course� if f � L� is such that the joint distribution of Tif � � � i � K�
is normal for each K� In this case all pointwise relations between these functions
are determined by the L� behavior of the sequence Tnf � The extension of this
connection from the normal case to the general case is carried out in an existential
way in Bourgain�s original proof� and also in the proof of a re
ned version of this
theorem given in ���� However� in many cases the passage from the normal case
to the general case can be made constructively� in a simple and more transparent
way� by approximating in the appropriate sense� the sequence Tif � by a sequence
with the multivariate normal distribution� Our main result� Theorem ��� below�
has been obtained with this application in mind� In Section � we give a brief sketch
of this application�

Let 	X� F � �
 be a nonatomic probability space� T an ergodic transformation on
X � f a function in L�	�
� and K � � an integer� We will show below 	Theorem ���

that there exists another function g � L�	�
� such that the joint distribution of
T ig� � � i � K� is nearly normal� and such that the corresponding inner products
	T if� T jf
 and 	T ig� T jg
 are nearly the same for � � i� j � K� Theorem ���
implies the following� stated formally as Corollary ���� below� Let A�� � � � � AK be
K operators which are linear combinations of the iterates of T � or more generally are
strong limits of such linear combinations� Then� given an f � L�� there is another
g � L� such that the joint distribution of Aig� � � i � K� is nearly normal� and
such that the corresponding inner products 	Aif� Ajf
 and 	Aig� Ajg
 are nearly
the same for � � i� j � K�

A special case of the main result� where T is an irrational rotation of the circle�
has been proved in ���� The general result has been stated in ��� without proof�
observing that the special case in ��� would imply the general case with routine
approximations� via Rohlin�s Lemma� As the proof in ��� is rather involved in
details� however� a generalization of it turns out to be very complicated� even
though rather routine in principle� In the present note we give a very simple and
short direct proof of the general result� using essentially only Rohlin�s Lemma� This
proof could have been made even shorter by replacing Lemmas ��� and ��� below
by a reference to a general fact about Gauss processes� Indeed� the ergodicity of
a Gauss process is equivalent to the continuity of its spectral measure 	See� for
example� pages ��� and ��� in ����
� This implies directly that a Gauss process can
be approximated by an ergodic Gauss process� in the sense required for our proof�
Lemmas ��� and ��� show that any L��process can be approximated� in the same
sense� by an aperiodic L��process� which is enough for our purpose� To keep our
presentation as elementary and self contained as possible� we give the simple proof
of this fact�

Notation ���� By a space we mean a probability space and by a measure we
mean a probability measure� All functions considered are measurable� either by
assumption or construction� Let fn and gn be two 
nite or in
nite sequences of
real valued functions� Each sequence may be de
ned on a di�erent space� These
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sequences will be called isomorphic if the joint distributions of 
nite sets of functions
from one sequence is the same as the corresponding distributions from the other
sequence� A transformation T on a space X � 	X� F � �
 is a measure preserving
point transformation� not necessarily invertible� A transformation T on X induces
a transformation of functions on X � denoted by the same letter and de
ned by
	Tf
	x
 � f	Tx
 for x � X � where f is a function on X � Since T is not assumed
to be invertible� given g � X � R� there need not be 	measurable
 f � X � R such
that Tf � g� If g is measurable with respect to T��F � however� then there is an
f such that g � Tf � If T ix �� T jx whenever i �� j� for almost all x� then T is
called aperiodic� By a process 	T� f
 we mean a transformation T together with a
function f � X � R� We identify a process 	T� f
 by the corresponding sequence
fn � Tnf � For each integer K � � a process induces a measure � � �K on RK � as
the distribution measure of the function 	T �f� � � � � TKf
 � X � R

K � which will be
called the K�distribution measure of the process� Two processes 	T� f
 and 	S� g

are called isomorphic if their K�distribution measures are the same for each K � ��
or� equivalently� if the corresponding sequences Tnf and Sng are isomorphic� If f
is an L� function� then 	T� f
 is called an L��process�

De�nition ��� 	L��equivalence
� Let fn and gn be two 	
nite or in
nite
 sequences
of L��functions� n � �� These sequences will be called L��equivalent if the corre�
sponding inner products 	fi� fj
 and 	gi� gj
 are equal for all i� j � �� Let 	T� f

and 	S� g
 be two L� processes� where the associated transformations may or may
not be on the same space� Then 	T� f
 and 	S� g
 will be called L��equivalent if the
corresponding sequences fn � Tnf and gn � Sng are L��equivalent� A sequence
of L� functions is called a Gauss 	or normal
 sequence if the joint distribution of
any 
nite subsequence is normal� A process 	T� f
 is called a Gauss process if the
corresponding sequence fn � Tnf is a Gauss sequence� Although the following
lemma is well known we will recall the simple proof� In this lemma the uniqueness
is understood to be up to an isomorphism� as de
ned in ����

Lemma ���� Any L� sequence is L��equivalent to a unique Gauss sequence� In

particular� any L� process is L��equivalent to a unique Gauss process�

Proof� Let � � R
Z be the shift space� Points in � are denoted by � � 	�i
i�Z�

with coordinate functions �i � � � R� The shift transformation S � � � � is
de
ned as 	S�
i � �i��� If fi� � � i � K� is a 
nite L� sequence� then there
is a unique Gauss measure on R

K such that the inner product of the coordinate
functions �i and �j with respect to this measure is equal to the corresponding
inner product of fi and fj � for all � � i� j � K� If fn is an in
nite sequence then
the Gauss measures corresponding to 
nite segments are compatible and de
ne a
unique measure on RN� If fn � Tnf � then this measure on RN is invariant under the
restriction of the shift transformation to RN� de
ned in an obvious way� Hence it
has a unique extension to a shift invariant measure on �� Then we see that 	T� f

is L��equivalent to the Gauss process 	S��� ��
� �

We will need two concepts of �closeness�� In the 
rst case� say that two sequences
of functions are L� close if their corresponding inner products are close� To be
precise we give the following de
nition�
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De�nition ��� 	L��closeness
� Let K � � be an integer and 	 � �� Two L�
sequences fn and gn are called L��close within 	K� 	
 if

j	fi� fj
� 	gi� gj
j 
 	

for � � i� j � K � �� Two L� processes 	T� f
 and 	S� g
 will be called L��close
within 	K� 	
� if the corresponding sequences fn � Tnf and gn � Sng are L��close
within 	K� 	
�

We will also need a second measure of closeness� The idea is that two measures
are weakly close if the results of integration against continuous functions are close�
Two 
nite sequences of functions will be called weakly close if their distribution
measures are weakly close� The formal de
nition is as follows�

De�nition ��� 	Weak�closeness
� Let K � � and U � � be integers� ��� � � � � �U
bounded continuous functions RK � R� and 	 � �� Two sequences of measurable
functions fn and gn� n � �� will be called weakly close within 	K� 	� ��� � � � � �U 

if ����

Z
RK

�ud� �

Z
RK

�ud�

���� 
 	

for � � u � U � where � and � denote the joint distribution measures of the RK�
valued functions 	f�� � � � � fK��
 and 	g�� � � � � gK��
� To simplify the notation we
will also say that these sequences are weakly close within 	K� 	
� the choice of a

nite number of bounded continuous functions RK � R being understood implicitly�
Two processes 	T� f
 and 	S� g
 will be called weakly close within 	K� 	
� if the
corresponding sequences are weakly close within 	K� 	
�

Theorem ���� Let T be an aperiodic transformation and f � L�	X
� Let 	V� h

be the Gauss process which is L��equivalent to 	T� f
� Let

	K� 	
 � 	K� 	� ��� � � � � �U 


be as in the de�nition ��� of weak�closeness� Then there is a function g � L�	X
�
such that 	V� h
 and 	T� g
 are both weakly and L��close within 	K� 	
�

Proof� The passage from 	V� h
 to 	T� g
 will be accomplished in two steps� through
an intermediary process 	V �� h�
� These two passages will be justi
ed by the Lem�
mas ��� and ��� to be obtained below� In the 
rst step� the Gauss process 	V� h

is replaced by a process 	V �� h�
 such that V � is aperiodic and 	V� h
 and 	V �� h�

are both weakly and L��close within 	K� 	
�
� This step is justi
ed by Lemma ����
which states that any L��process can be approximated by an aperiodic L��process�
both in weak� and L��closeness sense� Next� we 
nd an L��function g on X so
that 	V �� h�
 and 	T� g
 are both weakly and L��close within 	K� 	
�
� This step
is justi
ed by Lemma ���� which is a consequence of Rohlin�s Lemma for aperiodic
transformations� It is clear that 	V� h
 and 	T� g
 are both weakly and L��close
within 	K� 	
� �

We now give the details of these lemmas� In what follows

	K� 	
 � 	K� 	� ��� � � � � �U 


is as speci
ed before�
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Lemma ��	� Let X � ��� �
 be the unit circle with Lebesgue measure� Let �j be a

sequence in X converging to �� with the corresponding rotations Tj and T � Then�

for any f � L�� and for su�ciently large j� the processes 	Tj � f
 and 	T� f
 are

both weakly and L��close within 	K� 	
�

Proof� For any 
xed n the sequence Tnj f converges to Tnf in L� norm� Hence�
	Tj � f
 and 	T� f
 are L��close within 	K� 	
 for all su�ciently large j� Let Qj �
X � R

K be de
ned as

Qj	x
 � 	f	x
� Tjf	x
� � � � � T
K��
j f	x



and let Q � X � R
K be the similar mapping de
ned in terms of T instead of Tj �

We see that Qj converges to Q in measure� This shows that 	Tj � f
 and 	T� f
 are
also weakly close within 	K� 	
� for all su�ciently large j� �

Lemma ��
� For any L� process 	T� f
 there is an aperiodic process 	S� g
 such

that these two processes are both weakly and L��close within 	K� 	
�

Proof� If T is a periodic transformation of period n� then 	T� f
 is isomorphic
	as de
ned in ���
 to a process for which the underlying space is the unit circle
and the transformation is the rotation by �
n� Approximating �
n by irrational
numbers and applying the previous lemma� we see that in this case there is� in fact�
an ergodic process 	S� g
 satisfying our requirements� In the general case� partition
the underlying space X for T into the T �invariant sets X�� X�� � � � � X�� where� for
� � k 
�� Xk is the set of all x � X such that T kx � x but T ix �� x if � � i 
 k�
and X� � X ����k��Xk� The restriction of f to �N�n��Xn goes to zero both
in L� and L� norms� as N ��� Hence we will assume� without loss of generality�
that f vanishes on �N�n��Xn� for some N � Change X to Y � by replacing each Xn

by a circle Yn� with the same measure as Xn� and leaving X� � Y� unchanged�
Then 	T� f
 is isomorphic to a process 	R� g
� where the restriction of R to Yn is
the rotation by �
n� and the restriction to Y� is equal to the restriction of T to
X�� Then the required aperiodic transformation S will be obtained by replacing
each rotation by an irrational rotation� By choosing the rotation �n on Yn� for
� � n � N � su�ciently close to �
n� we see that this process 	S� g
 satis
es our
requirements� �

Lemma ���� Let T and S be two aperiodic transformations on X and Y � respec�

tively� Then� given an f � L�	X
� there is a g � L�	Y 
 such that 	T� f
 and 	S� g

are both weakly and L� close within 	K� 	
�

Proof� We will show that� given any � � � there is a function g� with the same
distribution as f � and two sets X� 	 X and Y� 	 Y � with measures greater than
�� ��� such that the joint distributions of 	f� Tf� � � � � TK��f
 on X� is the same
as the joint distribution of 	S�g� � � � � SK��g
 on Y�� This will complete the proof�
In fact� note that all the functions we are considering� T if and Sjg� have the same
distribution� Hence� if � is su�ciently small� we see that the processes 	T� f
 and
	S� g
 are both weakly and L� close within 	K� 	
�

To construct such a g� 
nd a nonnegative integer R such that K
	R � �
 
 ��
In what follows r ranges over the integers f�� �� � � � � Rg� Use Rohlin�s Lemma to

nd F 	 X and G 	 Y � with measures equal to 	�� �

	R��
� such that both of
the families of sets T�rF and S�rG are pairwise disjoint in their respective spaces�
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Let X� � �Rr��T
�rF and Y� � �Rr��S

�rG� Let B � T�RF and C � S�RG�
Let fr � B � R be the restriction of T rf to B� If Y � 	Y� G� �
� note that
C � S�RG� Consider C as a measure space with the restriction of � to C 
 S�RG�
Then C is a nonatomic measure space with the total measure equal to �	B
� Hence
there are R � � functions gr � C � R with the same joint distribution as the
functions fr� Furthermore� since these functions are S�RG�measurable� there are
wr � S

�R�rG � R such that Srwr � gr� We then de
ne g on Y� as the function
whose restriction to S�R�rG is equal to wr � Then g restricted to Y� has the same
distribution as f restricted to X�� De
ne g on Y � Y� in such a way that g and f
have the same distributions� We then let X� � �Rr�KT

�rF and Y� � �Rr�KS
�rG

and see that all the requirements are satis
ed� �

Notation ����� Let T be a transformation� Let L � L	T 
 be the class of operators
on functions that are linear combinations of the iterates of T � Let A � A	T 
 be the
class of bounded L� operators A for which the following is true� For each f � L�
and for each 	 � � there is a B � L such that kAf �Bfk� 
 	�

Corollary ����� Let T be an aperiodic transformation on a nonatomic probability

space X� Let 	K� 	� ��� � � � � �U 
 be as in the de�nition of weak�closeness� Given

K operators Ai� � � i � K� in A and f � L�	X
� let qi be the Gauss sequence

which is L��equivalent to the sequence Aif � Then there is a g � L�	X
� such that

the sequences qi and Aig are both weakly and L��close within 	K� 	
�

Proof� We will assume that each Ai belongs to L� This is not a loss of generality�
since we can 
nd Bi � L such that� if q�i is the Gauss sequence which is L��
equivalent to the sequence Bif � then the sequences qi and q�i are both weakly and
L��close within 	K� 	
�
� Hence we assume that each Ai is of the form Ai �PN

j�� �ijT
j � � � i � K� with real coe�cients �ij � Let � � RN�� � R

K be de
ned

as 	�	x

i �
PN

j�� �ijxj � where � � i � K� � � j � N � and x � 	xj
 � R
N��� Let

M �
P
j�ij�klj� where the summation is over � � i� k � K and � � j� l � N � Let

	V� h
 be the Gauss process which is L��equivalent to 	T� f
� Use Theorem ��� to

nd a g � L�	X
 such that the processes 	V� h
 and 	T� g
 are both weakly and
L��close within 	N � �� 	
M� �� � �� � � � � �U � �
� This g satis
es the required
condition� �

�� An Application

As mentioned at the beginning of this note� we will now apply Corollary ���� to
give a simple proof of a result in ���� in an important special case� The following
two de
nitions� taken from ���� give a type of L� behaviour and a type of pointwise
behaviour for a 
nite sequence of functions� The theorem to be proved establishes
a connection between these behaviours�

De�nition ��� 	��Spanning sequences
� Let � 
 � � �� A sequence of L� func�
tions 	f�� � � � � � fK
 will be called a ��spanning sequence if kfkk� � � and kfk �
Qk��fkk� � � for each k � �� � � � � K� where Q� � � and Qk is the orthogonal
projection on the subspace spanned by 	f�� � � � � fk
� Let 	T�� � � � � TK
 be 
nitely
many L� operators and f be an L� function� Then f is called a ��spanning function
	for 	T�� � � � � TK
 
 if kfk� � � and if 	T�f� � � � � TKf
 is a ��spanning sequence�
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De�nition ��� 		�� 	
�sweeping
� Let � 
 	 
 � � �� A sequence of functions
	h�� � � � � hK
 will be called a 	�� 	
�sweeping sequence if khkk� 
 	 for each k �
�� � � � � K� and if max��k�K jhkj � � � 	 on a set of measure greater than � �
	� Let 	T�� � � � � TK
 be 
nitely many operators and h be a function� Then h is
called a 	�� 	
�sweeping function 	for 	T�� � � � � TK
 
 if khk� � �� khk� 
 	� and if
	T�h� � � � � TKh
 is a 	�� 	
�sweeping sequence�

Remark ���� The signi
cance of 	�� 	
�sweeping is as follows� Let Tn be a sequence
of L� contractions and � � � 
xed� If for each 	� � 
 	 
 � there are arbitrarily
large Ks for which the segment 	T�� � � � � TK
 has a 	�� 	
�sweeping function� then
one can show that there are functions h for which the sequence Tnh diverges a�e�
Also� its degree of divergence can be characterized by ���sweeping�� as de
ned in
���� Also� see ���� ���� ���� ���� ���� and ���� for more details�

Theorem ���� Let � 
 	 
 � � �� Then there is an integer K � K	�� 	
 � �
with the following property� Let 	T�� � � � � TK
 be K contractions in L�� If there

is a ��spanning function f for 	T�� � � � � TK
 such that the joint distribution of

	f� T�f� � � � � TKf
 is normal� then there is an M � � such that

h � 	�
M
		f �M
 
 	�M



is a 	�� 	
�sweeping function for 	T�� � � � � TK
�

This is proved in ���� As mentioned earlier� it relates a certain type of pointwise
behaviour of K functions with a joint normal distribution to the L� behaviour
of these functions� The following theorem removes the normality assumption for
certain types of contractions� A more general version of it was also proved in ����
in a longer and nonconstructive way� An application of Corollary ���� gives a
shorter and more transparent proof for the important special case below� Recall
the de
nition of A	T 
 given in �����

Theorem ���� Let T be an ergodic transformation in a nonatomic probability

space� Let � 
 	 
 � � �� Then there is an integer K � K	�� 	
 � � with the

following property� Let 	A�� � � � � AK
 be K L� contractions in A	T 
� If there

is a ��spanning function f for 	A�� � � � � AK
� then there is a function g� and an

M � � such that h � 	�
M
		g �M
 
 	�M

 is a 	�� 	
�sweeping function for

	A�� � � � � AK
�

Sketch of the Proof� The ��spanning property is preserved under L� closeness
and the 	�� 	
�sweeping property is preserved under weak closeness� If hi is the
Gauss sequence which is L��equivalent to Aif � there is g � L�	X
 such that Aig
which is as close to hi as we want� both in the weak and in the L� sense� This
follows from the Corollary ����� Using Theorem ���� we see that this g satis
es the
desired condition� �
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