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Two Signed Associahedra

H. Burgiel and V. Reiner

Abstract. The associahedron is a convex polytope whose vertices correspond
to triangulations of a convex polygon. We define two signed or hyperoctahedral
analogues of the associahedron, one of which is shown to be a simple convex
polytope, and the other a regular CW-sphere.
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1. Introduction

The d-dimensional associahedron or Stasheff polytope is a d-polytope whose facial
structure relates to triangulations of a polygon (see [13]) or associative bracketings
of a product. This paper is about two signed or hyperoctahedral analogues of the
associahedron.

To briefly describe these two signed associahedra, we define the graphs which
form their 1-skeleta. Both signed associahedra have vertices indexed by completely
signed triangulations of a convex (n+2)-gon Pn, which we now define. Number the
vertices of Pn from 0 to n + 1 proceeding counter-clockwise around its perimeter,
as in Figure 1. A completely signed triangulation is a triangulation along with an
assignment of + or − to each of the vertices 1, 2, . . . , n (so nothing is assigned to
the vertices labelled 0, n+ 1).

The classical associahedron has the property that each vertex lies on d edges,
that is to say it is a simple polytope. One of the two signed associahedra shares this
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property, and hence we dub it the simple signed associahedron. In the simple signed
associahedron, there will be an edge between two completely signed triangulations
if either

• the assignments of + or − are the same, but the triangulations differ by
flipping the diagonal in a single quadrilateral, or
• the triangulations are the same, but the signs differ exactly on the third vertex

of the triangle which contains the vertices 0, n+ 1.

Figure 2(a) depicts a small part of the graph of the 3-dimensional simple signed
associahedron.

In the non-simple signed associahedron, there will be an edge between two com-
pletely signed triangulations if either

• the assignments of + or − are the same, but the triangulations differ by
flipping the diagonal in a single quadrilateral, or
• the triangulations are the same, but the signs differ exactly on some vertex i

which lies in a triangle of the triangulation having vertices i− 1, i, i+ 1.

Figure 2(b) depicts a small part of the graph of the 3-dimensional non-simple signed
associahedron.

Our main results are as follows. Corollary 2.3 shows that the graph of the simple
signed associahedron is actually the 1-skeleton of a simple polytope, whose entire
facial structure is described in the next section. Theorem 3.1 shows that the graph
of the non-simple signed associahedron is actually the 1-skeleton of a regular CW -
sphere (see Section 3) whose facial structure is described in Section 3. We do not
know whether this sphere is the boundary of a convex polytope.

Before closing this section, we offer some motivation for these results, and also
contrast them with a recent construction of a signed associahedron by Simion [17].

The classical associahedron makes its appearance in many different places, such
as coherence theorems for monoidal categories [14, 18], moduli spaces of pointed
curves [10], spaces of Morse functions [11], and resolutions both for the associative
law [1] and the Steinberg relations on elementary matrices [11]. In many of these
contexts, the sphericity of the boundary of the associahedron plays an important
role. It is our hope that one or both of the two signed associahedra we describe
will occur in similar contexts, and that our proof of their sphericity will make them
easier to use.

There is a third signed associahedron recently defined by Simion [17] which is
also a simple polytope. The vertices in this signed associahedron correspond to the
triangulations of a centrally-symmetric 2(n+1)-gon which are themselves centrally-
symmetric. She was motivated by the beauty of the results on enumerating faces
in the usual associahedron (see [13, §6]), and her signed associahedron is indeed
very well-behaved from the point of view of face-enumeration. Her construction
also provides the first motivating example for a theory of “equivariant fiber poly-
topes” (see [2] for the usual theory of fiber polytopes) which studies subdivisions
of polytopes which are invariant under symmetry groups. In contrast, our signed
associahedra are not as well-behaved from the enumerative point of view, and seem
not to be part of any variant of the theory of fiber polytopes yet discovered. In this
way, they seem more akin to the Coxeter-associahedra studied in [15].
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Figure 1. The labelling of vertices in the (n+ 2)-gon Pn.
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Figure 2. A part of the graph for (a) the simple signed associa-
hedron, (b) the non-simple signed associahedron
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Figure 3. The two trees associated to a dissection

2. The Simple Signed Associahedron

In this section we define a poset KB
n which we will eventually interpret as the

face poset of our first signed associahedron. Our goals are to show that it is the
face poset of a simple n-dimensional polytope, and compute its f -vector.

We define a dissection of Pn to be a subset of non-crossing diagonals in the
polygon. We think of the diagonals chosen as decomposing Pn into smaller poly-
gons. The smaller polygon containing the edge {0, n+ 1} will be denoted the root
polygon. This terminology derives from the following picture which we will use fre-
quently (see Figure 3 (a)): we think of the the polytopal decomposition as defining
a rooted plane tree having a vertex for each of the smaller polygons, the root vertex
corresponding to the root polygon, and an edge connecting two vertices if their
corresponding polygons share a boundary edge.

A signed dissection is a dissection of Pn along with an assignment of a sign from
{0,+,−} to each of the vertices labelled, 1, 2, . . . , n with the following property:
vertices assigned 0 may only occur in the root polygon, and if any of the vertices
in the root polygon are assigned 0, then they must all be assigned 0. We call the
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improper signed dissection the one which uses no diagonals in the decomposition,
and assigns every vertex 0.

Define a partial order on the signed dissections of Pn as follows: δ ≤ δ′ if
• as a dissection, δ refines δ′, i.e., the diagonals used in δ contain all the diago-

nals used in δ′, and
• for each vertex i = 1, 2, . . . , n, the sign assigned to vertex i by δ is less than

or equal to the one assigned by δ′ in the partial order +,− < 0.
Finally, let KB

n denote the poset of all proper signed polytopal decompositions under
the above partial order, and let (KB

n )∗ denote the order dual to KB
n with an extra

minimum element 0̂ adjoined (corresponding to the improper signed dissection).

Proposition 2.1. (KB
n )∗ is the face poset of an (n − 1)-dimensional simplicial

complex.

By abuse of notation we also denote this simplicial complex by (KB
n )∗.

Proof. We must show that
• for every maximal element x, the interval [0̂, x] in (KB

n )∗ is isomorphic to a
Boolean algebra of rank n, and

• (KB
n )∗ is a meet-semi-lattice, i.e., any two elements x, y have a greatest lower

bound x ∧ y.
To show the first assertion, assume x is some maximal element in (KB

n )∗, so that
x is a completely signed triangulation. Create a Boolean algebra on the ground set
X = {d1, . . . , dn} ∪ {v}, where {v} is just a singleton set. Given y ∈ [0̂, x], it must
use some subset of the diagonals d1, . . . , dn, and it either assigns the same sign +
or − as x did to the root vertex, or it assigns 0 to the root vertex. Let f(y) be the
subset of X consisting of the diagonals y uses, unioned with either {v} or the empty
set depending on whether y assigns ± or 0 to the root vertex, respectively. It is
easy to check that y is completely determined by the set f(y) once we know it is in
[0̂, x]. Furthermore, it is easy to check that the order relation on [0̂, x] corresponds
to inclusion of the sets f(y). Thus f gives the desired isomorphism between [0̂, x]
and the Boolean algebra 2X .

To show the second assertion, given x, y in (KB
n )∗, we will construct x∧y. First,

we produce a precursor candidate w by taking the dissection whose set of diagonals
is the intersection of the sets of diagonals from x and from y, and assigning {+,−, 0}
to the vertices 1, 2, . . . , n by taking the componentwise meet of the sign assignments
of x and y in the partial order 0 < +,−. The problem is that w may fail to be
a signed dissection in that it may have 0 assigned to a vertex which is not in the
root polygon, or it may have 0 assigned to some but not all of the root polygon’s
vertices. To fix this problem, we start with w and let T be the tree associated to its
dissection. Form a new dissection by removing all diagonals corresponding to edges
in T that lie on a path to the root from some polygon in w containing a vertex
assigned 0. In this new dissection, if there are any 0 assignments to vertices in the
root polygon, then change the assignment to 0 for all vertices in the root polygon.
This clearly gives a signed dissection, which we claim is x ∧ y.

To see that x ∧ y really is the greatest lower bound of x, y, let z be any other
lower bound for x, y, so that z < x, y. Certainly the dissection in z must be coarser
than that of the precursor w, and it must have 0 assigned to a vertex whenever w
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Figure 4. The simplicial complexes (KB
2 )∗ and (KB

3 )∗

did. But this then implies that all these 0 vertices must lie in the root polygon of
z, and hence all the diagonals of w lying on a path from one of these vertices to the
root in T must not be present in z. This implies z has a coarser dissection than
x∧ y, and it is easy to check that it must also have sign assignment componentwise
bounded by that of x ∧ y. �

Figure 4 depicts the geometric realizations of the simplicial complexes (KB
n )∗ for

n = 2, 3. Note that in both cases the simplicial complexes triangulate a sphere
Sn−1. Furthermore, the sphere appears to be polytopal, i.e., the boundary complex
of a simplicial polytope, in anticipation of the next theorem.

Theorem 2.2. The simplicial complex (KB
n )∗ is isomorphic to the boundary com-

plex of an n-dimensional simplicial polytope.

Proof. We emulate the proof in §3 of [13].
Let ∆0 be the boundary complex of an n-dimensional hyperoctahedron or cross-

polytope, with vertices labelled {±1, . . . ,±n} in such a way that the vertices ±i are
antipodal for all i. Faces of ∆0 are then isotropic subsets of {±1, . . . ,±n}, that is
subsets which do not contain any pair {+i,−i}. Say that a face F = {i1, . . . , ir}
is contiguous if the set of absolute values {|i1|, . . . , |ir|} form an interval in Z.

Next, perform stellar subdivisions (see [13], §2) of each of the contiguous faces
of ∆0 to obtain a simplicial complex ∆∗ in any order which subdivides the higher
dimensional faces before the lower dimensional faces (actually any order which ex-
tends the partial ordering by reverse inclusion will do). These stellar subdivisions
are well-defined since at the stage where one is about to subdivide the face corre-
sponding to some contiguous subset, that subset is still a face in the subdivided
complex. See Figure 5 for pictures of ∆0 and ∆∗ when n = 3.

The complex ∆∗ is clearly the boundary complex of an n-dimensional simplicial
polytope, since it comes from ∆0 by a sequence of stellar subdivisions which preserve
polytopality. We claim that ∆∗ is isomorphic to the simplicial complex (KB

n )∗, and
our proof exactly follows the plan in [13], §3.

One first notes that the vertices of ∆∗ correspond to contiguous isotropic subsets
of {±1, . . . ,±n}. Contiguous isotropic subsets in turn correspond to diagonals in
Pn along with a partial assignment of signs to the vertices strictly enclosed by that
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Figure 5. ∆0,∆∗ ' (KB
n )∗ and ΣBn when n = 3

diagonal (except if the isotropic subset has cardinality n, in which case there is no
diagonal, just a complete assignment of signs).

One then checks that if two contiguous isotropic subsets form an edge in ∆∗,
then
• they must agree on any signs which both assign, i.e., their union cannot

contain any pair {+i,−i}, and
• they cannot correspond to crossing diagonals (checking this uses Lemma 1 of

[13]).
One concludes that every maximal face of ∆∗ corresponds to a completely signed

triangulation of Pn, i.e., to some maximal face of (KB
n )∗. It is easy to check that

∆∗ is a simplicial pseudomanifold, i.e., every codimension 1 face lies in exactly 2
maximal faces, and any two maximal faces are connected by a path of maximal
faces with adjacent ones sharing a codimension 1 face. Since both (KB

n )∗ and ∆∗

are obviously pseudomanifolds, the two complexes must be isomorphic. �

Corollary 2.3. The poset KB
n is the face poset of the boundary of an n-dimensional

simple polytope.

From now on, the simple polytope in the corollary will be referred to as the
simple signed associahedron. We again abuse notation and refer to the polytope as
KB
n .

Remark 2.4. It follows immediately from the construction in the previous proof
that as a simplicial complex, we may view (KB

n )∗ as a refinement (subdivision)
of the boundary complex of the n-dimensional cross-polytope ∆0. One can also
show using this construction that (KB

n )∗ can be further subdivided into a complex
isomorphic to the first barycentric subdivision of ∆0, which is sometimes known as
the Coxeter complex ΣBn for Bn (see [12]). Figure 5 illustrates this relationship.

Our next goal is to compute the f -vector of KB
n or equivalently of its dual (KB

n )∗.
Recall that the f -vector of a polytope P is simply the sequence

(f−1(P ), f0(P ), . . . , fd−1(P )),

where fi(P ) is the number of i-dimensional faces of P . It is not difficult to show
that

fk((KB
n )∗) = 2nan,k +

n∑
m=2

2n+1−man,k,m(1)

where an,k is the number of dissections of the (n+2)-gon Pn using k diagonals, and
an,k,m is the number of dissections of Pn using k + 1 diagonals in which the root
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polygon has m+ 1 vertices. A formula for an,k was given by Kirkman (see [13]):

an,k =
1

n+ 1

(
n− 1
k

)(
n+ k + 1
k + 1

)
(2)

To obtain a formula for an,k,m, we first revise the the correspondence between
dissections and rooted trees that was illustrated in Figure 1. Given a dissection
of Pn, add on to its tree an extra leaf outside each of the edges (i, i + 1) with
1 ≤ i ≤ n− 1, as shown in Figure 3 (b). This correspondence shows that an,k,m =
bn+1,k+2,m where bn,k,m is the number of plane rooted trees with
• n leaves,
• every internal vertex (including the root) having at least two children,
• k non-leaf vertices (including the root),
• root vertex of degree m.

We next define the generating function

F (x, y, z) = x+
∑

n≥2,k≥1,m≥2

bn,k,mx
nykzm

= x+ x2yz2 + x3(2y2z2 + yz3) + x4(5y3z2 + 2y2z2 + 3y2z3 + yz4) + . . .

in which the extra term x on the right-hand side accounts for the degenerate case of
a tree with only one vertex, which we count as a leaf. We will next use generating
function manipulations to prove the following lemma.

Lemma 2.5.

bn,k,m =
m

n

(
n−m− 1
k − 2

)(
n+ k − 2
k − 1

)
.

Proof. The standard recursive construction for rooted plane trees removes the
root vertex, leaving a sequence of rooted plane subtrees. This yields the following
functional equation for F :

F (x, y, z) = x+ y
∑
m≥2

zmF (x, y, 1)m = x+
yz2F (x, y, 1)2

1− zF (x, y, 1)
.(3)

We next attempt to determine the coefficients of powers of F (x, y, 1), from which
we can determine the bn,k,m. Let p(x, y) = F (x, y, 1), so that setting z = 1 above
gives

p = x+
yp2

1− p
x = p− yp2

1− p
(4)

Equation (3) says that for m ≥ 2 the coefficient of zm in F (x, y, z) is yp(x, y)m.
Lagrange Inversion applied to equation (4) allows us to find the coefficient of xn in
the power series pm. Letting

g(x) = x− yx2

1− x = p−1(x),
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yields

[xn]pm =
m

n
[xn−m]

(
x

g(x)

)n
where here [xn]h(x, y) denotes the coefficient of xn in h(x, y). From this, it is not
difficult to calculate that

[xn]pm =
m

n

∑
i+j=n−m

(−1)i
(
n
i

)(
n+ j − 1

j

)
(1 + y)j .

Applying this to equation (3), we see

bn,k,m = [xnyk−1]pm

=
m

n

∑
i+j=n−m

(−1)i
(
n
i

)(
n+ j − 1

j

)(
j

k − 1

)
.

This simplifies to:

bn,k,m =
m

n

(
2n−m− 1
n−m

)(
n−m
k − 1

)
2F1

( −n k +m− n− 1
1 +m− 2n 1

)
.

where we are using standard hypergeometric series notation (see e.g. [16]). Apply-
ing the Chu-Vandermonde summation formula to the 2F1 then gives the desired
result. �

If we now observe that an,k = bn+1,k+2,1, then equation (1) yields the following:

Theorem 2.6.

fk((KB
n )∗) =

n∑
m=1

2(n−m+1) m

n+ 1

(
n−m
k

)(
n+ k + 1
k + 1

)
= 3F2

(
n+ 2 1− k m− n

2 −n 1

)
It is somewhat disappointing that the summation in the preceding theorem does

not appear to simplify in any nice way, making the f -vector for (KB
n )∗ somewhat

more complicated than its unsigned counterpart from [13]. Even more unfortu-
nately, we do not know how to simplify the formula for the h-vector (see [13] for a
definition) of (KB

n )∗ which comes from summing the above formula for the f -vector.

3. The Non-simple Signed Associahedron

In this section we briefly discuss another signed analogue of the associahedron.
It will be a poset NB

n which is again the face poset of a regular CW -sphere, but we
do not know whether this sphere is polytopal.

Given a dissection of the (n + 2)-gon Pn, the leaf polygons are the polygons
which contain at most one edge not of the form {i, i+ 1} with 1 ≤ i, i+ 1 ≤ n. For
a polygon in a dissection, the interior vertices are those which neither carry the
maximum nor the minimum label among all vertices of the polygon. Say that an
assignment of a sign from {0,+,−} to each of the vertices labelled 1, 2, . . . , n is a
signed dissection of the 2nd kind if
• every vertex assigned 0 is an interior vertex of some leaf polygon, and
• whenever a leaf polygon has some interior vertex assigned 0, then all of its

interior vertices must be assigned 0.
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Figure 6. The map ψ: A chain of isotropic subsets S1 ⊂ S2 ⊂ S3

of {±1,±2, . . . ,±11}, and the associated signed dissection

The partial order on signed dissections of Pn of the 2nd kind is the same as that
on signed dissections, and we let NB

n denote this poset. Let (NB
n )∗ denote its dual

poset. The goal of this section will be to sketch the proof of the following fact:

Theorem 3.1. (NB
n )∗ is the face poset of a regular CW -complex homeomorphic to

an (n− 1)-sphere.

We recall here [3, (12.4)] that a Hausdorff space X is a regular CW -complex if it
has a covering by a family of closed balls (homeomorphs of d-balls for d ≥ 0) whose
interiors partition X, and for which the boundary of each ball is a union of other
balls. We will call the CW -sphere referred to in Theorem 3.1 the non-simple signed
associahedron, and by abuse of notation, denote it (NB

n )∗. We have depicted (NB
3 )∗

in Figure 8.
Our strategy is very similar to the one employed in [15, §2]. We define a map ψ

from the poset of faces of the hyperoctahedral group’s Coxeter complex ΣBn to the
poset (NB

n )∗. Then we show that the inverse image ψ−1((NB
n )∗≤y) of each principal

order ideal (NB
n )∗≤y in NB

n is a ball, and that this gives a regular CW-decomposition
of ΣBn .

To this end, recall that the Coxeter complex ΣBn for the hyperoctahedral group
Bn is the barycentric subdivision of the n-cube or the n-hyperoctahedron. Faces of
ΣBn may be identified with chains

x := (S1 ⊂ S2 ⊂ · · · ⊂ Sr)
of isotropic subsets of {±1,±2, . . . ,±n}; recall that Si is isotropic if it contains at
most one element of each pair {+i,−i}.

Given such a chain x, we can produce a signed dissection ψ(x) of Pn of the
second kind in the following way (see Figure 6). Let Ei be the path of edges which
starts at the vertex of Pn labelled 0, visits the vertices labelled by the elements of
Si in order of increasing absolute value, and then ends at the vertex labelled n+ 1.
The union of the paths

⋃
iEi gives a dissection of Pn, and the largest set Sr gives

a partial assignment of + or − signs to the vertices, which can be completed to a
full assignment by putting 0 on the remaining vertices. It is not hard to check that
this gives a signed dissection of the 2nd kind.

For a given signed dissection of the 2nd kind y in (NB
n )∗, we now describe the

inverse image ψ−1((NB
n )∗≤y) of the principal order ideal (NB

n )∗≤y generated by y. Let
Py be the partial order coming from the tree structure on those polygons of the
dissection y which do not contain vertices assigned 0, in which the root polygon is
lowest in the partial order. An example is shown in Figure 7. Any non-empty order
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Figure 7. An illustration of ∆(J(Py)− ∅) ' ψ−1((NB
n )∗≤y)

ideal I in Py gives rise to an isotropic subset by replacing each polygon in I by
the set of labels of its interior vertices along with their assigned signs. This gives
a poset isomorphism κ between ψ−1((NB

n )∗≤y) and the poset of chains (ordered by
inclusion) in the distributive lattice J(Py) of order ideals in Py.

Since only non-empty order ideals are relevant, the map κ then induces a simpli-
cial isomorphism from the order complex ∆(J(Py)−∅) to ψ−1((NB

n )∗≤y), where here
we are considering ψ−1((NB

n )∗≤y) as a simplicial complex (and in fact, a subcomplex
of ΣBn ).

It is known that for any poset P , the order complex ∆J(P ) is shellable [4], and
since every codimension 1 face lies in at most 2 maximal faces, shellability implies
that it is homeomorphic either to a (|P |−2)-dimensional ball or to a (|P |−2)-sphere
[8]. Furthermore, if the poset P has at least one order relation (as is the case for
Py), the complex ∆(J(P )−∅) will be homeomorphic to a ball. One can check that
under the simplicial isomorphism

∆(J(Py)− ∅) ∼= ψ−1((NB
n )∗≤y)

the boundary ∂∆(J(Py)−∅) maps to the subcomplex ψ−1((NB
n )∗<y). Consequently,

the decomposition
ΣBn =

⋃
y∈NBn

ψ−1((NB
n )∗≤y)

is a regular CW-sphere whose face poset is (NB
n )∗, finishing the sketch proof of

Theorem 3.1.

Remark 3.2. It is well-known that the Coxeter complex ΣBn may be identified
with the barycentric subdivision of either the n-cube or the n-hyperoctahedron, and
hence refines them both. The map ψ shows that the sphere (NB

n )∗ is a coarsening
of ΣBn , and a slightly closer look reveals the fact that (NB

n )∗ refines both the n-cube
and the n-hyperoctahedron (Figure 8).

To see this fact, note that two maximal chains

x : = (S1 ⊂ S2 ⊂ · · · ⊂ Sn)

x′ : = (S′1 ⊂ S′2 ⊂ · · · ⊂ S′n)

represent faces of ΣBn that lie in a common (subdivided) face of the n-cube if and
only if S1 = S′1. They lie in a common (subdivided) face of the n-hyperoctahedron
if and only if Sn = S′n. So one must check that ψ(x) = ψ(x′) implies both S1 = S′1
and Sn = S′n, which is straightforward: ψ(x) = ψ(x′) will be some fully signed
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33Σ B B(N  )*
3

Figure 8. ΣBn refines (NB
n )∗, which refines both the n-

hyperoctahedron and n-cube, illustrated for n = 3

triangulation of the second kind y, and then S1 = S′1 is the sign and label of the
root vertex in y, while Sn = S′n is the set of signs and labels on the vertices in y.

4. Remarks, Open Problems

Remark 4.1. Is the non-simple signed associahedron NB
n the face poset of a convex

polytope? Are there embeddings of it and of the simple signed associahedron KB
n

using Gale transforms as in [13, §4] and [9, Chapter 7]?

Remark 4.2. In [6], the authors consider a natural map α from the symmetric
group Sn to the vertices of the usual (n − 2)-dimensional associahedron, having
many nice properties:
• permutations π, π′ ∈ Sn which differ by an adjacent transposition map to

either the same vertex, or to adjacent vertices of the associahedron,
• the inverse image under α of any vertex in the associahedron is a set of

permutations which forms an interval [π1, π2] in the weak order on Sn,
• any linear extension of the weak Bruhat order on Sn gives rise to a shelling of

the Coxeter complex for Sn, and pushing such an ordering forward by α gives
rise to a shelling order of the dual simplicial complex to the associahedron.

In particular, the last property listed allows one to compute the h-vector of the
associahedron by a method very similar to [13, §6].

In the signed case, there are again natural maps from the hyperoctahedral group
Bn of signed permutations to the vertices of the two signed associahedra KB

n , NB
n

which have properties analogous to the first property above. More specifically, the
map from Bn to the vertices of NB

n is no more than the restriction of the map ψ
from the previous section to the set of maximal faces of the Coxeter complex. If
one chooses a set of Coxeter generators for Bn to be the adjacent transpositions
si = (i, i+ 1) along with the sign change sn in the last coordinate, then two signed
permutations which differ by some si with 1 ≤ i ≤ n will either map to the same
vertex of NB

n (= maximal face of (NB
n )∗) or to two adjacent vertices. A similar map

can be defined from Bn to the vertices of KB
n , and the same property holds.
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Unfortunately, there are examples of vertices from KB
4 and NB

4 whose inverse
images in Bn under these maps do not form an interval in the weak Bruhat order
(with respect to the above set of Coxeter generators), although they will always be
convex subsets of Bn in the sense of Tits (see [5, Appendix]). It is also unfortunate
that linear extensions of the weak Bruhat order on Bn do not map forward to a
shelling order on the simplicial complex (KB

n )∗. In fact, we do not know of any
simple explicit shelling of (KB

n )∗ which helps to compute its h-vector, even though
shellings are known to exist because it is a polytope [7].

Acknowledgments

The authors would like to thank Ira Gessel for suggesting Lagrange inversion in
the proof of Lemma 2.5, Dennis Stanton for help with hypergeometric series, and
Rodica Simion for explaining her results [17].

References

[1] R. Adin and D. Blanc, Resolutions of associative and Lie algebras. preprint 1998.
[2] L. J. Billera and B. Sturmfels, Fiber polytopes. Ann. Math. 135 (1992), 527–549,

MR 93e:52019.
[3] A. Björner, Topological methods, Handbook of Combinatorics, Vol. 1, 2, Elsevier, Amsterdam,

1995, pp. 1819–1872, MR 96m:52012.
[4] A. Björner, A. Garsia and R. Stanley, An introduction to Cohen-Macaulay partially ordered

sets, Ordered sets (Banff, Alberta 1981), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci.
83 Reidel, Dordrecht-Boston, 1982, pp. 583–615, MR 83i:06001.

[5] A. Björner and M. Wachs, Permutation statistics and linear extensions of posets. J. Comb.
Theory Series A 58 (1991), 85–114, MR 92m:06010.

[6] A. Björner and M. Wachs, Shellable nonpure complexes and posets, II, Trans. Amer. Math.
Soc. 349 (1997), 3945–3975, MR 98b:06008.

[7] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29
(1971), 197–205.

[8] G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443–
451.

[9] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Mul-
tidimensional Determinants Birkhäuser, Boston, 1994, MR 95e:14045.
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