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Lifting Witt Subgroups to Characteristic Zero

Alan Koch

Abstract. Let k be a perfect field of characteristic p > 0. Using Dieudonné
modules, we describe the exact conditions under which a Witt subgroup, i.e.,
a finite subgroup scheme of Wn, lifts to the ring of Witt Vectors W (k).
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Let k be a perfect field, char k = p > 0. Let R be a complete discrete valuation
ring of characteristic 0 with residue field k. Suppose G is a finite affine commutative
k-group scheme of p-power rank. Under what conditions does G “lift” to R? In
other words, when does there exist an R-group scheme G̃ which is a free commuta-
tive group scheme of p-power rank over R (hereafter referred to as a finite p-group
as in [F2]) so that G̃×Spec (R) Spec (k) ∼= G? There are instances where the answer
to this lifting question is clear. If G is étale, for example, then G × Spec (k) is
isomorphic to a direct sum of µpn ’s for various n, where µpn is the group scheme
that gives the pnth roots of unity for a given k-algebra. µpn clearly lifts to R for all
R: it lifts to the pnth roots of unity functor over R. Since the question of lifting is
preserved under base change [OM, 2.2] we have that G lifts. As another example,
if G is of multiplicative type, G will always lift to R, since then G∗ is étale (where
G∗ = Homk−gr(G,Gm) is the linear dual of G) and lifting is preserved by duality.

Any finite affine commutative k-group scheme decomposes into a direct sum of
an étale scheme and a connected scheme. The connected group scheme decomposes
further into a group scheme of multiplicative type and a group scheme that is
unipotent [W]. Thus the question of lifting is only of interest when G is both
connected and unipotent. In the language of Hopf algebras, this simply means that
H and its dual Hopf algebra H∗ are local k-algebras, where G = Spec (H).
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In 1968, Oort and Mumford [OM] were the first to show that, for all such group
schemes G, there is a complete discrete valuation ring R so that G lifts to R. In
other words, they showed that all finite affine commutative group schemes lift to
characteristic zero. However, it is known that not every group scheme lifts to every
such R: the best known example being αp, the unique connected unipotent group
scheme of rank p over k. αααp will lift only to rings which admit a factorization of
p into elements in the maximal ideal [TO]. Thus this group scheme can not lift to
Zp, the ring of p-adic integers, or for that matter any unramified extension of Zp.
More generally, it was shown in 1992 by Roubaud [R, p. 72] that, for p ≥ 5, any G
will lift to any R with ramification index 1 < e ≤ p− 1.

We shall focus our attention on the case e = 1. k-group schemes that can lift
when e = 1 lift in the strongest possible sense, i.e., such group schemes will lift
to any discrete valuation ring R with residue field ` ⊇ k. These discrete valuation
rings arise as the ring of Witt Vectors over some k, which shall be denoted W (k).
The issue we address is the following: for G a connected subgroup scheme of Wn

(the group scheme of Witt Vectors of finite length n), when does G lift to W (k)?
The collection of subgroups that do lift to W (k) is surprisingly easy to describe
when the question is described in terms of the Dieudonné module associated to the
group scheme; and we shall see that the question of G lifting is equivalent to being
able to identify the structure of much smaller group schemes.

The connected subgroups of Wn (called the Witt subgroups) correspond to the
subclass of Dieudonné modules that are cyclic; that is, modules that are of the
form E/I for some ideal I ⊂ E, where E is the non-commutative ring W (k)[F, V ]
modulo some relations. We start by recalling a classification of cyclic Dieudonné
modules, paying special attention to the modules that are killed by p. The process
we shall use to lift these Witt subgroups was developed by Fontaine in [F2] using
what are called “Finite Honda Systems.” Then, we determine exactly which of the
modules killed by p correspond to group schemes that lift. Finally, we answer the
lifting question for all Witt subgroups.

Throughout this paper, let p be a fixed odd prime. Unless otherwise specified, all
group schemes over k will be finite, affine, commutative, connected, and unipotent.
The author would like to thank the referee for many helpful suggestions.

1. Cyclic Dieudonné Modules

Let G be a k-group scheme. Let E be the Dieudonné ring associated to k, that is
E is the non-commutative ring W (k)[F, V ] with the relations FV = V F = p, Fw =
wσF, and wV = V wσ; with w ∈ W (k) and wσ defined by raising each component
of w to the pth power. To G we can associate an E-module D∗(G) via D∗(G) =
Homk−gr(G,C) where C is the E-module functor of Witt Covectors as described
in [F1, p. 1273]. D∗ induces an anti-equivalence between connected unipotent
group schemes and E-modules killed by a power of F and V . These modules will
be called Dieudonné modules. If we do not insist on G being finite or connected
(but still affine, commutative, and unipotent), we still have a correspondence, now
between group schemes and E-modules killed by a power of V . Details on this
correspondence can be found in [DG, V §1 4.3]. Since D∗ is an exact functor
and D∗(Wn) = E/E(V n) [DG, V §1 4.2], it is easy to see that Witt subgroups
correspond precisely to cyclic Dieudonné modules. Note that Wn is viewed as a
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unipotent group scheme via

Wn(A) = {(a0, a1, . . . , an−1) | ai ∈ A}
for any k-algebra A, with group operation induced from the law of addition of Witt
vectors.

We begin with a survey of the results in [K]. The general structure of a cyclic
Dieudonné module begins with the classification of cyclic Dieudonné modules killed
by p. Each of these modules fits one of the following two forms:

E/E(Fn − ηV m, p)(1)

E/E(Fn, p, V m)(2)

where η ∈ k×. (Moreover, E/E(Fn − η1V
m, p) ∼= E/E(Fn − η2V

m, p) if and only
if there is an a ∈ k× such that η1 = ap

n+m−1η2, but this will not be needed for the
results that follow.)

We will call these two forms type 1 and type 2 respectively. One major difference
between the two types is the following:

Lemma 1.1. A cyclic Dieudonné module killed by p is of type 1 if and only if
kerV = im F.

Proof. Let M be a cyclic Dieudonné module killed by p and x = 1M , so M is
generated as an E-module by x. It is clear that im F ⊆ kerV as V Fx = px = 0.
Suppose M is of type 1. Then M = E/E(Fn−ηV m, p) for some m,n > 0, η ∈ k×.
M has a k-basis {x, Fx, F 2x, . . . Fnx, V x, V 2x, . . . , V m−1x}. Let y ∈ kerV. We can
write

y =
n∑
i=0

aiF
ix+

m−1∑
j=1

bjV
jx

with all of the ai’s and bj ’s in k. Applying V gives

V y = ap
−1

0 V x+
m−1∑
j=1

bp
−1

j V j+1x

= ap
−1

0 V x+
m∑
j=2

bp
−1

j−1V
jx

= ap
−1

0 V x+
m−1∑
j=2

bp
−1

j−1V
jx+ bp

−1

m−1η
−1Fnx = 0

By k-linear independence, this means a0 = b1 = b2 = b3 = · · · = bm−1 = 0. Thus
we must have

y =
n∑
i=1

aiF
ix.

hence y ∈ im F.
Conversely, if M = E/E(Fn, p, V m), i.e M is of type 2, it is clear that kerV 6=

im F as V m−1x ∈ kerV but V m−1x /∈ im F. �
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More generally, let M be a cyclic Dieudonné module of p-rank h. The term
p-rank will be used to signify the smallest positive integer h such that phM = 0.
M can be decomposed into a short exact sequence

0 −−−−→ M ′ i−−−−→ M
π−−−−→ M ′′ −−−−→ 0

where M ′ = ph−1M , M ′′ = M/ph−1M, and π is the natural projection. Note that
M ′ and M ′′ are cyclic of p-ranks 1 and h − 1 respectively. From this we can see
that the construction of cyclic modules of p-rank h can be obtained by finding cyclic
Dieudonné modules M ′ and M ′′ of p-ranks 1 and h− 1 so that there is a sequence

0 −−−−→ M ′
f−−−−→ M

g−−−−→ M ′′ −−−−→ 0

so that f(z) = ph−1x and g(x) = y, where x, y, and z generate M, M ′′ and M ′

respectively as E-modules.
Given cyclic modules M ′ and M ′′ of p-ranks 1 and h − 1 respectively, it is not

always true that we can construct an M to fit into the short exact sequence above.
The following gives a necessary (but not sufficient) condition on M ′ and M ′′:

Lemma 1.2. Let M ′ and M ′′ be cyclic Dieudonné modules of p-ranks 1 and h− 1
respectively, h ≥ 2. Suppose there is a short exact sequence

0 −−−−→ M ′
f−−−−→ M

g−−−−→ M ′′ −−−−→ 0

so that M has p-rank h, f(z) = ph−1x, and g(x) = y, where x, y, and z generate
M, M ′′ and M ′ respectively. If F `y = ηV ry, then F `z = ηV rz.

Proof. If F `y = ηV ry, then (F ` − ηV r)x ∈ ker g = im f. Thus there is an e ∈ E
such that F `x− ηV rx = eph−1x. Thus

f(F `z − ηV mz) = ph−1(F `x− ηV mx) = ep2h−2x = 0

since 2h− 2 ≥ h for h ≥ 2. Thus F `z = ηV mz. �

We can categorize cyclic Dieudonné modules by picking modules killed by p that
satisfy the above short exact sequence. If we pick an M ′ and an M ′′ killed by p
we get a module M killed by p2. If we then pick a different M ′ and set M ′′ = M ,
we get a new module M killed by p3, and so on. By the repeated selection of
cyclic modules killed by p in this manner we can obtain a complete classification of
cyclic Dieudonné modules. (Note that, for a given M ′ and M ′′, the M constructed
is usually not unique.) Thus we can associate to each cyclic Dieudonné module
of p-rank h a sequence M0,M1, . . .Mh−1 of cyclic Dieudonné modules killed by p.
Each of these Mi’s can be recovered from M : Mi

∼= piM/pi+1M. A consequence of
the above lemma is that if Mi = E/E(Fn−ηV r, p) and Mj = E/E(Fn

′ −η′V r′ , p)
with i < j, then n ≥ n′ and r ≥ r′. This observation will be important in Section 4.

2. Finite Honda Systems

Having described the construction of a cyclic Dieudonné module, we now focus
on the tool used for finding lifts of group schemes to W (k), namely the finite Honda
systems. Finite Honda systems were first developed by Fontaine in [F2] in a manner
analogous to (and relying heavily on) Honda’s method to lift p-divisible groups.
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Definition 2.1. A finite Honda system over W (k) consists of a pair (M,L), where
M is a Dieudonné module and L is a W (k)-submodule of M so that

i) kerV ∩ L = 0
ii) The canonical map L → M → coker F is an isomorphism, where L and M

denote reduction mod p.

By a slight abuse of notation, we shall often identify L with its image in coker F
and write condition (ii) as L/pL = M/FM. A morphism (M1, L1) → (M2, L2)
consists of an E-module map ϕ : M1 → M2 such that ϕ(L1) ⊆ L2. Thus the
collection of finite Honda systems over k forms a category, which we shall denote
FH(W (k), k).

The lifting theory works as follows. Suppose G̃ is a W (k)-group scheme lifting the
k-group scheme G = Spec (H). Let M = D∗(G) = Homk−gr(G,C). Then elements
of M are in one-to-one correspondence with HomHopf−alg(D,H), the Hopf algebra
homomorphisms D → H, where C = Spec (D). The set of all such maps is a
subgroup of Homk−alg(D,H) ∼= C(H), so we can embed M ↪→ C(H). Now for K
the fraction field of W (k) we have a map wH : C(H) → (H

⊗
W (k)K)/H defined

by

wH(. . . , h−2, h−1, h0) =
∞∑
i=0

h̃p
i

−i
pi+1

where h̃−i is a lift of h−i to W (k). (It is easy to see that the map does not depend
on the choice of lift.) Let L = kerwH |M . Then (M,L) is a finite Honda system.

Conversely, given a finite Honda system (M,L) the finite p-group G̃ over W (k)
it determines is given by, for any finite W (k)-algebra A,

G̃(A) = {φ ∈ G(A/pA) |C(φ)(L) ⊂ kerwA}
where M = D∗(G).

It can be shown that morphisms between finite Honda systems induce morphisms
on the W (k)-group schemes associated to them, and hence the correspondence
outlined above determines a categorical anti-equivalence between FH(W (k), k) and
the category of finite p-groups over W (k). As (FH(W (k), k) is an abelian category
[F2, Cor. 1], so is this category of W (k)-group schemes. Thus the kernel and
cokernel of any morphism of two finite p-groups over W (k) must also be a finite
p-group.

Note that these systems are a special case of a more general system FH(R, k) over
any discrete valuation ring R of characteristic zero with residue field k. The objects
in FH(R, k) consist of quintuples (M,M ′, f, v, L) with f : M →M ′, v : M ′ →M,
so that fv = p · 1M ′ and vf = p · 1M and L ⊂ M ′. The system described above
correponds to the case M = M ′ = D∗(G), f = F, v = V. See [R] for a complete
description of these modules.

3. The p-rank 1 Case

We start the application of Fontaine’s theory to cyclic Dieudonné modules by
dealing with the simplest type of cyclic modules, namely the p-rank 1 case. Here
we can quickly determine which of the modules lift to W (k).



132 Alan Koch

Lemma 3.1. Let M be a cyclic Dieudonné module killed by p. Then M lifts to
W (k) if and only if M is of type 1.

Proof. We shall explicitly either construct the L necessary to have a finite Honda
system, hence to have a lifting of G, or show that no such L can exist.

Type 1: Let M = E/E(Fn − ηV m, p), and let x = 1M , i.e., x is a generator of M .
We can quickly find coker F : M/FM=E/E(F, V m). Let L be generated over W (k)
by {x, V x, V 2x, ..., V m−1x}. As L∩FM = 0 and im F = kerV , L∩ kerV = 0, and
it is clear by the definition of L that L = L/pL = M/FM . Thus (M,L) satisfies
the properties of a finite Honda system, so G lifts to W (k).

Type 2: Suppose we have an L so that (M,L) is a finite Honda system. Write
M = E/E(Fn, p, V m). Then M/FM = E/E(F, V m) Clearly dimkM = n+m− 1
and dimkM/FM = m. Thus dimkL/pL = dimkL = m. But kerV has a k-basis
{Fx, F 2x, . . . , Fn−1x, V m−1x} and hence dimk kerV = n. Thus,

dimk (L+ kerV ) = n+m > dimkM

which is absurd. Thus no L can exist to make (M,L) a finite Honda system, hence
the Witt subgroup corresponding to M does not lift. �

In the type 1 case, the W (k)-submodule is not unique – in fact there are many
other possible choices for L.

Corollary 3.2. Let M = E/E(Fn − ηV m, p), x = 1M . Let L′ be the W (k)-
submodule generated by

{(1− Fe0)x, (V − Fe1)x, (V 2 − Fe2)x, . . . , (V m−1 − Fem−1)x}, ei ∈ E
Then (M,L′) is a finite Honda system.

Proof. If we take L to be the W (k)-submodule generated by {x, V x, V 2x, . . . ,
V m−1x}, then by the lemma (M,L) is a finite Honda system. As V ix ≡
(V i − Fei)x ( mod FM ), it is clear that L′ = M/FM . Since FV x = px = 0
it follows that V L′ = V L, so kerV ∩ L′ must be zero. �

We shall refer to this corollary in the proof of Theorem 4.1.

Example 3.3. It was stated in the introduction that the group scheme αp does not
lift to W (k). αp is a Witt subgroup as αp embeds naturally in Ga

∼= W1. Lemma 3.1
provides a quick proof that it does not lift. As αp is the unique k-group scheme
of rank p, D∗(αp) must be the unique simple object in the category of E-modules,
hence D∗(αp) ∼= E/E(F, V ) ∼= k. Since E/E(F, V ) is of type 2, αp does not lift to
W (k).

Example 3.4. On the other hand, the simplest Witt subgroup G that does lift is
the one so that D∗(G) ∼= E/E(F − V, p). This group scheme is characterized as
follows: for any k-algebra A we have

G(A) = {a | a ∈ A, ap2
= 0}

with

a+G b = a+ b− (ap + bp)p

p
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with the addition on the right-hand side determined by the addition in A. The
group scheme it lifts to is given by, for any finite W (k)-algebra R,

G̃(R) = {r | r ∈ R/pR, r̃p
2

+ pr̃ ∈ p2R for r̃ a lift of r}
with addition defined in the exact same way.

4. Lifts of Witt Subgroups

Finally, we are in a position to completely answer the question of lifting Witt
subgroups to W (k). We shall show that the question of lifting M is answered by
examining the structure of the Mi’s.

The following theorem shows not only which Witt subgroups lift, it also provides
a finite Honda system.

Theorem 4.1. Let G be a Witt subgroup, M = D∗(G). Let h denote the p-rank of
M , and set Mi = piM/pi+1M, i = 0, 1, 2, . . . , h − 1. Then G lifts to W (k) if and
only if Mi lifts for all 0 ≤ i ≤ h− 1.

This, when proved, will immediately give

Corollary 4.2. G lifts if and only if all of the Mi’s are of type 1. �

Proof of 4.1. We can separate all cyclic Dieudonné modules into two distinct
cases:

Case 1: M is constructed by a series of cyclic modules killed by p, at least one of
which is type 2. Pick i so that Mi is a type 2 module.

We shall show that if M lifts, then so must piM/pi+1M. If M lifts, then there is
an L so that (M,L) is a finite Honda system. We shall denote the corresponding
W (k)-group scheme by G̃. Define the morphism [pi] of p-groups over W (k) by
[pi]A(g) = g+ g+ · · ·+ g (pi times) for A a W (k)-algebra and g ∈ G(A). Since the
category of finite p-groups is abelian, [pi] induces the following short exact sequence
of finite p-groups over W (k)

0 −−−−→ [pi]G̃ −−−−→ G̃ −−−−→ G̃/[pi]G̃ −−−−→ 0.

This corresponds to a short exact sequence of finite Honda systems

0 −−−−→ (piM,L′) −−−−→ (M,L) −−−−→ (M/piM,L′′) −−−−→ 0

for some choice of W (k)-modules L′, L′′. Applying a base change to group schemes
from W (k) to k commutes with [pi], and under this base change (M,L) (resp.
(piM,L′), (M/piM,L′′)) corresponds to M (resp. piM, M/piM). Thus we have
finite Honda systems for piM and M/piM, hence they correspond to liftable k-
group schemes.

If we replace M with piM and let i = 1, we get that piM/pi+1M corresponds to
a liftable group scheme. As Mi is of type 2, it does not lift, hence neither does M.

Case 2: M is constructed by a series of type 1 modules killed by p. We will construct
a specific finite Honda system for M after first setting down some notation.

Let x = 1M . Since M is constructed of type 1’s, we have

Mi = E/E(Fni − ηiV mi , p),
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ηi ∈ k×, 0 ≤ i ≤ h−1 with mh−1 ≤ mh−2 ≤ mh−3 ≤ · · · ≤ m0 = m. For notational
convenience, we shall also define mh = 0. Let ∆mi = mi −mi+1. Now, for all i,
(piηiV mi − piFni)x ≡ 0 ( mod pi+1 ), hence pi(ηiV mi −Fni − pαi)x = 0 for some
αi ∈ E. Define fi = V mi − η−1

i (Fni + pαi), 0 ≤ i ≤ h − 1, and fh = 1. Thus
pifi = 0 but pi−1fi 6= 0, and the elements pi−1V jfi for 0 ≤ j ≤ mi − 1 form a
k-basis for Mi−1/FMi−1.

Let L be the W (k)-submodule consisting of all elements of the form

h−1∑
i=0

∆mh−i−1∑
j=1

aijV
j−1fh−ix, aij ∈W (k), ph−i+1 not dividing aij for all j.

We shall show that (M,L) is a finite Honda system. We shall use the term
V -degree on a monomial to give its power of V modulo p. It is easy to check that
the V -degree of the term aijV

j−1fh−ix is j−1+mh−i. We claim that each term in
this double sum has one power of V less than the next term (when we order in the
obvious way): clearly this is true for the terms with j < ∆mh−i−1. If j = ∆mh−i−1,
then this term has V -degree

∆mh−i−1 − 1 +mh−i = mh−i−1 −mh−i − 1 +mh−i = mh−i−1 − 1.

Let s be the smallest positive integer such that ∆mh−s > 0. Then the following
term is ai+s,0V 0fh−i−s, which has V -degree mh−i−s = mh−i−1, and the claim is
proved.

The smallest V -degree is 0 and the largest is m0−1 = m−1. Thus L is generated
as a W (k)-module by

{(1− Fe0)x, (V − Fe1)x, (V 2 − Fe2)x, . . . , (V m−1 − Fem−1)x}
for the appropriate choice of ei. Since M/FM = M/FM, where M = M/pM , it
follows from Corollary 3.2 that M/FM = L/pL.

To show kerV ∩L = 0, suppose there exists a nonzero λ ∈ L with V λ = 0. Write

λ =
h−1∑
i=0

∆mh−i−1∑
j=1

aijV
j−1fh−ix.

Then

V λ =
h−1∑
i=0

∆mh−i−1∑
j=1

bijV
jfh−ix = 0,

where bij = aσ
−1

ij . Since the bij are not all zero, we can find a nonnegative integer `
so that p`|bij for all i, j and is the largest ` with this property. Of course, ` ≤ h−1,
by the definition of the aij ’s. Writing bij = p`cij gives us

V λ =
h−1∑
i=0

∆mh−i−1∑
j=1

cijV
jp`fh−ix = 0.

If i ≥ h− ` we have seen that V j−1p`fh−ix = 0, so we may write this sum as

V λ =
h−`−1∑
i=0

∆mh−i−1∑
j=1

cijV
jp`fh−ix = 0.
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This is an element of p`M, so we may project it onto M` and we obtain

λ =
h−`−1∑
i=0

∆mh−i−1∑
j=1

cijV
jfh−iz = 0

where z = 1M`
. The highest V -degree in λ is the V -degree of ch−`−1,∆m`V

∆m`f`+1,
which is m`. Since the collection of all V jfh−iz’s are k-linearly independent, 0 ≤
i ≤ h − ` − 1, 1 ≤ j ≤ ∆mh−i−1 (all of the terms have a different V -degree
and V mM` 6= 0), and it is clear that cij = 0 for all i and j, i.e., p divides cij ,
contradicting our choice of `. Thus λ /∈ kerV, and the theorem is proved. �

Remark 1. While the statement of the theorem is quite simple, the constructed
L is rather complicated. One might hope that the W (k)-submodule L0 generated
by {x, V x, V 2x, . . . , V m−1x} might also lead to a finite Honda system. It can be
shown that (M,L0) is a finite Honda system when all of the Mi are isomorphic,
however the following example shows that this result does not hold for more general
M .

Example 4.3. Let M = E/E(F 3 − V 3, pF − pV, p2). Here L0 is generated by
{x, V x, V 2x}. While it is clear that M/FM = L0/pL0, we have that pV x ∈ L0 ∩
kerV.

However, since M/pM = E/E(F 3 − V 3, p) is of type 1, we can construct a lift.
By the construction given in the theorem, L is generated by {x, (V −F )x, (V 2−p)x}.
Notice how the problem with L0 is cleared up with L: instead of pV x, we now have
p(V −F )x, which is already zero. In fact, L is constructed by starting with L0 and
adjusting terms in such a way so that anything that could be in the kernel of V
is already zero. It is because of this that we believe that this L is the “simplest”
general formula for constructing a lift.
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