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Two Signed Associahedra

H� Burgiel and V� Reiner

Abstract� The associahedron is a convex polytope whose vertices correspond
to triangulations of a convex polygon� We de�ne two signed or hyperoctahedral
analogues of the associahedron� one of which is shown to be a simple convex
polytope� and the other a regular CWsphere�
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�� Introduction

The d�dimensional associahedron or Stashe� polytope is a d�polytope whose facial
structure relates to triangulations of a polygon �see ���� or associative bracketings
of a product� This paper is about two signed or hyperoctahedral analogues of the
associahedron�

To brie�y describe these two signed associahedra� we de�ne the graphs which
form their ��skeleta� Both signed associahedra have vertices indexed by completely
signed triangulations of a convex �n����gon Pn� which we now de�ne� Number the
vertices of Pn from 	 to n � � proceeding counter�clockwise around its perimeter�
as in Figure �� A completely signed triangulation is a triangulation along with an
assignment of � or � to each of the vertices �� �� � � � � n �so nothing is assigned to
the vertices labelled 	� n� ���

The classical associahedron has the property that each vertex lies on d edges�
that is to say it is a simple polytope� One of the two signed associahedra shares this
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property� and hence we dub it the simple signed associahedron� In the simple signed
associahedron� there will be an edge between two completely signed triangulations
if either

� the assignments of � or � are the same� but the triangulations di�er by
�ipping the diagonal in a single quadrilateral� or

� the triangulations are the same� but the signs di�er exactly on the third vertex
of the triangle which contains the vertices 	� n� ��

Figure ��a� depicts a small part of the graph of the ��dimensional simple signed
associahedron�

In the non�simple signed associahedron� there will be an edge between two com�
pletely signed triangulations if either

� the assignments of � or � are the same� but the triangulations di�er by
�ipping the diagonal in a single quadrilateral� or

� the triangulations are the same� but the signs di�er exactly on some vertex i

which lies in a triangle of the triangulation having vertices i� �� i� i� ��

Figure ��b� depicts a small part of the graph of the ��dimensional non�simple signed
associahedron�

Our main results are as follows� Corollary ��� shows that the graph of the simple
signed associahedron is actually the ��skeleton of a simple polytope� whose entire
facial structure is described in the next section� Theorem ��� shows that the graph
of the non�simple signed associahedron is actually the ��skeleton of a regular CW �
sphere �see Section �� whose facial structure is described in Section �� We do not
know whether this sphere is the boundary of a convex polytope�

Before closing this section� we o�er some motivation for these results� and also
contrast them with a recent construction of a signed associahedron by Simion ����

The classical associahedron makes its appearance in many di�erent places� such
as coherence theorems for monoidal categories �
� ���� moduli spaces of pointed
curves �	�� spaces of Morse functions ���� and resolutions both for the associative
law �� and the Steinberg relations on elementary matrices ���� In many of these
contexts� the sphericity of the boundary of the associahedron plays an important
role� It is our hope that one or both of the two signed associahedra we describe
will occur in similar contexts� and that our proof of their sphericity will make them
easier to use�

There is a third signed associahedron recently de�ned by Simion ��� which is
also a simple polytope� The vertices in this signed associahedron correspond to the
triangulations of a centrally�symmetric ��n����gon which are themselves centrally�
symmetric� She was motivated by the beauty of the results on enumerating faces
in the usual associahedron �see ��� x���� and her signed associahedron is indeed
very well�behaved from the point of view of face�enumeration� Her construction
also provides the �rst motivating example for a theory of �equivariant �ber poly�
topes� �see �� for the usual theory of �ber polytopes� which studies subdivisions
of polytopes which are invariant under symmetry groups� In contrast� our signed
associahedra are not as well�behaved from the enumerative point of view� and seem
not to be part of any variant of the theory of �ber polytopes yet discovered� In this
way� they seem more akin to the Coxeter�associahedra studied in ����
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Figure �� The labelling of vertices in the �n� ���gon Pn�
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Figure �� A part of the graph for �a� the simple signed associa�
hedron� �b� the non�simple signed associahedron
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Figure �� The two trees associated to a dissection

�� The Simple Signed Associahedron

In this section we de�ne a poset KB
n which we will eventually interpret as the

face poset of our �rst signed associahedron� Our goals are to show that it is the
face poset of a simple n�dimensional polytope� and compute its f �vector�

We de�ne a dissection of Pn to be a subset of non�crossing diagonals in the
polygon� We think of the diagonals chosen as decomposing Pn into smaller poly�
gons� The smaller polygon containing the edge f	� n� �g will be denoted the root

polygon� This terminology derives from the following picture which we will use fre�
quently �see Figure � �a��� we think of the the polytopal decomposition as de�ning
a rooted plane tree having a vertex for each of the smaller polygons� the root vertex
corresponding to the root polygon� and an edge connecting two vertices if their
corresponding polygons share a boundary edge�

A signed dissection is a dissection of Pn along with an assignment of a sign from
f	����g to each of the vertices labelled� �� �� � � � � n with the following property�
vertices assigned 	 may only occur in the root polygon� and if any of the vertices
in the root polygon are assigned 	� then they must all be assigned 	� We call the
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improper signed dissection the one which uses no diagonals in the decomposition�
and assigns every vertex 	�

De�ne a partial order on the signed dissections of Pn as follows� � � �� if

� as a dissection� � re�nes ��� i�e�� the diagonals used in � contain all the diago�
nals used in ��� and

� for each vertex i � �� �� � � � � n� the sign assigned to vertex i by � is less than
or equal to the one assigned by �� in the partial order ��� � 	�

Finally� let KB
n denote the poset of all proper signed polytopal decompositions under

the above partial order� and let �KB
n �

� denote the order dual to KB
n with an extra

minimum element �	 adjoined �corresponding to the improper signed dissection��

Proposition ���� �KB
n �

� is the face poset of an �n � ���dimensional simplicial

complex�

By abuse of notation we also denote this simplicial complex by �KB
n �

��

Proof� We must show that

� for every maximal element x� the interval �	� x� in �KB
n �

� is isomorphic to a
Boolean algebra of rank n� and

� �KB
n �

� is a meet�semi�lattice� i�e�� any two elements x� y have a greatest lower
bound x � y�

To show the �rst assertion� assume x is some maximal element in �KB
n �

�� so that
x is a completely signed triangulation� Create a Boolean algebra on the ground set
X � fd�� � � � � dng � fvg� where fvg is just a singleton set� Given y � �	� x�� it must
use some subset of the diagonals d�� � � � � dn� and it either assigns the same sign �
or � as x did to the root vertex� or it assigns 	 to the root vertex� Let f�y� be the
subset of X consisting of the diagonals y uses� unioned with either fvg or the empty
set depending on whether y assigns � or 	 to the root vertex� respectively� It is
easy to check that y is completely determined by the set f�y� once we know it is in

�	� x�� Furthermore� it is easy to check that the order relation on �	� x� corresponds

to inclusion of the sets f�y�� Thus f gives the desired isomorphism between �	� x�
and the Boolean algebra �X �

To show the second assertion� given x� y in �KB
n �

�� we will construct x�y� First�
we produce a precursor candidate w by taking the dissection whose set of diagonals
is the intersection of the sets of diagonals from x and from y� and assigning f���� 	g
to the vertices �� �� � � � � n by taking the componentwise meet of the sign assignments
of x and y in the partial order 	 � ���� The problem is that w may fail to be
a signed dissection in that it may have 	 assigned to a vertex which is not in the
root polygon� or it may have 	 assigned to some but not all of the root polygon�s
vertices� To �x this problem� we start with w and let T be the tree associated to its
dissection� Form a new dissection by removing all diagonals corresponding to edges
in T that lie on a path to the root from some polygon in w containing a vertex
assigned 	� In this new dissection� if there are any 	 assignments to vertices in the
root polygon� then change the assignment to 	 for all vertices in the root polygon�
This clearly gives a signed dissection� which we claim is x � y�

To see that x � y really is the greatest lower bound of x� y� let z be any other
lower bound for x� y� so that z � x� y� Certainly the dissection in z must be coarser
than that of the precursor w� and it must have 	 assigned to a vertex whenever w
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Figure �� The simplicial complexes �KB
� �� and �KB

� �
�

did� But this then implies that all these 	 vertices must lie in the root polygon of
z� and hence all the diagonals of w lying on a path from one of these vertices to the
root in T must not be present in z� This implies z has a coarser dissection than
x�y� and it is easy to check that it must also have sign assignment componentwise
bounded by that of x � y� �

Figure 
 depicts the geometric realizations of the simplicial complexes �KB
n �

� for
n � �� �� Note that in both cases the simplicial complexes triangulate a sphere
Sn��� Furthermore� the sphere appears to be polytopal� i�e�� the boundary complex
of a simplicial polytope� in anticipation of the next theorem�

Theorem ���� The simplicial complex �KB
n �

� is isomorphic to the boundary com�

plex of an n�dimensional simplicial polytope�

Proof� We emulate the proof in x� of ����
Let �� be the boundary complex of an n�dimensional hyperoctahedron or cross�

polytope� with vertices labelled f��� � � � ��ng in such a way that the vertices �i are
antipodal for all i� Faces of �� are then isotropic subsets of f��� � � � ��ng� that is
subsets which do not contain any pair f�i��ig� Say that a face F � fi�� � � � � irg
is contiguous if the set of absolute values fji�j� � � � � jirjg form an interval in Z�

Next� perform stellar subdivisions �see ���� x�� of each of the contiguous faces
of �� to obtain a simplicial complex �� in any order which subdivides the higher
dimensional faces before the lower dimensional faces �actually any order which ex�
tends the partial ordering by reverse inclusion will do�� These stellar subdivisions
are well�de�ned since at the stage where one is about to subdivide the face corre�
sponding to some contiguous subset� that subset is still a face in the subdivided
complex� See Figure � for pictures of �� and �� when n � ��

The complex �� is clearly the boundary complex of an n�dimensional simplicial
polytope� since it comes from�� by a sequence of stellar subdivisions which preserve
polytopality� We claim that �� is isomorphic to the simplicial complex �KB

n �
�� and

our proof exactly follows the plan in ���� x��
One �rst notes that the vertices of �� correspond to contiguous isotropic subsets

of f��� � � � ��ng� Contiguous isotropic subsets in turn correspond to diagonals in
Pn along with a partial assignment of signs to the vertices strictly enclosed by that
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Figure �� ����
� 	 �KB

n �
� and �B

n when n � �

diagonal �except if the isotropic subset has cardinality n� in which case there is no
diagonal� just a complete assignment of signs��

One then checks that if two contiguous isotropic subsets form an edge in ���
then

� they must agree on any signs which both assign� i�e�� their union cannot
contain any pair f�i��ig� and

� they cannot correspond to crossing diagonals �checking this uses Lemma � of
�����

One concludes that every maximal face of �� corresponds to a completely signed
triangulation of Pn� i�e�� to some maximal face of �KB

n �
�� It is easy to check that

�� is a simplicial pseudomanifold� i�e�� every codimension � face lies in exactly �
maximal faces� and any two maximal faces are connected by a path of maximal
faces with adjacent ones sharing a codimension � face� Since both �KB

n �
� and ��

are obviously pseudomanifolds� the two complexes must be isomorphic� �

Corollary ���� The poset KB
n is the face poset of the boundary of an n�dimensional

simple polytope�

From now on� the simple polytope in the corollary will be referred to as the
simple signed associahedron� We again abuse notation and refer to the polytope as
KB
n �

Remark ���� It follows immediately from the construction in the previous proof
that as a simplicial complex� we may view �KB

n �
� as a re�nement �subdivision�

of the boundary complex of the n�dimensional cross�polytope ��� One can also
show using this construction that �KB

n �
� can be further subdivided into a complex

isomorphic to the �rst barycentric subdivision of ��� which is sometimes known as
the Coxeter complex �B

n for Bn �see ����� Figure � illustrates this relationship�

Our next goal is to compute the f �vector of KB
n or equivalently of its dual �KB

n �
��

Recall that the f �vector of a polytope P is simply the sequence

�f���P �� f��P �� � � � � fd���P ���

where fi�P � is the number of i�dimensional faces of P � It is not di�cult to show
that

fk��K
B
n �

�� � �nan�k �

nX
m��

�n���man�k�m���

where an�k is the number of dissections of the �n����gon Pn using k diagonals� and
an�k�m is the number of dissections of Pn using k � � diagonals in which the root
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polygon has m� � vertices� A formula for an�k was given by Kirkman �see �����

an�k �
�

n� �

�
n� �

k

��
n� k � �

k � �

�
���

To obtain a formula for an�k�m� we �rst revise the the correspondence between
dissections and rooted trees that was illustrated in Figure �� Given a dissection
of Pn� add on to its tree an extra leaf outside each of the edges �i� i � �� with
� � i � n� �� as shown in Figure � �b�� This correspondence shows that an�k�m �
bn���k���m where bn�k�m is the number of plane rooted trees with

� n leaves�
� every internal vertex �including the root� having at least two children�
� k non�leaf vertices �including the root��
� root vertex of degree m�

We next de�ne the generating function

F �x� y� z� � x�
X

n���k���m��

bn�k�mx
nykzm

� x� x�yz� � x���y�z� � yz�� � x���y�z� � �y�z� � �y�z� � yz�� � � � �

in which the extra term x on the right�hand side accounts for the degenerate case of
a tree with only one vertex� which we count as a leaf� We will next use generating
function manipulations to prove the following lemma�

Lemma ����

bn�k�m �
m

n

�
n�m� �
k � �

��
n� k � �
k � �

�
�

Proof� The standard recursive construction for rooted plane trees removes the
root vertex� leaving a sequence of rooted plane subtrees� This yields the following
functional equation for F �

F �x� y� z� � x� y
X
m��

zmF �x� y� ��m � x�
yz�F �x� y� ���

�� zF �x� y� ��
����

We next attempt to determine the coe�cients of powers of F �x� y� ��� from which
we can determine the bn�k�m� Let p�x� y� � F �x� y� ��� so that setting z � � above
gives

p � x�
yp�

�� p

x � p�
yp�

�� p

�
�

Equation ��� says that for m 
 � the coe�cient of zm in F �x� y� z� is yp�x� y�m�
Lagrange Inversion applied to equation �
� allows us to �nd the coe�cient of xn in
the power series pm� Letting

g�x� � x�
yx�

�� x
� p���x��
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yields

xn�pm �
m

n
xn�m�

�
x

g�x�

�n

where here xn�h�x� y� denotes the coe�cient of xn in h�x� y�� From this� it is not
di�cult to calculate that

xn�pm �
m

n

X
i�j�n�m

����i
�

n

i

��
n� j � �

j

�
�� � y�j �

Applying this to equation ���� we see

bn�k�m � xnyk���pm

�
m

n

X
i�j�n�m

����i
�

n

i

��
n� j � �

j

��
j

k � �

�
�

This simpli�es to�

bn�k�m �
m

n

�
�n�m� �
n�m

��
n�m

k � �

�
�F�

�
�n k �m� n� �

� �m� �n �

�
�

where we are using standard hypergeometric series notation �see e�g� ����� Apply�
ing the Chu�Vandermonde summation formula to the �F� then gives the desired
result� �

If we now observe that an�k � bn���k����� then equation ��� yields the following�

Theorem ����

fk��K
B
n �

�� �

nX
m��

��n�m��	 m

n� �

�
n�m

k

��
n� k � �
k � �

�

� �F�

�
n� � �� k m� n

� �n �

�

It is somewhat disappointing that the summation in the preceding theorem does
not appear to simplify in any nice way� making the f �vector for �KB

n �
� somewhat

more complicated than its unsigned counterpart from ���� Even more unfortu�
nately� we do not know how to simplify the formula for the h�vector �see ��� for a

de�nition� of �KB
n �

� which comes from summing the above formula for the f �vector�

�� The Non�simple Signed Associahedron

In this section we brie�y discuss another signed analogue of the associahedron�
It will be a poset NB

n which is again the face poset of a regular CW �sphere� but we
do not know whether this sphere is polytopal�

Given a dissection of the �n � ���gon Pn� the leaf polygons are the polygons
which contain at most one edge not of the form fi� i��g with � � i� i�� � n� For
a polygon in a dissection� the interior vertices are those which neither carry the
maximum nor the minimum label among all vertices of the polygon� Say that an
assignment of a sign from f	����g to each of the vertices labelled �� �� � � � � n is a
signed dissection of the �nd kind if

� every vertex assigned 	 is an interior vertex of some leaf polygon� and
� whenever a leaf polygon has some interior vertex assigned 	� then all of its

interior vertices must be assigned 	�
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Figure �� The map �� A chain of isotropic subsets S� � S� � S�
of f������ � � � ����g� and the associated signed dissection

The partial order on signed dissections of Pn of the �nd kind is the same as that
on signed dissections� and we let NB

n denote this poset� Let �NB
n �

� denote its dual
poset� The goal of this section will be to sketch the proof of the following fact�

Theorem ���� �NB
n �

� is the face poset of a regular CW �complex homeomorphic to

an �n� ���sphere�

We recall here �� ����
�� that a Hausdor� space X is a regular CW �complex if it
has a covering by a family of closed balls �homeomorphs of d�balls for d 
 	� whose
interiors partition X � and for which the boundary of each ball is a union of other
balls� We will call the CW �sphere referred to in Theorem ��� the non�simple signed

associahedron� and by abuse of notation� denote it �NB
n �

�� We have depicted �NB
� �

�

in Figure ��
Our strategy is very similar to the one employed in ��� x��� We de�ne a map �

from the poset of faces of the hyperoctahedral group�s Coxeter complex �B
n to the

poset �NB
n �

�� Then we show that the inverse image �����NB
n �

�
�y� of each principal

order ideal �NB
n �

�
�y in NB

n is a ball� and that this gives a regular CW�decomposition

of �B
n �

To this end� recall that the Coxeter complex �B
n for the hyperoctahedral group

Bn is the barycentric subdivision of the n�cube or the n�hyperoctahedron� Faces of
�B
n may be identi�ed with chains

x �� �S� � S� � � � � � Sr�

of isotropic subsets of f������ � � � ��ng� recall that Si is isotropic if it contains at
most one element of each pair f�i��ig�

Given such a chain x� we can produce a signed dissection ��x� of Pn of the
second kind in the following way �see Figure ��� Let Ei be the path of edges which
starts at the vertex of Pn labelled 	� visits the vertices labelled by the elements of
Si in order of increasing absolute value� and then ends at the vertex labelled n���
The union of the paths

S
iEi gives a dissection of Pn� and the largest set Sr gives

a partial assignment of � or � signs to the vertices� which can be completed to a
full assignment by putting 	 on the remaining vertices� It is not hard to check that
this gives a signed dissection of the �nd kind�

For a given signed dissection of the �nd kind y in �NB
n �

�� we now describe the

inverse image �����NB
n �

�
�y� of the principal order ideal �NB

n �
�
�y generated by y� Let

Py be the partial order coming from the tree structure on those polygons of the
dissection y which do not contain vertices assigned 	� in which the root polygon is
lowest in the partial order� An example is shown in Figure �� Any non�empty order
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Figure 	� An illustration of ��J�Py�� � 	 �����NB
n �

�
�y�

ideal I in Py gives rise to an isotropic subset by replacing each polygon in I by
the set of labels of its interior vertices along with their assigned signs� This gives
a poset isomorphism � between �����NB

n �
�
�y� and the poset of chains �ordered by

inclusion� in the distributive lattice J�Py� of order ideals in Py�
Since only non�empty order ideals are relevant� the map � then induces a simpli�

cial isomorphism from the order complex ��J�Py��� to �����N
B
n �

�
�y�� where here

we are considering �����NB
n �

�
�y� as a simplicial complex �and in fact� a subcomplex

of �B
n ��

It is known that for any poset P � the order complex �J�P � is shellable 
�� and
since every codimension � face lies in at most � maximal faces� shellability implies
that it is homeomorphic either to a �jP j����dimensional ball or to a �jP j����sphere
��� Furthermore� if the poset P has at least one order relation �as is the case for
Py�� the complex ��J�P ��� will be homeomorphic to a ball� One can check that
under the simplicial isomorphism

��J�Py�� � �� �����NB
n �

�
�y�

the boundary ���J�Py��� maps to the subcomplex �����NB
n �

�
�y�� Consequently�

the decomposition

�B
n �

�
y�NB

n

�����NB
n �

�
�y�

is a regular CW�sphere whose face poset is �NB
n �

�� �nishing the sketch proof of
Theorem ����

Remark ���� It is well�known that the Coxeter complex �B
n may be identi�ed

with the barycentric subdivision of either the n�cube or the n�hyperoctahedron� and
hence re�nes them both� The map � shows that the sphere �NB

n �
� is a coarsening

of �B
n � and a slightly closer look reveals the fact that �NB

n �
� re�nes both the n�cube

and the n�hyperoctahedron �Figure ���

To see this fact� note that two maximal chains

x � � �S� � S� � � � � � Sn�

x� � � �S�� � S�� � � � � � S�n�

represent faces of �B
n that lie in a common �subdivided� face of the n�cube if and

only if S� � S��� They lie in a common �subdivided� face of the n�hyperoctahedron
if and only if Sn � S�n� So one must check that ��x� � ��x�� implies both S� � S��
and Sn � S�n� which is straightforward� ��x� � ��x�� will be some fully signed
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33Σ B B(N  )*
3

Figure 
� �B
n re�nes �NB

n �
�� which re�nes both the n�

hyperoctahedron and n�cube� illustrated for n � �

triangulation of the second kind y� and then S� � S�� is the sign and label of the
root vertex in y� while Sn � S�n is the set of signs and labels on the vertices in y�

�� Remarks� Open Problems

Remark ���� Is the non�simple signed associahedron NB
n the face poset of a convex

polytope Are there embeddings of it and of the simple signed associahedron KB
n

using Gale transforms as in ��� x
� and �� Chapter �� 

Remark ���� In ��� the authors consider a natural map 	 from the symmetric
group Sn to the vertices of the usual �n � ���dimensional associahedron� having
many nice properties�

� permutations 
� 
� � Sn which di�er by an adjacent transposition map to
either the same vertex� or to adjacent vertices of the associahedron�

� the inverse image under 	 of any vertex in the associahedron is a set of
permutations which forms an interval 
�� 
�� in the weak order on Sn�

� any linear extension of the weak Bruhat order on Sn gives rise to a shelling of
the Coxeter complex for Sn� and pushing such an ordering forward by 	 gives
rise to a shelling order of the dual simplicial complex to the associahedron�

In particular� the last property listed allows one to compute the h�vector of the
associahedron by a method very similar to ��� x���

In the signed case� there are again natural maps from the hyperoctahedral group
Bn of signed permutations to the vertices of the two signed associahedra KB

n � N
B
n

which have properties analogous to the �rst property above� More speci�cally� the
map from Bn to the vertices of NB

n is no more than the restriction of the map �

from the previous section to the set of maximal faces of the Coxeter complex� If
one chooses a set of Coxeter generators for Bn to be the adjacent transpositions
si � �i� i��� along with the sign change sn in the last coordinate� then two signed
permutations which di�er by some si with � � i � n will either map to the same
vertex of NB

n �� maximal face of �NB
n �

�� or to two adjacent vertices� A similar map

can be de�ned from Bn to the vertices of KB
n � and the same property holds�
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Unfortunately� there are examples of vertices from KB
� and NB

� whose inverse
images in Bn under these maps do not form an interval in the weak Bruhat order
�with respect to the above set of Coxeter generators�� although they will always be
convex subsets of Bn in the sense of Tits �see �� Appendix��� It is also unfortunate
that linear extensions of the weak Bruhat order on Bn do not map forward to a
shelling order on the simplicial complex �KB

n �
�� In fact� we do not know of any

simple explicit shelling of �KB
n �

� which helps to compute its h�vector� even though
shellings are known to exist because it is a polytope ���
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