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On a Class of Toeplitz + Hankel Operators

Estelle L. Basor and Torsten Ehrhardt

Abstract. In this paper we study operators of the form M(φ) = T (φ)+H(φ)
where T (φ) and H(φ) are the Toeplitz and Hankel operators acting on `2. We
investigate the connection between Fredholmness and invertibility of M(φ)
for functions φ ∈ L∞(T). Using this relationship we establish necessary and
sufficient conditions for the invertibility of M(φ) with piecewise continuous φ.
Finally, we consider several stability problems related to M(φ), in particular
the stability of the finite section method.
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1. Introduction

This paper is devoted to the study of operators of the form

M(φ) = T (φ) +H(φ).(1)

Here φ ∈ L∞(T) is a Lebesgue measurable and essentially bounded function on the
unit circle T with Fourier coefficients φn. The Toeplitz and Hankel operators are
defined as usual in terms of the infinite matrices

T (φ) =
(
φj−k

)∞
j,k=0

, H(φ) =
(
φj+k+1

)∞
j,k=0

.(2)

The operators are considered as acting on the Hilbert space `2 = `2(Z+) of one-sided
square-summable sequences.
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The operators M(φ) represent a special case of Toeplitz + Hankel operators of
the form T (φ) +H(ψ) with arbitrary functions φ and ψ in L∞(T). Unfortunately,
it seem hopeless to ask for invertibility in this general setting, even if φ and ψ are
continuous functions. However, in this paper we will show that the operators M(φ)
possess certain properties that make it possible to solve invertibility and related
problems for piecewise continuous φ.

In the next section we establish basic properties of M(φ). Among other things,
it turns out that in the case of even functions φ the invertibility of M(φ) is almost
trivial. In the general case we obtain the remarkable result that M(φ) is invertible
if and only if M(φ) is Fredholm and has index zero. As in the Toeplitz case, this is
the key for studying invertibility.

In the third section we establish necessary and sufficient conditions for the in-
vertibility of M(φ) in the case of piecewise continuous φ. These results are based
on Fredholm criteria that can be obtained from the work of Power [6] or Böttcher
and Silbermann [3]. Additional considerations are needed in order to determine the
Fredholm index. We also give a geometric description of the spectrum of M(φ).

As an application of the invertibility results, we investigate in the fourth section
the stability of the sequence of the finite sections

Mn(φ) = Tn(φ) +Hn(φ).(3)

Here the n× n Toeplitz and Hankel matrices are defined by

Tn(φ) =
(
φj−k

)n−1

j,k=0
, Hn(φ) =

(
φj+k+1

)n−1

j,k=0
.(4)

The function φ is assumed to be piecewise continuous. The proof of the stability
criterion relies on results obtained by Roch and Silbermann [7] and Spitkovsky and
Tashbaev [8].

Another application is treated in the last section. There we examine the stability
problem for sequences {M(φλ)}λ as λ → ∞. Here {φλ}λ are certain sequences of
(smooth) functions related to a given piecewise continuous function φ. For example,
the function φλ may arise from any approximate identity of φ. The proofs are based
on results of [5].

The investigations taken up in this paper (in particular the afore-mentioned ap-
plications) are motivated by a recent paper [2]. There the asymptotic behavior of
the determinants of Toeplitz + Hankel matrices, detMn(φ), for certain piecewise
continuous functions φ is studied. The interest in the asymptotic behavior of these
determinants came from random matrix theory. For certain matrix ensembles one
needs to find the asymptotic formula for the determinant of a sum of Wiener–Hopf
and Hankel integral operators, which is the continuous analogue of the problem
considered here. The desired asymptotic formula allows one to compute the dis-
tribution function for a discontinuous random variable. The discontinuous case is
particularly important because it corresponds to counting the number of eigenval-
ues of a random matrix in an interval. For more details on this topic we refer the
reader to the literature given in [2].

2. Basic properties of M(φ)

In this section we present basic properties of M(φ) with symbols φ ∈ L∞(T).
We first introduce some notation. Let `2(Z) be the Hilbert space of two-sided
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square-summable sequences. The Laurent operator acting on `2(Z) with generating
function φ ∈ L∞(T) is defined by the infinite matrix

L(φ) =
(
φj−k

)∞
j,k=−∞.(5)

It is well known that ‖L(φ)‖ = ‖φ‖∞. We also need the projection

P : (xk)k∈Z 7→ (yk)k∈Z, yk =
{
xk if k ≥ 0
0 if k < 0,(6)

the associated projection Q = I − P , and the flip operator

J : (xk)k∈Z 7→ (x−1−k)k∈Z.(7)

Note that JP = QJ , J2 = I, and that P , Q and J are selfadjoint. Moreover, we
have JL(φ)J = L(φ̃) where φ̃ is the function defined by φ̃(t) = φ(1/t), t ∈ T. It is
easy to observe that

T (φ) = PL(φ)P, H(φ) = PL(φ)JP,(8)

when identifying the image of P with the space `2 = `2(Z+). Hence

M(φ) = PL(φ)(I + J)P.(9)

In the following, it will occasionally be convenient to identify `2 with the Hardy
space H2(T) and `2(Z) with the Lebesgue space L2(T) and to consider the operators
as acting on these spaces. In this setting, P is the Riesz projection, L(φ) represents
the multiplication operator, and J is the operator that maps a function f(t) into
the function 1/t · f(1/t).

As a first result, we establish an estimate of the norm of M(φ).

Proposition 2.1. Let φ ∈ L∞(T). Then ‖φ‖∞ ≤ ‖M(φ)‖ ≤ √2 ‖φ‖∞.

Proof. Notice that

‖(I + J)P‖2 = ‖P ∗(I + J)∗(I + J)P‖ = 2 ‖P (I + J)P‖ = 2 ‖P‖ = 2.

Hence ‖(I + J)P‖ =
√

2. Taking (9) into account, the upper estimate follows.
Now let Un denote the multiplication operator f(t) 7→ tnf(t) on L2(T). Since

UnU−n = I and JUn = U−nJ , it is easy to see that

U−nM(φ)Un = (U−nPUn)L(φ)(U−nPUn) + (U−nPU−n)L(φ)J(U−nPUn).

Because U−nPUn → I and U−nPU−n → 0 strongly on L2(T) as n→∞, we have

U−nM(φ)Un → L(φ)(10)

strongly on L2(T) as n→∞. Note that U±n are isometries on L2(T), and therefore
(10) implies the lower estimate. �

The examples of functions φ(t) = 1 and φ(t) = t show that the lower and upper
estimates can in general not be improved.

Recall that for Toeplitz and Hankel operators the following relations hold:

T (φψ) = T (φ)T (ψ) +H(φ)H(ψ̃),(11)

H(φψ) = T (φ)H(ψ) +H(φ)T (ψ̃).(12)

Adding both equations, it follows that

M(φψ) = T (φ)M(ψ) +H(φ)M(ψ̃),



4 Estelle L. Basor and Torsten Ehrhardt

and hence

M(φψ) = M(φ)M(ψ) +H(φ)M(ψ̃ − ψ).(13)

This formula is in some sense the analogue of (11).
Let H∞(T) be the Hardy space of all functions φ ∈ L∞(T) for which φn = 0

for each n > 0. Moreover, denote by L∞even(T) the C∗-algebra of all functions
φ ∈ L∞(T) for which φ = φ̃. If φ ∈ H∞(T) or ψ ∈ L∞even(T), then (13) simplifies to

M(φψ) = M(φ)M(ψ).(14)

This means that there exist two classes of functions for whichM(φ) is multiplicative.
If φ ∈ H∞(T), then M(φ) = T (φ). The properties of such Toeplitz operators are
well known. The second class, which consists of even functions, is considered next.

Theorem 2.2. The mapping Λ : φ 7→ M(φ) is a ∗-isomorphism from L∞even(T)
onto a ∗-subalgebra of L(`2).

Proof. Using the fact that JL(φ) = L(φ̃)J and J2 = I, and equation (9), we can
write

M(φ) = 1/2P (I + J)L(φ)(I + J)P.
Now it is easy to see that Λ(φ)∗ = Λ(φ), where φ denotes the complex conjugate of
φ. The fact that Λ is multiplicative follows from (14). Because of Proposition 2.1,
the mapping Λ has a trivial kernel. Hence Λ is a ∗-isomorphism. �

We remark that this result implies in particular that ‖M(φ)‖ = ‖φ‖∞ for even
φ. This improvement of Proposition 2.1 can be proved directly by invoking the
above identity along with ‖(I + J)P‖ = ‖P (I + J)‖ =

√
2.

We see from Theorem 2.2 that the case of operators M(φ) with even symbols is
especially simple. In particular, one can solve the invertibility problem completely.

In what follows, for a Banach algebra B, the notation GB stands for the group
of all invertible elements in this Banach algebra.

Corollary 2.3. Let φ ∈ L∞even(T). Then M(φ) is invertible if and only if φ ∈
GL∞even(T). Moreover, if this is true, then the inverse is given by M(φ−1).

In general, the invertibility problem is much more delicate. We will see below
how invertibility can be related to Fredholmness. A necessary Fredholm condition
is given next.

Proposition 2.4. Let φ ∈ L∞(T), and suppose that M(φ) is Fredholm. Then
φ ∈ GL∞(T).

Proof. The proof is based on standard arguments. If M(φ) is a Fredholm operator,
then there exist a δ > 0 and a (finite rank) projection K on the kernel of M(φ)
such that

‖M(φ)f‖H2(T) + ‖Kf‖H2(T) ≥ δ‖f‖H2(T)

for all f ∈ H2(T). Putting Pf instead of f , this implies that

‖M(φ)f‖L2(T) + ‖PKPf‖L2(T) + δ‖(I − P )f‖L2(T) ≥ δ‖f‖L2(T)

for all f ∈ L2(T). Replacing f by Unf and observing again that U±n are isometries
on L2(T), it follows that

‖U−nM(φ)Unf‖L2(T) + ‖PKPUnf‖L2(T) + δ‖U−n(I − P )Unf‖L2(T) ≥ δ‖f‖L2(T).
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Now we take the limit n → ∞. Because Un → 0 weakly, we have PKPUn → 0
strongly. It remains to apply (10) and again the fact that U−nPUn → I strongly.
We obtain

‖L(φ)f‖L2(T) ≥ δ‖f‖L2(T).

This implies the desired assertion. �

The next result is concerned with an assertion about the kernel and cokernel of
M(φ). It is the analogue of Coburn’s result for Toeplitz operators. We begin with
the following observation. Given φ ∈ L∞(T), define

K =
{
t ∈ T ∣∣ φ(t) = φ(t−1) = 0

}
.(15)

This definition of course depends on the choice of representatives for φ, however
the following remarks are independent of that choice. Note that the characteristic
function χK is real and even. ThusM(χK) is a selfadjoint projection (Theorem 2.2).
Since M(φ)M(χK) = M(φχK) = 0, we obtain that

imM(χK) ⊆ kerM(φ).(16)

If the set K has Lebesgue measure zero, then obviously M(χK) = 0, whereas if K
has a positive Lebesgue measure, then the image of M(χK) is infinite dimensional.
The latter fact can be seen by decomposing K into pairwise disjoint and even sets
K1, . . . ,Kn with positive Lebesgue measure. Then M(χK) = M(χK1) + · · · +
M(χKn), where M(χK1), . . . ,M(χKn) are mutually orthogonal projections which
are all nonzero (by Proposition 2.1). This shows that dim imM(χK) ≥ n for all n.

Theorem 2.5. Let φ ∈ L∞(T) and let K be as above. Then kerM(φ) = imM(χK)
or kerM∗(φ) = {0}.
Proof. As before we consider the operator M(φ) as being defined on H2(T). Then
M(φ) and its adjoint can be written in the form:

M(φ) = PL(φ)(I + J)P, M∗(φ) = P (I + J)L(φ)P.

Suppose that we have functions f+, g+ ∈ H2(T) such that M(φ)f+ = 0 and
M∗(φ)g+ = 0 with g+ 6= 0. We have to show that f+ ∈ imM(χK). Introduc-
ing the functions

f(t) = f+(t) + t−1f+(t−1), f−(t) = φ(t)f(t),

g(t) = φ(t)g+(t), g−(t) = g(t) + t−1g(t−1),

it follows at once that f−, g− ∈ H2
−(T), where H2

−(T) denotes the kernel of P . We
obtain from the definition of g− that t−1g−(t−1) = g−(t). Hence g− = 0 by checking
the Fourier coefficients. It follows that t−1g(t−1) = −g(t). On the other hand, the
definition of f says that t−1f(t−1) = f(t). This implies that (fg)(t−1) = −(fg)(t).
Also from the above relations we conclude that fg = fφg+ = f−g+. Because
f− ∈ H2

−(T) and g+ ∈ H2(T), we have f−g+ ∈ H1
−(T). Considering again the

Fourier coefficients, this shows fg = f−g+ = 0. Since g+ ∈ H2(T) and g+ 6= 0
the F. and M. Riesz Theorem says that g+(t) 6= 0 almost everywhere on T, and
thus we obtain f− = 0. Hence φf = 0. Because t−1f(t−1) = f(t), we have also
φ̃f = 0. The definition of the set K now implies that (1− χK)f = 0. Noting that
M(1− χK)f+ = 0, we finally arrive at f+ ∈ imM(χK). �
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Combining Theorem 2.5 with Proposition 2.4 we obtain the following result.

Corollary 2.6. Let φ ∈ L∞(T). If M(φ) is Fredholm, then M(φ) has a trivial
kernel or a trivial cokernel.

We remark that the previous assertion need not be true for Toeplitz + Hankel
operators in general. A counterexample is given by T (φ) +H(ψ) with φ(t) = 1 and
ψ(t) = −t.

Another conclusion is the next statement, which reduces the invertibility problem
for M(φ) to the Fredholm problem and the index computation.

Corollary 2.7. Let φ ∈ L∞(T). Then M(φ) is invertible if and only if M(φ) is
Fredholm and has index zero.

Note that in the case of a continuous function φ, the operator M(φ) is just T (φ)
plus a compact operator. This in conjunction with the well known invertibility
result for Toeplitz operators puts us in position to obtain the following simple
result. If φ is continuous, then M(φ) is invertible if and only if φ does not vanish
on T and has winding number zero.

Finally, we give a sufficient invertibility condition that relies on factorization.
This condition follows directly from equation (14). Suppose that φ ∈ L∞(T) can
be factored in the form φ = φ−φ0 with φ− ∈ GH∞(T) and φ0 ∈ GL∞even(T). Then
M(φ) is invertible and the inverse equals

M−1(φ) = M(φ−1
0 )T (φ−1

− ).(17)

It seems very likely that one can formulate a necessary and sufficient invertibility
(or Fredholm) criterion for M(φ) in terms of a factorization of the symbol with
precise conditions on the factors as is well known in the Toeplitz case. However,
we must admit that we have not been able to accomplish such a result.

3. Fredholmness and invertibility for PC symbols

Let PC stand for the C∗-algebra of all piecewise continuous functions on the unit
circle, i.e., functions φ for which the one-sided limits φ(τ ± 0) := limθ→+0 φ(τe±iθ)
exist for each τ ∈ T. In this section we want to establish Fredholmness and invert-
ibility criteria for M(φ) with φ piecewise continuous. With regard to Corollary 2.7,
it is necessary in this connection to determine the Fredholm index of M(φ).

The ∗-subalgebra of L(`2) generated by Toeplitz and Hankel operators with
piecewise continuous symbols has been examined by Power [6]. The description
given there allows us to derive necessary and sufficient conditions for Fredholmness
of operators of the form T (φ) + H(ψ) with φ, ψ ∈ PC. A similar examination
was made also by Böttcher and Silbermann [3, Sect. 4.95–4.102], using a different
method.

We recall these results for the special case φ = ψ. For this purpose we introduce
the set T+ = { t ∈ T | Im t > 0 }.
Proposition 3.1. Let φ ∈ PC. Then M(φ) is Fredholm if and only if

bτ,µ(φ) := φ(τ + 0)φ(τ̄ + 0)µ+ φ(τ − 0)φ(τ̄ − 0)(1− µ)

is nonzero for all µ ∈ [0, 1] and all τ ∈ T+ and

bτ,µ(φ) := φ(τ + 0)µ+ φ(τ − 0)(1− µ)− iτ
(
φ(τ + 0)− φ(τ − 0)

)√
µ(1− µ)
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is nonzero for all µ ∈ [0, 1] and all τ ∈ {−1, 1}.
Proof. In the above references, the condition for τ ∈ {−1, 1} is stated explicitly.
In addition, for τ ∈ T+ one has the requirement that the matrix Bτ,µ(φ) given by φ(τ + 0)µ+ φ(τ − 0)(1− µ)

(
φ(τ + 0)− φ(τ − 0)

)√
µ(1− µ)(

φ(τ̄ − 0)− φ(τ̄ + 0)
)√

µ(1− µ) φ(τ̄ + 0)µ+ φ(τ̄ − 0)(1− µ)


be invertible for each µ ∈ [0, 1]. But it is easy to see that detBτ,µ(φ) = bτ,µ(φ). �
Corollary 3.2. Let φ ∈ PC. Then M(φ) is Fredholm if and only if φ(τ ± 0) 6= 0
for each τ ∈ T and the following is satisfied:

1
2π

arg
(
φ(τ − 0)φ(τ̄ − 0)
φ(τ + 0)φ(τ̄ + 0)

)
/∈ Z+

1
2

for each τ ∈ T+,(18)

1
2π

arg
(
φ(τ − 0)
φ(τ + 0)

)
/∈ Z+

τ

4
for each τ ∈ {−1, 1}.(19)

Proof. If τ ∈ T+ is fixed and µ runs from 0 to 1, then the value of bτ,µ(φ) runs
along the line segment from φ(τ − 0)φ(τ̄ − 0) to φ(τ + 0)φ(τ̄ + 0). Similarly, if
τ ∈ {−1, 1} is fixed and µ runs from 0 to 1, then the value of bτ,µ(φ) runs along
the half circle with endpoints φ(τ − 0) and φ(τ + 0) in positive (τ = 1) or negative
(τ = −1) direction, respectively. �

The preceding corollary settles completely the problem of Fredholmness for M(φ)
with piecewise continuous φ. However, we have to carry the considerations a little
bit further in order to obtain information about the index of M(φ).

Theorem 3.3. Let φ ∈ PC. Then M(φ) is Fredholm if and only if φ can be written
in the form φ(t) = tκ exp (ψ(t)) with κ ∈ Z and ψ ∈ PC such that the following is
satisfied :

(i) |Im ∆τ (ψ) + Im ∆τ̄ (ψ)| < 1/2 for each τ ∈ T+;
(ii) −3/4 < Im ∆1(ψ) < 1/4 and −1/4 < Im ∆−1(ψ) < 3/4.

Here ∆τ (ψ) := (2π)−1
(
ψ(τ − 0) − ψ(τ + 0)

)
. Moreover, in this case we have

indM(φ) = −κ, and M(φ) is invertible if κ = 0.

Proof. The “if” part is trivial. Now suppose thatM(φ) is Fredholm and hence that
the conditions of Corollary 3.2 are satisfied. For each point τ ∈ T+ ∪ {−1, 1} one
can choose a piecewise continuous logarithm of φ which is defined and satisfies the
conditions (i) and (ii) on an open neighborhood of {τ, τ̄}. Because of compactness it
suffices to consider only a finite covering of these neighborhoods. By gluing together
the different pieces of logarithms of φ in a suitable way (by altering them locally
by constants of 2πiZ if necessary), it is possible to construct a function ψ ∈ PC
with φ = expψ that satisfies the above conditions with the possible exception of
one point, say τ = −1. At this point, the size of the jump can be transformed into
the proper value by replacing ψ(t) by ψ(t)− κ log t with suitable κ ∈ Z. But this
yields the desired representation.

In order to prove the index formula, we rely on the representation just considered
and introduce for each λ ∈ [0, 1] the functions φλ(t) = tκ exp

(
λψ(t)

)
. It easy to

see that also the operators M(φλ) are Fredholm. Because the mapping λ ∈ [0, 1] 7→
M(φλ) ∈ L(`2) is continuous, the index of M(φλ) remains constant for λ ∈ [0, 1].
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Note that φ1 = φ and φ0 = tκ. So we have indM(φ) = indM(tκ) = indT (tκ) =
−κ. �

In applications, it is often customary to represent a piecewise continuous function
as a certain product. Let tβ ∈ PC with β ∈ C be the function

tβ(eiθ) = exp(iβ(θ − π)), 0 < θ < 2π.(20)

This function is continuous and nonvanishing on T \ {1} and may have a jump at
1 whose size is characterized by tβ(1 − 0)/tβ(1 + 0) = exp(2πiβ). Each invertible
function φ ∈ PC with finitely many jump discontinuities can be written in the form

φ(eiθ) = b(eiθ)
R∏
r=1

tβr (e
i(θ−θr))(21)

where b is a continuous nonvanishing function and θ1, . . . , θR ∈ (−π, π].

Theorem 3.4. Suppose that φ ∈ PC has finitely many jumps. Then M(φ) is
invertible if and only if φ can be written in the form

φ(eiθ) = b(eiθ)tβ+(eiθ)tβ−(ei(θ−π))
R∏
r=1

tβ+
r

(ei(θ−θr))tβ−r (ei(θ+θr))(22)

where θ1, . . . , θR ∈ (0, π) are pairwise distinct points, b is a continuous nonvanishing
function with winding number zero, and

(i) |Re (β+
r + β−r )| < 1/2 for each 1 ≤ r ≤ R;

(ii) −3/4 < Reβ+ < 1/4 and −1/4 < Reβ− < 3/4.

Proof. As stated in Theorem 3.3, M(φ) is invertible if and only if φ = expψ
with the above conditions on ψ. These conditions imply that also ψ has finitely
many jumps, and hence one can always decompose ψ = ψ1 + ψ2 where ψ1(eiθ)
is continuous and ψ2(eiθ) is piecewise linear with respect to θ. The factor expψ1

represents the function b, and the factor expψ2 can be identified with the product
of the functions tβ . Observe that tβ(eiθ) is the exponential of a piecewise linear
function. The conditions on the β’s are just a restatement of the conditions on the
∆τ ’s. �

Now we proceed with describing the essential spectrum of M(φ), i.e., the set of
all z ∈ C for which M(φ) − zI is not Fredholm. We introduce the following sets.
Let

C±1(a; b) =
{
z ∈ C

∣∣∣ z = a+ (b− a)
(
µ∓ i

√
µ(1− µ)

)
, µ ∈ [0, 1]

}
L(a; b) =

{
z ∈ C

∣∣∣ z = a+ (b− a)µ, µ ∈ [0, 1]
}

be the half circles and the line segment, respectively, with endpoints a and b.
Obviously, C±1(a; a) = L(a; a) = {a} as a special case. We also define

H(a1, a2; b1, b2) =
{
z ∈ C

∣∣∣ (a1−z)(a2−z)(1−µ)+(b1−z)(b2−z)µ = 0, µ ∈ [0, 1]
}
.

Note that H(a1, a2; b1, b2) is symmetric in a1 and a2 as well as in b1 and b2. In
case of coinciding parameters we simply have H(a1, c; b1, c) = L(a1, b1) ∪ {c}. In
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general H is more complicated. If one parameterizes z = x + iy (x, y ∈ R), then
H(a1, a2; b1, b2) is a certain subset of the following cubic curve in x and y:

Im
(
A(x+ iy)B(x+ iy)

)
= 0.(23)

Here A(z) = (a1 − z)(a2 − z) and B(z) = (b1 − z)(b2 − z). The entire cubic curve
is obtained by taking µ in R ∪ {∞} instead of [0, 1]. The reader can easily verify
that the “geometric form” of H may be quite different.

Corollary 3.5. Let φ ∈ PC. Then the essential spectrum of M(φ) is equal to⋃
τ∈T+

H
(
φ(τ − 0), φ(τ̄ − 0);φ(τ + 0), φ(τ̄ + 0)

)
∪

⋃
τ∈{−1,1}

Cτ
(
φ(τ − 0);φ(τ + 0)

)
.

Proof. This follows from Proposition 3.1. The essential spectrum consists exactly
of the points z ∈ C for which there exist a τ ∈ T+ ∪ {−1, 1} and µ ∈ [0, 1] such
that bτ,µ(φ− z) = 0. �

We remark in this connection that the essential range of φ ∈ PC, i.e., the
spectrum of φ as an element of L∞(T), is just { φ(τ ± 0) | τ ∈ T }. Hence the
essential range of φ is always contained in the essential spectrum of M(φ). In
general this inclusion is proper.

In what follows we give a geometric description of the spectrum of M(φ). We
will assume for simplicity that φ has only finitely many jumps and is piecewise
smooth. The general case could be treated with the same ideas, but would require
more detailed explanations.

First of all, the values of φ(t) as t runs along T (in positive orientation) describe a
certain curve. This curve may be closed if φ is continuous, or may consist of several
components if φ has jumps (see Figure 1). Moreover, this curve has a natural
orientation induced from t ∈ T.

Now we fill in certain additional pieces as follows. If the function φ is discon-
tinuous at τ ∈ {−1, 1}, then we add the half circle Cτ (φ(τ − 0);φ(τ + 0)). If φ is
discontinuous at τ ∈ T \ {−1, 1}, but is continuous at τ̄ , then we fill in the line
segment L(φ(τ−0);φ(τ+0)). Finally, if φ has jumps at both τ, τ̄ ∈ T\{−1, 1}, then
we add H(φ(τ − 0), φ(τ̄ − 0);φ(τ + 0), φ(τ̄ + 0)). These new pieces constitute them-
selves oriented curves, where the orientation is now induced from the parameter
µ ∈ [0, 1] that occurs in the definition of these sets.

Gluing together these pieces with the former curve we obtain an oriented curve
φ#. By Corollary 3.5, the image of φ# is exactly sp essM(φ). Remark again that
the “geometric form” of this curve may be quite different. For instance, it may
consist of several closed oriented curves (see Figure 2).

Because φ# possesses an orientation, it is possible to associate to each point
z /∈ imφ# a winding number wind (φ#, z). If φ# consists of several components,
this is just the sum of the usual winding numbers with respect to these components.

These considerations now allow us to describe the spectrum of M(φ):

spM(φ) = imφ# ∪
{
z /∈ imφ#

∣∣∣ wind (φ#, z) 6= 0
}
.(24)

The proof can be carried out by continuously deforming φ. We leave the details to
the reader.
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Figure 1. Image of a piecewise continuous function with four jumps.
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Figure 2. Essential spectrum of M(φ) with φ corresponding to
the function in Figure 1.

The figures above give an example of the image of a piecewise continuous curve
and its (essential) spectrum. The example comes from a product of four of the
standard tβ functions, with jumps at 1,−1, i and −i and values of β equal to
1/3,−3/4, 5/12 and 1/3 respectively and a normalizing factor of −e−iπ/24 for pic-
ture purposes only. In this example, the spectrum consists of the area bounded by
the curve in Figure 2. As one can see the spectrum as well as the essential spectrum
of this operator is not connected, contrasted to the Toeplitz case.
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4. Stability of the finite section method for PC symbols

If one considers the finite truncations of the infinite matrix M(φ), one obtains
the sequence {Mn(φ)}∞n=1 of n × n matrices, the so-called finite sections. This
sequence is said to be stable if the matrices are invertible for sufficiently large n
and if their inverses (considered as operators in L(`2)) are uniformly bounded.

The problem of stability occurs naturally when examining, for instance, the
question whether the inverses of Mn(φ) converge strongly on `2 to the inverse of
M(φ). This question is obviously of interest in numerical analysis, but it also
emerges in the investigation of the asymptotic behavior of the determinants of
Mn(φ) (see [2]).

Employing Banach algebra methods, necessary and sufficient conditions for the
stability of sequences of the form {Tn(φ) +Hn(ψ)}∞n=1 with φ, ψ ∈ PC were estab-
lished by Roch and Silbermann in [7, Theorem 5.3]. These conditions say that the
sequence is stable if and only if the operators T (φ) +H(ψ) and T (φ̃) are invertible
and if certain operators Aτ (associated to each point τ ∈ T+ ∪ {−1, 1}) are invert-
ible. Spitkovsky and Tashbaev pointed out that the invertibility of the operators
Aτ can be reduced to the factorization of certain 2× 2 matrix functions, and above
all they solved the corresponding factorization problem [8].

Invertibility criteria for Toeplitz operators with piecewise continuous symbols are
well known [3]. But the invertibility of Toeplitz + Hankel operators in the general
case remains still unsolved.

We proceed with recalling the stability results [7, 8] for the special case φ = ψ.

Proposition 4.1. Let φ ∈ PC. Then the sequence {Mn(φ)}∞n=1 is stable if and
only if the operators M(φ) and T (φ̃) are invertible and the following conditions are
satisfied :

(i) |στ (φ)| < 1/2, |στ̄ (φ)| < 1/2 and |στ (φ) + στ̄ (φ)| < 1/2 for each τ ∈ T+;
(ii) −1/2 < σ1(φ) < 1/4 and −1/4 < σ−1(φ) < 1/2.

Here στ (φ) := (2π)−1 arg (φ(τ − 0)/φ(τ + 0)) where the argument is chosen in
(−π, π].

Proof. As said before, one has to analyze the invertibility of certain operators Aτ
with τ ∈ T+ ∪ {−1, 1}. We refer to [8, Theorem 4] and to the proof given there. It
is stated that the operators Aτ are invertible if and only if φ(τ ± 0) 6= 0 for each
τ ∈ T (which is already a consequence of the invertibility of M(φ) or of T (φ̃)) and
if the following conditions A) and B) are fulfilled:

A) For τ ∈ T+, the values ρ(τ) = φ(τ −0)/φ(τ +0) and ρ(τ̄) = φ(τ̄ −0)/φ(τ̄ +0)
are not negative, and if ζ1 and ζ2 are the zeros of the quadratic polynomial

ζ2 −
(
φ(τ − 0)φ(τ̄ − 0)
φ(τ + 0)φ(τ̄ + 0)

+ 1
)
ζ +

φ(τ − 0)φ(τ̄ − 0)
φ(τ + 0)φ(τ̄ + 0)

,

then ζ1 and ζ2 are not negative, and

0 = arg ρ(τ) + arg ρ(τ̄)− arg ζ1 − arg ζ2,

where the arguments are chosen in (−π, π). However, the zeros of the quadratic
polynomial are just ζ1 = 1 and ζ2 = ρ(τ)ρ(τ̄). Now it is easily seen that this is
equivalent to (i).
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B) For τ ∈ {−1, 1}, zero does not lie in the closed half disk that has the boundary

L
(
φ(τ − 0);φ(τ + 0)

)
∪ Cτ

(
φ(τ − 0);φ(τ + 0)

)
.

Again this is equivalent to (ii). �

Note that the preceding result completely solves the stability problem for se-
quences {Mn(φ)}∞n=1 with φ ∈ PC. We now want to point out what stability
means for functions represented in the form (21).

Theorem 4.2. Suppose that φ ∈ PC has finitely many jumps. Then {Mn(φ)}∞n=1

is stable if and only if φ can be written in the form

φ(eiθ) = b(eiθ)tβ+(eiθ)tβ−(ei(θ−π))
R∏
r=1

tβ+
r

(ei(θ−θr))tβ−r (ei(θ+θr))(25)

where θ1, . . . , θR ∈ (0, π) are pairwise distinct points, b is a continuous nonvanishing
function with winding number zero, and

(i) |Reβ+
r | < 1/2, |Reβ−r | < 1/2 and |Re (β+

r + β−r )| < 1/2 for each 1 ≤ r ≤ R;
(ii) −1/2 < Reβ+ < 1/4 and −1/4 < Reβ− < 1/2.

Proof. First of all note that T (φ̃) is invertible if and only if so is T (φ). This, in
turn, is equivalent to the condition that φ can be written in the form (25) such
that the moduli of the real parts of the β’s are less than 1/2 and that the winding
number of b is zero [3].

Now assume that Mn(φ) is stable. It is not too hard to see that the conditions
(i) and (ii) of Proposition 4.1 imply that φ can be represented in the form (25)
by choosing values of the β’s corresponding to the appropriate στ (φ). The winding
number condition on b follows from the invertibility of M(φ) or T (φ). Note that
the reverse implication is trivial. �

Comparing the preceding theorem with Theorem 3.4, we can draw the immediate
conclusion that — in contrast to the (scalar) Toeplitz case — the invertibility of
M(φ) does in general not guarantee the stability of the sequence {Mn(φ)}∞n=1 of
finite sections.

Another point is that we had to use in the proof only the invertibility of either
M(φ) or T (φ). This has its explanation in the following. “If φ ∈ PC is invertible
and satisfies conditions (i) and (ii) of Proposition 4.1, then both M(φ) and T (φ)
are Fredholm and indM(φ) = indT (φ). In particular, under these assumptions,
M(φ) is invertible if and only if so is T (φ).” We omit a proof of these assertions,
which can be carried out by similar arguments as in the proof of Theorem 3.3.

In contrast, it is possible that both M(φ) and T (φ) are invertible but conditions
(i) and (ii) of Proposition 4.1 are not fulfilled (hence {Mn(φ)}∞n=1 is not stable).
We give two concrete examples of functions and note that representation (21) is
not unique. The first example is

φ(eiθ) = tβ+(eiθ)tβ−(ei(θ−π))

= −tβ+−1(eiθ)tβ−+1(ei(θ−π))(26)
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where Reβ+ ∈ (1/4, 1/2) and Reβ− ∈ (−1/2,−1/4). The second example is

φ(eiθ) = tβ+
1

(ei(θ−θ1))tβ−1 (ei(θ+θ1))tβ+
2

(ei(θ−θ2))tβ−2 (ei(θ+θ2))

= ei(θ2−θ1)tβ+
1 −1(ei(θ−θ1))tβ−1 (ei(θ+θ1))tβ+

2 +1(ei(θ−θ2))tβ−2 (ei(θ+θ2))(27)

where θ1, θ2 ∈ (0, π), θ1 6= θ2, Reβ+
1 ∈ (0, 1/2), Reβ−1 ∈ (0, 1/2), Re (β+

1 + β−1 ) ∈
(1/2, 1), Reβ+

2 ∈ (−1/2, 0), Reβ−2 ∈ (−1/2, 0) and Re (β+
2 + β−2 ) ∈ (−1,−1/2).

In both examples, the first and second representation guarantee the invertibility of
T (φ) and M(φ), respectively.

5. Stability for approximate identities of PC symbols

Let Λ ⊆ [0,∞) be an unbounded index set. Given a (generalized) sequence
{φλ}λ∈Λ of functions in L∞(T), one can consider the sequence {M(φλ)}λ∈Λ of
operators. This sequence is said to be stable if

(i) There exists a λ0 ∈ [0,∞) such that the operators M(φλ) are invertible for
each λ ∈ [λ0,∞) ∩ Λ;

(ii) supλ∈[λ0,∞)∩Λ ‖M(φλ)−1‖L(`2) is finite.
It is, of course, hopeless to examine the stability problem for arbitrary such se-
quences. We will therefore restrict ourselves to certain classes that will be described
below.

Let K be a function in L1(R) which satisfies∫ ∞
−∞

K(x) dx = 1.(28)

For λ ∈ [0,∞) we introduce the linear bounded mappings kλ : L∞(T) → L∞(T)
defined by

(kλφ)(eix) =
∫ ∞
−∞

φ(ei(x−y))λK(λy) dy.(29)

The mapping kλ is called the approximate identity generated by K. A typical
example of an approximate identity is the harmonic extension hµ defined by

hµ :
∞∑

n=−∞
einxφn 7→

∞∑
n=−∞

µ|n|einxφn, 0 ≤ µ < 1.(30)

The use of the index µ instead of λ should not cause confusion. The relationship
is constituted through hµφ = kλφ with K(x) = 1/

(
π(1 + x2)

)
and λ = −1/ logµ.

Other examples of approximate identities are the Fejer-Cesaro means and the mov-
ing average [1]. We remark that stability of Toeplitz operators {T (kλφ)}λ for quite
general types of approximating identities was first examined by Böttcher and Sil-
bermann [4] (see also [3, Chap. 3]).

For a given approximate identity kλ generated by K we define a function f by

f

(
1 + ix

1− ix
)

=
∫ x

−∞
K(y) dy, x ∈ R.(31)

Note that f ∈ PC−1, where PC−1 denotes the set of functions in PC which are
continuous on T \ {−1}. In particular f(−1 + 0) = 0 and f(−1− 0) = 1. Remark
that in most cases of interest (e.g., if K(x) ≥ 0), the spectrum of f in L∞(T) is
just [0, 1].
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For an invertible function φ ∈ PC−1, the Cauchy index is defined as follows:

indφ =
1

2π
[
arg φ

(
eiθ
)]π
θ=−π(32)

where arg φ is chosen in PC−1. Given a function φ ∈ PC and τ ∈ T we introduce
for a fixed approximate identity with corresponding function f , the function

φτ (eiθ) = φ(τ + 0)f(eiθ) + φ(τ − 0)(1− f(eiθ)).(33)

Note that φτ ∈ PC−1 and φτ (−1± 0) = φ(τ ∓ 0).
It is the goal of what follows to investigate sequences {M(kλφ)}λ∈Λ with φ ∈

PC. In [5], various sequences of convolution type operators with such generating
functions have been examined in view of stability, including sequences of the form
{T (kλφ) + H(kλψ)}λ∈Λ. The stability criterion established there says that the
latter sequence is stable if and only if certain associated operators are invertible.
Unfortunately, these invertibility problems could not be handled in general. We
will indicate next how the special case φ = ψ can be treated.

Theorem 5.1. Let kλ be an approximate identity and let φ ∈ PC. Then the
sequence {M(kλφ)}λ∈Λ is stable if and only if M(φ) is invertible, for each τ ∈ T
the functions φτ ∈ PC−1 are invertible and the following is satisfied :

(i) |indφτ + indφτ̄ | < 1/2 for each τ ∈ T+;
(ii) −1/4 < indφ1 < 3/4 and −3/4 < indφ−1 < 1/4.

Proof. It can be derived from [5, Corollary 3.2] that {M(kλφ)}λ∈Λ is stable if and
only if the operators M(φ), Aτ = T (φτ ) + τH(φτ ) for τ ∈ {−1, 1} and

Aτ,τ̄ =
(
L(φτ )P +Q L(φτ )Q
L(φ̃τ̄ )P L(φ̃τ̄ )Q+ P

)
for τ ∈ T+ are invertible. As to the operator Aτ,τ̄ , it is easily seen that

Aτ,τ̄ =
(
I 0
0 I

)
+
(
L(φτ )− P
L(φ̃τ̄ )−Q

)(
P, Q

)
.

Hence the invertibility of Aτ,τ̄ is equivalent to the invertibility of the singular inte-
gral operator

I +
(
P, Q

)( L(φτ )− P
L(φ̃τ̄ )−Q

)
= PL(φτ ) +QL(φ̃τ̄ ).

This, in turn, is equivalent to saying that the functions φτ and φτ̄ are invertible in
PC−1 and that |ind (φτ φ̃τ̄

−1
)| < 1/2. Now observe that ind (φτ φ̃τ̄

−1
) = indφτ −

ind φ̃τ̄ = indφτ + indφτ̄ .
If τ = 1, then A1 = M(φ1). The invertibility can be analyzed by Theorem 3.3.

It follows that the function ψ with φ1 = expψ appearing there is also in PC−1.
Hence Imψ = arg φ1 up to a constant and by definition Im ∆−1(ψ) = indφ1.

If τ = −1, then A−1 = WM(φ̂−1)W where φ̂−1(t) = φ−1(−t), t ∈ T, is the
“rotated” function and W ∈ L(`2) is the operator W :

(
xk
)
k≥0
7→ (

(−1)kxk
)
k≥0

.

So we are left with the invertibility ofM(φ̂−1). We can argue as above, and it follows
similarly that Imψ = arg φ̂−1 up to a constant. Hence Im ∆1(ψ) = indφ−1. �
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The previous result answers the question about stability for the case under con-
sideration completely, and in general no further essential simplifications are possible.
In the special case where the spectrum of f is just [0, 1], the situation is different.

Corollary 5.2. Let kλ be an approximate identity with sp L∞(T)f = [0, 1] and let
φ ∈ PC. Then the sequence {M(kλφ)}λ∈Λ is stable if and only if M(φ) is invertible
and the conditions (i) and (ii) of Proposition 4.1 are satisfied.

Proof. We remark that φτ is invertible if and only if φ(τ±0) 6= 0 and |στ (φ)| < 1/2.
Moreover, στ (φ) = −indφτ by definition. �

The next result discusses the stability condition in terms of the product represen-
tation. The proof can be carried out in the same way as the proof of Theorem 4.2.

Corollary 5.3. Let kλ be an approximate identity with sp L∞(T)f = [0, 1]. Assume
that φ ∈ PC has finitely many jumps. Then {M(kλφ)}λ∈Λ is stable if and only if
φ can be written in the form and with the conditions stated in Theorem 4.2.

We can conclude that the invertibility of M(φ) does in general not guarantee the
stability of {M(kλφ)}λ∈Λ. Again this contrasts the Toeplitz case [5, Sect. 3.3].

Now we turn our attention to another type of sequences. They are obtained
by considering exponentials of approximate identities of piecewise continuous func-
tions.

Theorem 5.4. Let kλ be an approximate identity and let ψ ∈ PC. Then the
sequence {M(exp(kλψ))}λ∈Λ is stable if and only if ψ fulfills the conditions (i) and
(ii) stated in Theorem 3.3.

Proof. This can be verified by combining Theorem 2.2 and Proposition 3.4 of [5]
(see also [5, Corollary 3.5] for a related situation). One arrives at similar invertibility
conditions as stated in Theorem 5.1 above. The only difference is that one has to
replace φ by expψ and φτ by expψτ . The argumentation is analogous. Finally
note that expψτ ∈ PC−1 and ind expψτ = Im ∆−1(ψτ ) = −Im ∆τ (ψ). Moreover,
the conditions (i) and (ii) of Theorem 3.3 ensure the invertibility of M(expψ). �

This theorem (in conjunction with Theorem 3.3) has an interesting consequence.
Suppose that M(φ) with φ ∈ PC is invertible. Then one can always find a ψ ∈ PC
with φ = expψ such that the sequence {M(exp(kλψ))}λ∈Λ is stable. One just has
to choose ψ with the conditions stated in Theorem 3.3. Observe that if ψ (the
logarithm of φ) is not chosen “properly”, then the sequence fails to be stable. The
constructed sequence is a so-called approximating sequence for the operator M(φ)
in the sense that M(exp(kλψ))→M(φ) strongly on `2 as λ→∞.

A special case of the previous theorem, which is of interest in applications [2],
is considered next. Let tβ,µ with 0 ≤ µ < 1 and β ∈ C be the (smooth) function
defined by

tβ,µ(eiθ) =
(
1− µe−iθ)−β (1− µeiθ)β .(34)

Corollary 5.5. The sequence {M(φµ)}0≤µ<1 defined by

φµ(eiθ) = b(eiθ)tβ+,µ(eiθ)tβ−,µ(ei(θ−π))
R∏
r=1

tβ+
r ,µ

(ei(θ−θr))tβ−r ,µ(ei(θ+θr))(35)
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where θ1, . . . , θR ∈ (0, π) are pairwise distinct points and b is a continuous nonva-
nishing function with winding number zero, is stable (as µ → 1 − 0) if and only if
the parameters satisfy the conditions (i) and (ii) of Theorem 3.4.

Proof. The functions tβ,µ are the exponentials of the harmonic extensions hµ of
the piecewise linear functions log tβ(eiθ) = iβ(θ − π), 0 < θ < 2π. Hence the
assertion can be deduced for functions (35) with b replaced by bµ := exp (hµ log b).
Because bµ → b in the norm of L∞(T), the actual and the modified sequence of
operators differ only by a sequence tending to zero in the operator norm. �
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