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Recursion in Curve Geometry

Joel Langer

Abstract� Recursion schemes are familiar in the theory of soliton equations

e�g�
 in the discussion of in�nite hierarchies of conservation laws for such equa�
tions� Here we develop a variety of special topics related to curves and curve

evolution in two and three�dimensional Euclidean space
 with recursion as a
unifying theme� The interplay between curve geometry and soliton theory is
highlighted�
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�� Introduction

Among soliton equations� the �lament model �FM�� �t � �s� �ss� is particularly
simple in form� and easy to interpret geometrically� FM describes a curve ��s� t�
evolving in three�dimensional space E�� and arose as a model of thin vortex tubes
in ideal three�dimensional �uids� �In this context� FM is generally known as the
localized induction equation or the Betchov Da Rios equation�see �Ri� for historical
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�� Joel Langer

background�� As we intend to illustrate� the structure of FM lends insight and a
rich set of examples to the study of curves� geometry repays the debt� providing a
setting for an elementary demonstration of some of the basic �miracles� of soliton
theory� in which many computations related to FM gain simple geometric meaning�

For soliton equations� the associated in�nite hierarchies of commuting Hamil�
tonian �ows� conserved variational integrals� and explicitly computable �soliton
solutions� are closely related� basic elements of integrable structure� In particular�
the FM recursion scheme� Equation �� yields a sequence of di�erential operators�
X�� X�� � � � � Xn� � � � � such that the above Hamiltonian �ows are de�ned by the
PDE
s �t � Xn���� and the stationary equations� � � Xn���� describe �initial con�
ditions for� the soliton solutions to FM� While recursion schemes are typically
�derived� in soliton theory from �presumably� more fundamental principles� Equa�
tion � is adopted here as starting point� the latter is simpler�looking than better�
known recursion schemes in soliton theory� leads more transparently to closed form
solution� and yields formulas which may be directly and systematically applied to
several interesting topics in curve geometry�

Nevertheless� we begin x� with a brief motivation of the FM recursion scheme
itself� via the condition of unit speed parametrization� h�s� �si � �� We proceed
to develop basic results on the solution to the recursion scheme �see Theorem ���
representing the general solution as a formal series of vector�elds �or vector�valued
operators�� X �

P�
n�� �

nXn� starting with X� � ��s� and depending on a se�
quence of �constants of integration
� As it turns out� the length of X is indepen�
dent of s� and normalization by the assumption of unit length�extending the unit
speed condition on � itself�uniquely determines a special solution Y to the recur�
sion scheme� This normalization device� which conveniently �xes all constants of
integration �without reference to boundary conditions or any analytic machinery��
is used repeatedly throughout the paper� beginning with the description of planar
and binormal FM subhierarchies along planar curves �see Corollary ���

In x� we consider statics of curves belonging to the soliton class� � � f� � some
Xn vanishes along �g� beginning with formulas for �rst integrals� Killing �elds� and
expression of Euclidean coordinates of � � � by quadrature� in terms of FM �elds
Xn �see Theorem 	�� We also observe that Y converges for such curves� suggesting
more geometrical interpretations of Y �e�g�� as a canonical extension Y �T � of closed
spherical curves T to spherical mappings of a cylinder� Next� we demonstate the
exceptionally good �t between the soliton class � and Frenet theory�using both
standard and natural Frenet systems� The latter introduce into the picture a second
parameter� �� which ultimately �in x�� will be identi�ed with the spectral parameter
in the standard sense of soliton theory� The lower order examples �beginning with
lines� helices� elastic rods and buckled rings� illustrate how � provides integrable geo�
metric variational problems and ��nite dimensional� Hamiltonian systems�indeed�
integrable physical models� Here we present basic results on the soliton class� partly
with a view towards the broader potential of � as a signi�cant class of curves� brie�y�
� is large enough to represent arbitrary geometrical and topological complexity� yet
highly structured and admitting a variety of explicit constructions�

In x	� we take up curve dynamics� especially the PDE
s �t � Xn��� of the
FM hierarchy� There are brief discussions of non�stretching motions in general�
of the Hamiltonian nature of FM and the FM constants of motion� and of the
congruence solutions �special soliton solutions� associated to the soliton class �� The
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relationships to the non�linear Schr�odinger �NLS� and modi�ed Korteweg�de Vries

�mKdV� equations are derived as a corollary to the variation of natural curvatures

formula �Theorem �	�� which gives the FM recursion operator a role in the geometry
of curves� We then proceed to consider equations which preserve planar� spherical�
and constant torsion curves� relating all these to the �real� mKdV hierarchy� and
the last to pseudospherical surfaces and the sine�Gordon equation� A closer look at
the constant torsion�preserving �ows leads to a slight genereralization of the FM
recursion scheme� in which the parameters � and � may be allowed to interact�
a specialization yields a description of the FM vector�elds� in terms of covariant
constancy of a series X��

Finally� Section � makes the bridge between the special topics on curves and the
more widely known formalism of soliton theory� First we recast the natural Frenet
system for curves in R� in terms of the standard spectral problem for the non�linear
Schr�odinger equation in the SU��� setting� Then we recall the technique of di�er�
entiation with respect to the spectral parameter �due to Sym and Pohlmeyer �Sym���
which produces unit speed curves from a set of eigenfunctions� After brie�y deriv�
ing the NLS hierarchy from the zero curvature condition� we explain the equivalence
between the FM and NLS recursion schemes�in a word� the two are related like
�body� and �space� coordinates� The simple conclusion deserves ampli�cation� for
several reasons� First� another geometric interpretation of the spectral parameter
�as the inverse of a spherical radius�see �D�S�� has been proposed� however� it does
not admit the same clean translation between the linear systems underlying FM
and NLS� Second� in the context of curve geometry� natural frames are generally
considered only with � � ��these appear to su�ce for many purposes� but the
discussion here suggests valuable information may be lost by so specializing too
quickly�

Which brings us back to the main technique� the common thread of the paper�
for the spectral parameter and recursion are two faces of a coin�continuous and
discrete aspects of an underlying symmetry� a key degree of freedom in a highly
structured system� The spectral parameter and the recursion are the slip and the
rattle by which the inner workings of the mechanism are heard�

�� The FM recursion scheme

In the Frenet theory of curves� the notion of arclength�parametrization is essen�
tial� Though one can compute expressions for curvature � and torsion � of a curve
� using a more general parametrization� these quantities give very limited informa�
tion about �� unless referred to a unit speed parameter� Ironically� in elementary
mathematics� arclength�parametrization is mostly an abstraction�one rarely en�
counters it in the �esh Happily� soliton theory ultimately provides a large supply
of arclength�parametrized curves� especially� ways to deform a given such curve to
obtain many others�

Turning things around� we wish to motivate the FM recursion scheme by bor�
rowing a lemma of non�stretching curve dynamics �see Section 	����

Lemma �� The curve�speed v � k���uk � �s
�u �� � of an evolving regular curve

��u� t� is preserved�v�u� t� is independent of t�if and only if W � ��
�t satis�es the
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condition hT� 	W i � �� Here� T � ��
�s is the unit tangent vector� and 	 � rT is

the covariant derivative along ��

Proof� The lemma is valid� as stated� in a Riemannian manifold� In the present
�Euclidean� context� we simply use partial derivative notation� �v��t � �

�t h�u� �ui �

�h�u� �uti � �h�u�Wui � �v�hT� 	W i� �

To paraphrase� W is a locally arclength�preserving �LAP� vector�eld along � if and
only if W satis�es JX � 	W � for some vector�eld X � here� J � T� is the operator
which takes cross product with the unit tangent�

The most obvious way to satisfy this condition is to let W be the unit tangent
vector itself� W � T � Note that the corresponding motion of � is just slipping of �
along itself �shifting of parameter�� without change of shape or position� Of course�
we would like to describe more interesting non�stretching motions� To do so� we
introduce the FM recursion scheme�

JXn � 	Xn�����

Here� the recursion starts with X� � ��s � �T � Assuming we can determine
X�� X�� � � � � we should thus have a sequence of increasingly complicated non�
stretching motions �note Xn depends on n derivatives of T � �s��

We now show how to compute the Xn from Equation �� Since J� � �Id on
normal vector�elds� ��� implies

Xn � fnT � J	Xn������

for some fn� As it turns out� there are two ways to compute fn in terms of
X�� X�� � � � � Xn��� This is a key fact�

First� replacing n by �n! �� in Equation �� we obtain further information about
Xn� namely� hT� 	Xni � �� so 	fn � 	hT�Xni � �h	X�� Xni� i�e��

	fn � hX�� JXni���

Since the normal part of Xn is already �known�� antidi�erentiation of ��� yields fn�
uniquely� up to an arbitrary constant of integration� By this approach� one could
compute X�� X�� X�� explicitly� with the help of �good luck�� at each step� the
required antiderivative� fn� turns out to be computable in closed form�

For the second approach� it
s convenient to consider formal power series� X �P�
n�� �

nXn� and to make use of the natural extensions to such series of the vector
operations 	� J � h � i� etc� For instance� we can write JX �

P�
n�� �

nJXn� and
�	X �

P�
n�� �

n��	Xn �
P�

n�� �
n	Xn��� Evidently� ��� can be rewritten as

JX � �	X�	�

This invites the product rule� �	hX�Xi � �h�	X�Xi � �hJX�Xi � �� by skew�
adjointness of J � In other words�

hX�Xi � p�������

where p��� � � !
P�

n�� Cn�
n is a series in �� with coe�cients Cn which do not

depend on s� Thus� for �xed real �� X describes a spherical curve �assuming
convergence�� Note that the �n term of ��� is

Pn
k��hXk� Xn�ki � Cn� hence� for
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n � �� �� � � � �

�fn � �Cn !

n��X
k��

hXk� Xn�ki���

This equation is clearly the preferred way to compute fn� in fact� comparison with
Equation � explains the �perfect derivative phenomenon� by way of the following
interesting identity �whose signi�cance is explained in x	����

	

n��X
k��

hXk� Xn�ki � �hX�� JXni���

We will often use the convenient normalization p��� � ��all Cn are zero�and
denote by Y �

P�
n�� �

nYn the resulting series �which corresponds to the �obvious�
choices of antiderivatives in the �rst approach�� For convenient reference� we list
the �rst few terms before summarizing the main conclusions of this section�

Y� � ��s�
Y� � �s � �ss�

Y� �
�

�
h�ss� �ssi�s ! �sss�

Y� � h�s � �ss� �sssi�s � �s � �ssss � �

�
h�ss� �ssi�s � �ss

Theorem �� Let X �
P�

n�� �
nXn satisfy JXn � 	Xn��� with X� � ��s� Then

hX�Xi � p��� does not depend on s� Further�

a� The normalized solution� Y �
P�

n�� �
nYn� is given inductively by

Yn � �
�

�

n��X
k��

hYk� Yn�ki� T � J	Yn�����

which uniquely de�nes Yn��� as an �n! ��st�order di�erential operator on reg�

ular curves ��
b� In the general case� p��� � � !

P�
n�� Cn�

n� X may be written

X �

�X
n��

�n
nX

k��

An�kYk � �

�X
i��

Ai�
i��

�X
j��

�jYj� �
p
p��� Y���

c� For � � m 
 n� the following derivative identity holds �

	

n�mX
k��

hXm�k��� Xn�ki � �hXm� JXni����

Proof� Equation  just combines Equations ��� and ���� with Cn � �� Note that�
in terms of Euclidean coordinates� � � �x�� x�� x��� each component of Yn is a
polynomial in the ��n ! �� quantities� 	jxi� i � �� �� �� j � �� � � � � �n ! ��� this
locality result is an immediate but fundamental consequence of Equation �

For part b�� note that Equations ��� and ��� imply that the general solution to
Equation 	 has the form X �

P�
n�� �

nXn �
P�

n�� �
n
Pn

k�� An�kYk� The remain�
ing formulas for X now follow by formal multiplication and the normalization of Y �
In particular� p��� � �

P�
k��Ak�

k��� i�e�� the �integration constants� A�� A�� � � � �
are related to the Cm by Cm �

Pm
k�� AkAm�k �with A� � ��� We remark that� in
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the expansion of hX�Xi � p���� only the hY�� Y�i terms contribute� the remaining
terms must cancel for the result to be independent of s�

Part c� directly generalizes Equation �� and can be proved as follows� For
m � �� �� � � � � let X�m� denote the shifted series� X�m� �

P�
n�� �

nXn�m� Not�

ing J�X�m� �Xm� � �	X�m�� one obtains �	hX�m�� X�m�i � �hXm� JX
�m�i� The

�n�m�term yields Equation ��� �

Corollary �� Along a planar curve �� the even �elds Y�n��� are planar� while

the odd �elds Y�n����� are �binormal	 �perpendicular to the plane of ��� Fur�

ther� the planar subhierarchy� Y�n���� may be computed inductively by
 Y�n�� �
J�	�Y�n!f�n��T � where �f�n�� �

Pn
k��hY�k � Y��n���k�i!

Pn
k��h	Y�k� 	Y��n�k�i�

n � �� �� � � � �

Proof� Assuming � is planar� we use induction to prove Y�j�� is binormal and Y�j is
planar� for j � �� �� � � � � Assume this holds for � � j � n �obviously valid when n �

��� Then f�n�� � �
�

P�n
k��hYk� Y�n���ki � �� since each term is the dot product of a

planar �eld with a binormal �eld� Therefore� Y�n�� � f�n��T�J	Y�n � �J	Y�n is
binormal� and Y�n�� � f�n��T �J	Y�n�� is planar� and the induction argument is
concluded� Further� we can write Y�n�� � f�n��T !J	J	Y�n � f�n��T !J�	�Y�n�

since �	T �� �	Y�n� � �� The sum f�n�� � �
�

P�n��
k�� hYk� Y�n���ki may be split into

terms with even and odd indices� applying Equation � to the odd �binormal� terms�
hY�k��� Y��n�k���i � hJY�k��� JY��n�k���i� yields the given formula� �

We remark that the even and odd parts� Xe � �
� �X� ! X��� and Xo � �

� �X� �
X���� of X � X� have constant formal dot product� hXe� Xoi � �

	 �p��� � p������
vanishing for p��� even� along planar �� Xe is then planar and Xo binormal� The
corollary will be extended to constant torsion curves� via introduction of the spectral
parameter �in x	��� where all the main formulas of this section will be generalized��

The FM recursion scheme was considered in earlier work with Ron Perline
��L�P ���� in terms of a recursion operator �see x	���� We subsequently found the
closed form inductive solution �Equation �� in collaboration with Annalisa Calini
and David Singer� In the present paper� we have adopted a formal power series
approach �as in Equations �	�� ���� ����� systematic use of this formalism not only
clari�es some technical issues �especially those related to �constants of integra�
tion��� but also invites geometric interpretation of the recursion scheme and its
solution Y �

�� Statics of soliton curves

���� The soliton class �� The nthsoliton class� �n � f� � � � Xng� is de�ned
by an nth�order ODE for T � �s� depending on n arbitrary constants� � � Xn �Pn

k�� An�kYk� A� � �� For instance� �� � fstraight linesg� �� � fhelicesg�
�� � fKirchho� elastic rodsg� and the closed planar curves in �	 describe buckled

rings �see Examples �"��� below�� The stationary problems � � Xn can be formu�
lated also as geometric variational problems� e�g�� elastic rods are critical for linear
combinations of length� total torsion� and total squared curvature �see �L�S 	��� The
�rst two parts of the following theorem provide basic computational tools for soliton
curves� while part c� gives geometric meaning to the formal series Y � Y ����
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Theorem �� Let � � �n � � �� �n��� satisfy � � Xn �
Pn

k�� An�kYk� Then

a� The following m� � �rst integrals are also satis�ed �

n�mX
k��

hXm�k��� Xn�ki � constant� m � �� �� � � � � �n� �������

b� The vector�elds Xn�� and Xn�� are the restrictions to � of Killing �elds

on E�� In fact� Xn�� is a translation �constant� �eld� and Xn�� is a screw

�eld� the two �elds commute� hence� associate to � a system of cylindrical

coordinates� r� �� z� As functions along �� these coordinates satisfy

r� � ���kXn��k� � �� zs � ���fn��� r��s � ����fn�� � fn��������

where � � kXn��k and  � ���hXn��� Xn��i are constants�
c� Y � Y ��� converges� In fact� X � X ��� may be assumed to terminate� p��� �

hX�Xi is a non�vanishing polynomial� and T �s��� � �Y � �X�pp��� de�nes
a homotopy of curves in the unit sphere� deforming the tangent indicatrix�

T �s� �� � T �s�� of � to the point�s� T �s���� � �����n�����Xn��� as � �
���

Proof� Part a� follows at once from part c� of Theorem �� Part b� is established
by the following sequence of elementary observations�

i� � � JXn � 	Xn��� so Xn�� � constant �� � i�e�� Xn�� is the restriction to �
of a translation �constant� vector�eld on E�� Thus� we may set Xn�� � �	z� where
� is the constant � � kXn��k�

ii� 	���Xn��� � JXn�� � 	Xn��� so Xn�� � ��Xn��!V � for some constant
vector V � In fact� by translating coordinates �� 	� � � ���Xn�� � V �� we can
write Xn�� � � �Xn�� ! Xn��� with  � ���hXn��� V i � constant� hence also
hXn��� Xn��i � �� � constant� Note that Xn�� is the restriction to � of a screw

�eld �translation �eld plus rotation �eld� on E�� with axis 	z � Thus we may write
Xn�� � ��	z � 	���

iii� The equation kXn��k� � ���� ! r�� may be regarded as a formula for r�s��
the �rst cylindrical coordinate along �� Similarly� writing T � rs	r!�s	�!zs	z � we
obtain the formulas �zs � �hT� 	zi � hT�Xn��i � fn��� and fn�� � hT�Xn��i �
fn����r��s� Thus� z�s� and ��s� are given by quadrature� in terms of kXn��k��
fn��� fn��� �� and �

To prove part c�� note that the di�erential operators X�� X�� � � � are uniquely
speci�ed by constants A� � �� A�� A�� � � � � according to X �

P�
r�� �

rXr �P�
r�� �

r
Pr

k��Ar�kYk� The theorem assumes A�� A�� � � � � An are such that Xn��� �
�� An induction argument shows that Am�� � hT�Pm

k��Am�kYk��i� m 
 n� de�
�nes constants An��� An��� � � � such that X evaluates to the terminating series

X ��� �
Pn��

r�� �
rXr���� �The fact that the remaining constants are not taken to be

zero points out why the interpretation of the Ak as �constants of integration� re�
quires one to be careful�� Note that p��� is non�vanishing� since otherwise X ��� � �
for some �� implying � � �n��� The remaining statements now follow easily from
Theorem �� and Xn�� � constant� �

Note antidi�erentiation in part c� yields a regular homotopy� ��s��� �
R �Y ds�

deforming � to a straight line as � � ��� We consider this canonical straight�

ening process for soliton curves in �La�� where explicit examples are worked out
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and topological and geometrical behavior are considered� This is an example of a
parametrized family construction�a recurring theme�

���� FM and Frenet theory� Next� we recall the Frenet equations of classical
curve theory� Ts � �N� Ns � ��T ! �B� Bs � ��N � here� the curvature

��s� �� � and torsion ��s� describe the shape of �� and the tangent T �s�� normal
N�s�� and binormal B�s� form an �adapted� orthonormal frame along �� Using
these equations� we can write the Xn in the form Xn � anT ! bnN ! cnB� where
an � fn� bn� cn are expressed as polynomials in 	i�� i � �� �� � � � � �n � ��� and
	j�� j � �� �� � � � � �n� ��� In view of Theorem 	� we therefore have�

Corollary �� The Frenet equations for a curve � in � are integrable by quadrature�
��s� � �r�s� cos ��s�� r�s� sin ��s�� z�s��� where r and zs are polynomial in ��s�� ��s��
and derivatives of these functions� while �s is rational in the same�

We will be making even more frequent use of natural Frenet systems�

Ts � u�U� ! u�U�� �U��s � �u�T ! �U�� �U��s � �u�T � �U������

where � is a constant� The relationship to the classical Frenet system can be
written u� ! iu� � �ei�� and U� ! iU� � �N ! iB�ei�� where � �

R s
��u� � �du�

also� �� � u�� ! u�� and � � u���u��u��s � u��u��s� ! �� While �� � and fT�N�Bg
are uniquely de�ned along a regular space curve � �with � �� ��� the curvatures
u�� u� and frame vectors U�� U� are determined �given �� only up to multiplication
by a complex unit� ei�� " this freedom corresponds to the choice of antiderivative
in the above formulas� Bishop �Bi� pointed out the virtues of natural frames �with
� � ��� including� e�g�� the following�

Lemma 	� The following conditions on a curve � � E� are equivalent


a� � lies on a sphere of radius R � ��c� and has geodesic curvature �g� Here�

c � � is allowed� for the planar case�

b� There exists a natural frame along � having natural curvatures u�� u� with

� � �� such that u� � c � constant� and u� � �g�
c� If u�� u� are natural curvatures along � with � � �� then the function ��s� �

u��s� ! iu��s� maps into a line in the complex plane� and k��s�k� � ��g ! c��
with c equal to the distance from the line to the origin�

Proof� If u� � c � constant �� �� then �� ! U��c�s � T � cT�c � �� so � lies on a
sphere of radius ��c� The rest of the proof is also quite easy� �

So�called frames of least rotation �again � � �� have been considered also in the
context of computer�aided design �see e�g�� �W�J��� where the smoother or more
regular behavior of natural frames is an advantage� Presently� natural Frenet sys�
tems will be seen to be intimately related to the structure of FM� Here it becomes
important to include the spectral parameter ��the reason for the term will be
made clear in x��and to allow ��frames with � �� �� For the moment� we sim�
ply note that ��frames have distinct topological advantages� while ��frames along
a closed regular curve are generally not periodic� ��frames realize the �p�q��cable
construction producing a new knot from an old knot� in the form ��p�q� � � ! �U��

with
R
� ��p� q�� �ds � ��p�q �or one can produce non�cable knots� using larger ���

Of course� one can also �desingularize� a planar knot �which the standard Frenet
frame cannot do��
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Returning now to the FM hierarchy� we can obtain another version of Corollary �
by applying Theorem 	 to the expressions Xn � fnT!gnU�!hnU�� here� gn and hn
are polynomials in the ui and their derivatives of order up to �n� ��� and fn is one
order lower� This is a good place to observe also that the normalized vector�elds
Yn � anT ! bnN ! cnB � fnT ! gnU� ! hnU� have homogeneous coe�cients with
respect to both types of Frenet systems� an� bn� cn �respectively� fn� gn� hn� all
have weight n� each �factor� �� � � and � � �

�s �u�� u�� �� and �� contributing one�

For example �using �� � u�� ! u�� for brevity��

Y� � �T�
Y� � �B � �u�U� ! u�U��

Y� �
��

�
T ! ��N ! ��B �

��

�
T ! u��U� ! u��U� ! �Y��

Y� � ���T ! ����� ! �� ��N ! ���� � ��� � ��

�
�B

� �u�u
�
� � u�u

�
��T ! �u��� ! u�

��

�
�U� � �u��� ! u�

��

�
�U� ! ��Y� � ��Y��

Y	 � a	T ! ������ ! ���� � ! ����� � �

�
�����N ! ���� �� ! ��� � ������� � �

�
����B

� f	T � �u���� !
�

�
��u���U� � �u���� !

�

�
��u���U� ! ��Y� � ���Y� ! ��Y�

In the last term� a	 � �����! �
� ����� ! �

��
���� �


�
	� and f	 � � �

� ������! �
� ��u���

� !

�u���
��� �


�
	� In the above formulas one observes a slipping phenomenon associated

with the spectral parameter �� This will play a role in later sections�

Example 
� �Spinning Lines� �� � f� � � � X� � A�Y� ! Y�g gives at once � �
� � u� � u� � A� and � � �� is a straight line� While the classical Frenet system is
not de�ned along �� ��frames satisfy Ts � � and �U� ! iU��

� � �i��U� ! iU��� The
trigonometric solution U� ! iU� � e�i�s�U���� ! iU����� imparts a �spin� to the
straight line � � sT !����� which allows us to interpret � as an asymptotic helix� as
in the next example� Also �as pointed out by Tom Ivey�� B�acklund transformations
of spinning lines give Hasimoto �laments �described below��

Example �� �Helices� �� � f� � � � X� � A�Y�!A�Y�!Y�g� and � � �� is either
a straight line� or satis�es � � ��A� ! �����T ! �sN ! �A� ! ���B� So � �� ��

has constant curvature � and torsion � � �A�� Equations �� give r � �����
zs � ����� �s � �� using � �

p
�� ! �� and  � ������ Thus� � � �x� y� z� �

����� cos �� ���� sin �� ����s ! z��� with � � �s ! ��� Note X� � �T ! �B � �	z
is a translation �eld� and X� � �T is a screw �eld along the helix ��

For n � �� ��s��� �
R �Y ds turns out to be a homotopy of helices� whose nice

behavior at � � �� completes the family of helices with spinning lines� Speci�cally�
we have X � X� ! �X� � �T ! ��	z � and p � � � ��� ! ����� from which
we compute the tangent� T �s��� � p�����T � ��	z�� normal� N�s��� � N�s��
curvature� ��s��� � p������ and torsion� ��s��� � p�������� � ��� of the helix
��s��� � p�������s� � ��s	z�� The framed curve de�ned by the Frenet lift has a
limit at � � ��� it is the spinning line ��s���� � �s	z� with � � ���

Example �� �Elastic Rods� �� � f� � � � X� � A�Y� ! A�Y� ! A�Y� ! Y�g�
Reading o� normal and binormal components �� �� ���� one obtains the pair of
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equations� ��s� ! ��s ! A��s � �� and ��� � �ss � 	�

� ! A��� ! A�� � �� The

�rst integrals are� hX�� X�i � ���� ! A�

� � ! A�A� and hX�� X�i � ��s�
� ! ���� !

��� �	�
� ! �A�� ! A�

� � A�� ! A�
�� �The tangential component of � � X� is just

the lowest order �rst integral�� These equations can be solved for �� � � in terms
of elliptic functions� Combined with Corollary �� this provides one approach to
integration of the equation X� � �� to obtain an explicit parametrization ��s� of
an elastic rod in terms of elliptic integrals�

Alternatively� the U� and U� components of the equation � � X� give the follow�
ing system for u�� u�� � � 	�u�!u��u

�
�!u�����!�A�!���	�u���A��!��!A��u��

and � � 	�u� ! u��u
�
� ! u������ �A� ! ���	�u� � �A�� ! �� !A��u�� This can be

rewritten as a classical Hamiltonian system with two degrees of freedom� qi � ui�
conjugate momenta p� � 	q� � � ��A� ! ��q�� p� � 	q� ! � ��A� ! ��q�� Hamiltonian

H � �
� hX�� X�i � �A� ! ��hX�� X�i � �

� �p�� ! p��� ! �

 �q�� ! q���� ! � ��A� ! ���q�p� �

q�p��!� �	A
�
��A���q��!q�����!const�� Further� K � hX�� X�i � q�p��q�p�!const�

is a constant of motion for this system� which is therefore completely integrable�
The details are too lengthy to include here �see �L�S 	� and �I�S��� However� in

the special case of the Hasimoto �lament� the elliptic functions for curvature and
torsion degenerate to ��s� � �b sech bs� � � ��� with b and �� arbitrary constants�
Further� one easily determines A� � ��� � A� � � � b� ! ��� X� � ��T ! �B

�a screw �eld�� and X� � �	
�

� � ��T ! �sN � ��B �a translation �eld�� Finally�

Equations �� give r � ���� zs � 	�

�
 � � � ��b��� tanh bs� s�s� �s � �� �

Example �� �Buckled Rings� For � � �	� we have the equation X� � A�Y� !
A�Y� !A�Y� ! Y� � const� Here we consider only the planar curves in �	�� �� ����
and note that the odd constants A�k�� vanish for planar soliton curves� as a general
proposition �a simple consequence of Corollary ��� Thus� X� is the binormal �eld

X� � A�Y� ! Y� � �A�� � �ss � 	�

� �B � PB� for some constant P �� �� The

ODE �ss ! 	�

� � A�� � P is precisely the equation for the curvature of an elastic
ring buckled under constant pressure P � according to a standard model �see �T�O���
�One may prefer to imagine the cross section of a symmetrically buckled cylindrical
pipe under hydrostatic pressure�� In the present case� the �rst integral hX�� X�i is
trivial �X� is planar�� and hX�� X�i!�hX�� X�i � const� turns out to be equivalent

to the obvious integral� ��s�
� ! 	�

	 �A��
� � �P� � c� Noting  � � � Equation ��

gives the pair of equations� ��r� � �P� ! d� and ��r��s � 	�

� � A� �where the

integral has been used to simplify the �rst� and we have set d � c ! A�
��� It

follows that ��s�� r�s�� and ��s� may be expressed in terms of elliptic functions and
integrals� likewise for the closure condition� #� � ��p�q�a rationality condition
for the change in the angle � over a period of �� More detailed computations for
closed solutions and the related bifurcation problem �with pressure as bifurcation
parameter� are given in �L�M�V��

The slipping phenomenon noted above �further illustrated in Example �� hints
at the following basic fact about the soliton class�

Proposition ��� The class of all ��natural curvature functions ui for curves in �n
does not depend on �� Thus� if � � �n has curvature � and torsion � � there exists

also a curve �� � �n with curvature � and torsion � ! �� for any �� In particular�
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to any planar soliton curve � � ��� we can associate the family of planar�like�

soliton curves �� with constant torsion � and the same curvature function�

It is convenient to defer the proof itself to x	��� where it follows at once from
Proposition �� �Note� however� the second statement follows from the �rst� using
the above formula for � in terms of ui and ��� The associated parametrized family

construction for the curves �� will be discussed more explicitly in x���� The planar�
like solitons�helices and Hasimoto �laments are the simplest examples�will play
an important role in x	�	�

We remark also that the integrability statement in Example � is complementary
to �not contained in� the integrability result of Corollary �� On the other hand� the
entire system � � Xn for � may be cast as a Hamiltonian system on a cotangent
bundle of the form T ��E����Rk�� where E��� is the group of Euclidean motions�
Using this formulation� the problems up to � � X� were exhibited in �L�S �� as
completely integrable Hamiltonian systems in the Liouville sense�

The nice variational and Hamiltonian descriptions of soliton curves lend them�
selves to detailed computations for curves in � �

S
�n� Such computations may be

found in �L�S ��� �C�I ��� �C�I ��� and �I�S�� where issues of closure and knottedness
are discussed for the class ��� Whereas knots in �� are precisely the torus knots�
more exotic knots in higher �n have been constructed recently by Calini and Ivey
using B�acklund transformations of �� knots� In this connection� an interesting open
problem is to prove a density result for � as a subset of smooth curves �say� closed
or asymptotically linear�� in particular� all knot types should be represented in ��

�� Dynamics of curves

	��� PDE�s for curve motion� We begin by collecting some of the immediate
consequences of Theorems �� 	� Lemma �� and Corollary � for curve dynamics�

Proposition ��� a� For n � �� �� �� � � � � the equation �t � Yn��� may be regarded
as an �n ! ��st order polynomial partial di�erential equation for an evolving

unit speed curve� ��s� t�� The even equations �t � Y�n��� restrict to planar

curves�

b� Suppose ��s� satis�es Xn����� � �� Then � is an initial curve for a translation

solution� to �t � Xn���� Similarly� suppose � satis�es Xn����� � �� Then �
yields a congruence solution� of the equation �t � Xn���� i�e�� � evolves by a

one�parameter group of rigid motions �generally screw motion���

In the case n � � of b�� the conclusion is that helices translate� and elastic rods
perform screw motions� under the evolution �t � X� � �s��ss�A��s � �B�A�T
�where the constant A� depends on the curve�� Since the term A�T just induces
sliding of the curve along itself� elastic rods are seen to correspond in a simple way
to congruence solutions to FM� In particular� the screw motion of the Hasimoto
�lament was the �rst step towards the discovery of the soliton nature of FM ��Ha���

For general curves� �t � Y�� �t � Y�� etc�� describe interesting evolutions of
non�stretching �laments� It
s worth taking a moment to contrast such equations

with the well�known curve shortening �ow �CS�� �t � ��

�s� � � �N �see� e�g�� �G�H���

Often described as the �negative� gradient �ow of arclength �in a formal L� sense��
CS is a natural and interesting example of a geometric evolution equation� But it
should not be mistaken for a PDE describing ��s� t� directly� rather� CS is compact
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notation for the PDE �t � �
v

�
�u � �v

�
�u��� describing a curve ��u� t� of variable speed

v � k	��	uk� In this respect� CS should be regarded as typical among geometric
curve evolution equations� �t � Yn is exceptionally nice�

Of course� any curve motion ��u� t� can be made �locally� non�stretching by
reparametrization� leaving the shape of � unchanged for each t� In fact� Lemma �
shows how to de�ne a reparametrization operator� P � which modi�es the tangential
component of a general variation �eld �t � W to make it LAP� Since P plays an
important role in x	��� we give formulas in terms of the various notations W �
aT ! bN ! cB � fT ! gU� ! hU��

PW � �	��h	���W i� T ! W�

� �	���b� T ! bN ! cB � �	���u�g ! u�h�� T ! gU� ! hU�

�the appropriate speci�cation of antiderivative 	�� depending on the application��
For example� one may consider the normalized curve shortening �ow� �t � P��N� �R
��ds T ! �N �this approach was used in �A�L��� the resulting ��s� t� is perhaps

better behaved analytically than ��u� t� �but again� ��s� t� is not described by a
PDE��

We remark that the LAP property of Yn is closely related to the �rst FM

conservation law � namely� if � is a closed curve� its evolution under �t � Yn
will preserve the arclength functional� L��� �

R
�
ds� As we now brie�y indi�

cate� Equation �� is key to a whole in�nite hierarchy of conservation laws for
FM� First we recall that Marsden and Weinstein �M�W� introduced a Poisson

structure� fF �Gg �
R
�
hJrF �rGids� on the space $ of regular curves in E�� giv�

ing FM a Hamiltonian form� Here we are considering geometric �parametrization�
independent� functionals on $ given by variational integrals F��� �

R
�
F ����s�ds

and G��� �
R
�
G����s�ds� with respective Euler operators rF and rG� Since Euler

operators of geometric functionals have no tangential components� we may just as
well write fF �Gg �

R
�hJrF �rGids� where J � PJ � For instance� the length

functional L has Euler operator rL � ��ss� and the Hamiltonian �ow of L in�
duced by f � g may be written �t � �JrL � �s � �ss �FM�� In fact� all the
equations in the FM hierarchy �after �t � Y�� are Hamiltonian with respect to this
structure� as proved by Yasui and Sasaki �Y�S�� the Hamiltonians are given simply
by Fn � �

n��
R
� fn��ds� for n � �� �� 	� �� � � � � That is� one has Yn � YFn � JrF �

Modulo this result� we easily prove�

Proposition ��� For n � �� �� 	� �� � � � � the integrals Fn � �
n��

R
�
fn��ds are FM

constants of motion in involution� In terms of curvature and torsion� the �rst

few conserved quantities are
 L �
R
� ds� F� �

R
� ��ds� F� � �

�

R
� �

�ds� F	 �
�
�

R
�
���ds� F� � �

�

R
�
����� ! ���� � �

	�
	ds�

Proof� By Equation ��� fFm�Fng �
R
�
hJrFm�rFnids �

R
�
hYm� JYnids �R

� 	
�
�

Pn�m
k�� hYm�k��� Yn�kids� for � � i � j� For suitable boundary%decay con�

ditions� the Poisson brackets fFi�Fj��g will therefore vanish� The curious special
case n � � may be veri�ed directly� �

	��� The recursion operator and variation formulas� The �lament hierarchy
may also be written as Xn � RnX�� in terms of the integro�di�erential recursion
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operator�

RX � �J 	X � �PJ	X � �	��h	���W i� T � J	X��	�

�The antidi�erentiation 	�� leads to the arbitrary constants of integrationA�� � � � An

in Xn��
It is an interesting fact that R has geometric meaning� quite independent of the

�lament hierarchy�

Theorem ��� Let ��s� t� be a variation of unit speed curves in E�� Let fT� U�� U�g
be a natural frame along ��s� t�� Consider the complex curvature � � u� ! iu� �
Z��ss�� where� Z is the normal coordinate map Z�fT ! gU� !hU�� � g! ih� Then

the in�nitesimal curve variation W � ��
�t induces curvature variation ��

�t according

to the formula

�
	

	t
� i��� � �ZR�W����

Here� � is an arbitrary constant in a �gauge term	 i�� which may be associated

with the non�uniqueness of the natural frame�

Proof� Writing W � fT !gU� !hU�� with fs � u�g!u�h �W is LAP�� and using
the natural Frenet equations� we compute the useful formulas�

�R� ��W � �T ! �hs ! u�f�U� � �gs ! u�f�U�����

�R� ���W � T � ��gs ! u�f�s � u���U� � ��hs ! u�f�s ! u���U������

where �s � u�hs � u�gs� and s � �u��gss ! ��g�� u��hss ! ��h�� �
� ����sf �

On the other hand� let � � AT ! BU� ! CU� be the angular velocity of the
natural frame� i�e�� Ft � � � F for F � T � U�� or U�� Using �st � �ts� one
�nds B � ��hs ! u�f !�g� and C � gs ! u�f ��g� Further� the U��component of
�U��st � �U��ts yields As � ���!�f�s� We thus obtain a noteworthy intermediate
result� � � �RW � �T� for some constant ��

Next� the T �component of �U��st � �U��ts yields Cs ! u�A � �u��t � �B� which
can be expressed as �u��t � �hU��R�W i � �u�� Similarly� �U��st � �U��ts gives
�u��t � �hU��R�W i! �u�� and the result follows� �

This formula �in case � � �� appeared in �L�P ��� and was generalized in �L�P �� to
the context of Hermitian symmetric Lie algebras� Such results appear to argue in
favor of natural curvatures �especially in higher dimensions� where they seem to be
particularly advantageous�� Nevertheless� � and � play important roles� below�

Returning to the FM hierarchy� a remarkable fact now emerges� The hierar�
chy Yn not only determines distinguished geometric evolution equations for curves�
but it simultaneously provides the corresponding evolution equations for natural
curvatures� Namely� we have the following

Corollary ��� If �t � Yn� then �t � �ZYn��� �Here we have suppressed the

term i��� which vanishes for appropriately chosen natural frames�� In particular�

a curve evolving by FM� �t � �s � �ss � �B� has complex curvature ��s� t� �with
� � �� satisfying the nonlinear Schr�odinger equation�

�t � i��ss !
�

�
j�j������
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Similarly� �t � �
� h�ss� �ssi�s ! �sss � 	�

� T ! �sN ! ��B induces the �complex�
modi�ed Korteweg�de Vries equation�

�t � �sss !
�

�
j�j��s�����

Proof� We use the table in x���� For FM� �t � �ZY� � ��	�u� ! u�
	�

� � �
i��	�u��u�

	�

� � � i��ss ! �
� j�j���� The case n � 	 is simpler to read o� �and we
ll

have more to say about even n� below�� �

Corollary �	� The variations of curvature and torsion induced by an LAP curve

variation �t � W are given by
 �t � �hR�W�Ni� and �t � �� �	 hR�W�Bi�s� In

particular� W is constant torsion�preserving if and only if hR�W�Bi � C�� where
C is constant along ��

Proof� The formulas follow easily from Equation �� using � � �ei�� U� ! iU� �
�N ! iB�ei�� �s � � � �� �t � ��t ! i��t�e

i�� etc� Note that the ambiguous gauge
term i�� drops out of the formulas� as does �� �

	��� FM vector�elds preserving special classes of curves� Here we discuss
special sequences of vector�elds belonging to the FM hierarchy which preserve the
classes of planar� spherical� or constant torsion curves� This topic well illustrates
the approach of x�� while the formulas ����� ���� will be very helpful heuristically�
we require here exact speci�cation of constants of integration �e�g�� via the normal�
ization hY� Y i � ��� Corollary � easily implies the desired results� for the planar
case� while spherical curves require additional inductive formulas� The constant
torsion case is the most interesting� not only because of the connection to pseu�
dospherical surfaces� but also because this case leads to further insight into the
recursion process itself �as discussed in x���

We begin by recalling that� along planar curves� the normalized FM hierarchy
alternates between planar vector�elds� Y�m � a�mT ! b�mN and binormal �elds
Y�m�� � c�m��B� and that the even equations �t � Y�m��� therefore restrict to
planar �ows� In particular� for m � �� we have the planar curve evolution and
corresponding curvature evolution equations�

�t �
��

�
T ! �sN� �t � ��ss !

�

�
���s����

The second equation is the well�known �real� mKdV equation� The �rst equation�
arguably the simplest geometric realization of a soliton equation� has been consid�
ered as a model of planar vortex patch dynamics �G�P�� We mention that a �unit
speed� solution ��s� t� � �x�s� t�� y�s� t�� of this equation yields a solution z � x! iy
of the Schwarzian KdV equation� zt � S�z�z�� while the Schwarzian derivative it�
self� u � S�z� � �z���z��� � �

� �z���z���� satis�es the �complex� Korteweg�de Vries

equation� ut � u��� ! �uu�� �We recall that the Schwarzian derivative is the basic
di�erential invariant of M�obius transformations��

The higher order equations of the planar subhierarchy� �t � Y�m���� satisfy the
LAP condition� a��m � �b�m� and also b�m�� � ��b��m!�a�m�� �an easy consequence
of Corollary ��� Thus� the coe�cients Bj � b�j � Aj � a�j constitute a �normalized�
solution to the mKdV recursion scheme�

A�j � �Bj � Bj � ��B�j�� ! �Aj����� A� � ��� B� � �����
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Further� Corollary �� implies �t � Y�m��� induces the curvature evolution equation
�t � �Bm������the mth higher order equation of the mKdV hierarchy� �These
equations may also be written as �t � Km�s� in terms of the recursion operator
K � ��	� ! �� ! �s	

����� The corresponding operator on the curve level has
the simpler appearance� R� � �P	�� The antidi�erentiation operator introduces

the usual ambiguity� however� starting with A� � 	�

� � Corollary � yields local

expressions for the �normalized� coe�cients� �Aj �
Pj��

i�� �AiAj�i ! BiBj�i� !Pj
i���B�i�� ! �Ai����B�j�i ! �Aj�i�� j � �� �� � � � � Finally� for comparison with

the better known Lenard recursion scheme for the Korteweg�de Vries equation� we
observe that the Aj satisfy 	Aj�� � DAj � where D is the third order operator
D � ��	�	 �

		 ! ��� and the mth equation may be written �t � �
		Am����

Note the Bm are perfect derivatives�all equations in the mKdV hierarchy are
in conservation form �unlike Equations ���� ������ Consequently� all planar �ows
preserve the �algebraic� enclosed area A��� of a closed planar curve� since the
Euler operator of enclosed area is the normal� rA � N � we have �

�tA���s� t�� �R hY�m� Ni ds �
R
Bmds � �� for closed curves� One could say the results just

mentioned are topologically obvious� Namely� the total curvature is a topological
invariant for closed curves�

R
�
�ds � ��Ind���� where Ind��� is the rotation index of

�� Thus� for each m� we can write � � �
�t

R
�ds �

R
Bm�����ds�the only reasonable

explanation being that Bm����� is a perfect derivative �null Lagrangian��
Next� we observe that there are two ways to generalize planar curves slightly�

maintaining a single functional shape parameter ��s�� Regarding planar curves as
having u��s� � ��s�� and u� � � � �� we can extend either to spherical curves
by allowing u� � constant �� �� or to constant torsion curves by allowing � �
constant �� �� We begin with the former�

Proposition �
� The even FM �ows �t � Y�n restrict to spherical curves� and

induce evolution of geodesic curvature by equations in the mKdV hierarchy� The

algebraic area of a closed spherical curve is preserved under each of these �ows�

Proof� Expressing Yn � fnT ! gnU� ! hnU� in terms of a natural Frenet frame
with � � �� the FM recursion scheme may be written�

f �n � u�gn ! u�hn� gn � h�n�� ! u�fn��� �hn � g�n�� ! u�fn������

We specialize these equations to spherical curves with natural curvatures u � u� �
�g �geodesic curvature� and v � u� � ��R �R � spherical radius�� Using also
our closed form expression for fn � hT� Yni �in Equation �� and f� � �� g� �
�v� one establishes the following set of formulas by induction� f�n�� � �vg�n�
g�n�� � vf�n� h�n�� � �� Thus� Y�n�� is tangent to the sphere� Further� one
easily checks� h�n�� � ��g��n ! uf�n�� g�n�� � ��g��n ! uf�n�� � v�g�n� The latter
shows inductively that the g�n are perfect derivatives�in fact� linear combinations
of the mKdV operators Bm �applied to u�� The results on area and evolution of
curvature now follow as in the planar case� the only di�erence being that the u�
evolutions include linear combinations of lower order mKdV equations� Note that
a topological argument is not available here� by the Gauss�Bonnet Theorem� total
curvature and enclosed area are the same functional �

We mention two minor variations on the equations just described� One may
de�ne an �intrinsic spherical recursion operator� S � �Pr�

T�simply replacing 	
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in the planar recursion operator R� with the covariant derivative in the sphere�
Since the Frenet equations �rTT � �gN � rTN � ��gT � have not changed form�
the resulting �normalized� hierarchy� �t � Sv�m � a�mT ! b�mN � involves the very
same di�erential operators� a�m� b�m� as above� The evolution equations for �g will
again belong to the mKdV hierarchy� however� there is a �slippage� relative to the
planar hierarchy� due to the curvature variation formula ��g�t � hN� �r�

T ! G�W i
for curves in a surface of constant Gauss curvature G� Now� as it turns out� the
vector�elds Sv�m are just linear combinations of the Y�n� restricted to the spherical
curves� Finally� we note that by taking slightly di�erent combinations of the Y�n�
one can arrange for �g to evolve by the normalized equations of the mKdV hierarchy�
as in the planar case�

Turning now to constant torsion curves� one might attempt to use the binormal

indicatrix construction�we recall this sets up a correspondence �  B between unit
speed curves of curvature � and constant torsion � � �� and unit speed curves with
geodesic curvature �g � � in the unit sphere�to de�ne unit speed and constant
torsion�preserving �ows� inducing the mKdV hierarchy for �� It is perhaps not a

priori clear that the implied �ows are given directly by FM vector�elds along such
curves �or that the �ows are even PDE
s on the curve level�� In any event� we
choose to �start from scratch
� for the following reason� though spherical curves
may at �rst appear to be a simpler generalization of the planar case� we discover
in the end a much more satisfactory explanation of the constant torsion case� Part
of what
s at stake is the correct geometric interpretation of the spectral parameter

�see the discussion at the end of x�����
We begin with the observation� due to Lamb �L�� that the following curve evo�

lution �a special case of a vortex model considered by Fukumoto and Miyazaki�
preserves constant torsion� with curvature evolving by mKdV�

�t � �
��

�
� ����T ! �sN � ���B����

In fact� letting Z� denote the vector�eld on the right�hand�side of this equation�
one straightforwardly obtains R�Z� � a�s�T � ��ss ! �

��
��sN ! c�B� where c is

constant� �This computation involves many cancellations� a few of which require
� � constant� Then the claim follows at once from Corollary ���

Underlying this example is the slipping phenomenon mentioned in x���� the
coe�cients of Yn � fnT !gnU� !hnU� depend on � in a very simple way� involving
lower order Yk with binomial coe�cients� In fact� the formulas ����� ���� suggest
the de�nition of a hierarchy� Y �

n�� � �R � ��nY�� n � �� �� � � � � whose ��frame
coe�cients� fn� gn� hn� do not depend on �� Now we regard the Frenet frame along
a curve of constant torsion as a ��frame with � � � � u� � �� u� � �� U� � N �
and U� � B� the coe�cients of the shifted hierarchy Y �

n � fnT ! gnN ! hnB
must therefore be independent of torsion� and ought to resemble the planar case� It
follows that vector�elds Z�m de�ned so as to satisfyR�Z�m � Y �

�m��!aT!c�B� for
constants a and c� will preserve constant torsion� and induce evolution of curvature
by equations of the mKdV hierarchy�

Actually� as noted above� the precise de�nition of Y �
n should not use R� because

of the ambiguities in constants of integration� Thus� we instead de�ne the shifted
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FM hierarchy by�

Y �
n �

n��X
k��

�
n� �
k

�
����kYn�k� n � �� �� � � ���	�

Proposition ��� a� The vector�elds Y �
� � Y�� Y

�
n � n � �� �� � � � � satisfy the

shifted FM recursion scheme� 	Y �
n � J�Y �

n�� ! �Y �
n �� The series Y � �P�

n�� �
nY �

n satis�es �	Y � � ��!���JY �� and the normalization hY �� Y �i �
� �which uniquely determines Y ���

b� Along a curve of constant torsion � � the odd vector�elds of the shifted FM

hierarchy are binormal and even �elds are osculating � Y �
�m � a�mT ! b�mN �

Y �
�m�� � c�m��B� Here� a�m���� b�m���� and c�m������ are precisely the dif�

ferential operators associated with planar curves� above�

c� For n � �� �� � � � � the equation �t � Z�
�n �

P�n
k��

�
�n ! �
k

�
����kY�n�k pre�

serves constant torsion � and induces evolution of curvature � by the equation

of the mKdV hierarchy� �t � �Bn������

Proof� The recursion equation for the Y �
n follows from Equation � and the recur�

sion rule for binomial coe�cients� The equation for Y � and 	hY � � Y �i � � then
follow nearly as before� The general solution to the shifted recursion scheme may
then be written� X�

n � fnT!J��J�	�X�
n��� with �fn � �Cn!

Pn��
k�� hX�

k � X
�
n�ki�

The fact that the coe�cients in the ��frame expression for X�
n do not involve �

may be proved inductively� Using this fact� and setting � � � in the de�nition of
Y �
n establishes the normalization�

Now let � have curvature � and constant torsion � � Using the above� one es�
tablishes the direct analogue of Corollary � by almost the same proof� and then b�
follows easily� Finally� noting R�Z�n � Y �

�n�� ! aT ! c�B� for constants a� c� the
rest of the claim follows from Corollary �� as above� �

We remark that setting � � ���� in the shifted series Y � gives 	Y � � ��
such a condition of covariant constancy could have been used as de�nition of the
Y �
n �writing Y � �

P�
n�������nY �

n �
P�

n�������n�fnT ! gnU� ! hnU��� where
fT� U�� U�g is a ��frame� and the coe�cients fn� gn� hn are assumed not to depend
on ��� For illustration� suppose � has curvature � and constant torsion � � Term by
term di�erentiation of the following series results in telescope cancellations�

Y � � �T � ����B ! ����
��

�
T ! ��N� ! ������� !

��

�
�B

���	������ � �

�
����� !

�


�	�T ! ����� !

�

�
�����N� � � �

Of course� convergent examples may be constructed� using the soliton class�
The hierarchies preserving planar� spherical� and constant torsion curves were

described in �L�P �� �however� without the bene�t of the detailed information on
solutions to the FM and shifted FM recursion schemes�� We mention also that soli�
ton curves for the spherical evolutions are naturally viewed from an intrinsic point
of view� as above� thus one considers geodesics� elastica� buckled rings� etc�� in a
Riemannian manifold M �as in �L�S ��� �L�S ��� �L�M�V��� Such special curves have
some remarkable connections to objects of Euclidean geometry� e�g�� using Hopf
lifts of elastica in S�� U� Pinkall �Pi� gave the �rst examples of Willmore surfaces in
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R� �critical surfaces for the total squared mean curvature integral� not coming from
stereographic projections of minimal surfaces in S�� in a similar spirit� buckled rings
in the hyperbolic plane H� �and the hyperbolic analogue of Equation ��� have been
used ��G�L�� to construct explicit examples of the Konopelchenko�Taimanov mo�

tions of immersed Riemann surfaces in R� ��Ta ��� �Ta ���� these surface evolutions
preserve conformal type� the Willmore functional� and the in�nite list constants of
motion of the modi�ed Novikov�Veselov equation�

	�	� The swept�out surfaces� Thus far� we have considered ��s� t� as an evolving
unit speed curve� Of course� the �generally singular� parametrized surface swept�out
by ��s� t� may also be interesting� to the extent that features of the curve geometry
and evolution are closely related to the surface geometry� The following proposition
identi�es relevant cases of curve evolution from this standpoint�

Proposition ��� Let & be the surface swept out by ��s� t�� where � satis�es the

LAP curve evolution �t � W ���� Let & have Gaussian curvature G � ���� and

mean curvature H � �
� ��� ! ���� where ��� �� are the principal curvatures of &�

Let � as a curve have curvature �� torsion � � and Frenet frame fT�N�Bg� Then
a� If W � aT ! bN � then ��s� t� foliates & by asymptotic curves� Further� G �
���� and H � �b���s��b���

b� If W � aT ! cB� then ��s� t� foliates & by geodesics� G � �css�c� and H �
�c�� ! c�� � css����c�

c� If W � fT !gU � then ��s� t� foliates & by principal curves� G � �v	��vgs��g�
and H � �vg ! 	��vgs���g� here� � has natural curvatures u� v and frame U �
V � and 	��vgs is the appropriate antiderivative of vgs�

We omit the proof� which uses basic de�nitions and formulas of surface theory�
However� we note that part a� is essentially the Beltrami�Enneper Theorem �see
�Sp�� vol� III� which also gives a general discussion of the three special classes of
curves in a surface� appearing in a�"c��� We also note that variation formulas for
Frenet frames �as that included in the proof of Theorem �	� for natural frames�
may be used as the main computational technique for establishing several of the
above formulas�

Now we observe� for instance� that FM yields surfaces �Hasimoto surfaces� fo�
liated by geodesics� as in b�� while c� includes the spherical curve evolutions of
Proposition �� with G � v� � constant� However� we will focus here on using part
a� to give a dynamical description of pseudospherical surfaces�

We begin with a simple observation� based on the proposition and on our vari�
ation formula for torsion� to sweep out a surface of constant negative curvature
G � ���� it su�ces to �nd an eigenvector of R along a curve of constant torsion � �
In fact� one easily checks that the vector�eld W � cos �T � sin �N � �s � �� is such
an eigenvector �up to an unimportant gauge term�� RW � �W ! �T � Combining
this with our variation formula for �� we thus obtain a dynamical description of a
pseudospherical surface in terms of curve evolution by the trigonometric �ow� and
corresponding evolution of � � 	��� by the sine�Gordon equation�

�t � cos �T � sin �N�
	��

	s	t
� �� sin �����
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In fact� ��s� t� describes the well�known foliation of a pseudospherical surface of
constant curvature G � ��� by one family of asymptotic curves �and � is the angle
between the two asymptotic directions��

As the trigonometric vector�eld may be applied to any constant torsion curve� it
does not necessarily point the way to explicit examples� However� the shifted FM
hierarchy provides a more concrete realization of the above strategy�

Proposition �� Let � � ��n�� be a planar�like soliton curve of constant torsion

� � I�e�� � satis�es an equation of the form � � X�
�n����� �

Pn
k��A�n�kY �

�n����� �
�
Pn

k��A�n�kc�n������B� Then X�
�n �

Pn
k��A��n�k�Y �

�n �
Pn

k�� A��n�k��a�nT !
b�nN� is an eigenvector of R along � �modulo the usual aY� term�� and the evolution
�t � X�

�n���� with initial condition ��s� �� � ��s�� describes a foliation of a surface

of constant curvature G � ���� by asymptotic curves of unit speed� In fact� X�
�n

is a vector�eld of constant length which� up to scaling� may be identi�ed with the

trigonometric �eld along ��

Proof� We know from Proposition �� and x	�� that the curvature of a planar�like
soliton curve satis�es one of the mKdV stationary equations�

Pn
k�� A�n�kc�n����� �

�� By Proposition �� this can be re�expressed in the form � � X�
�n����� as above�

where X�
� � Y�� X

�
� � � � � X

�
�n�� satisfy the shifted FM recursion scheme� 	X�

n �
J�X�

n�� ! �X�
n �� In particular� we have RX�

�n � �R� ��X�
�n ! �X�

�n � X�
�n�� !

aY�!�X�
�n� Thus� along �� RX�

�n � �X�
�n!aY�� as claimed� To complete the proof�

one needs to observe that the stationary equation � �
Pn

k��A�n�kc�n����� remains
satis�ed as � evolves� This is a consequence of the fact that all the FM �ows com�
mute� which in turn follows from the FM conservation laws given in Proposition ���
we omit the relevant arguments� which are part of the standard abstract theory of
Hamiltonian systems� The last comment is obtained by writing X�

�n � f�nT!g�nN �
Then f ��n � �g�n � � is the LAP condition� while g��n ! �f�n � �hB�X�n��i � �
follows by recursion� But the resulting linear ODE� �f�n! ig�n�� � �i��f�n! ig�n��
is exactly that satis�ed by e�i � with �� � �� �

The trigonometric �ow was discussed in �L�P �� and also in �Mc�S�� The technique
using planar�like FM solitons to generate pseudospherical surfaces was developed by
R� Perline ��Pe ���� who went on to construct closely related examples of Weingarten

systems of triply orthogonal coordinates ��Pe ���� the description of the latter makes
use of both osculating and binormal vector�elds to evolve a constant torsion curve�
Finally� it should be noted that the pseudospherical surface%sine�Gordon equation
relationship is one of the oldest and most famous connections between geometry
and soliton equations� We have merely described a particular aspect of the latter
topic tying it to our discussion of FM� for a treatment of pseudospherical surfaces
using modern methods of soliton theory� we refer the reader to �M�S��

�� The SU��� spectral problem� curves and NLS

���� Lie equations on SU��� and representations for curves� Up to this
point� it has been convenient to formulate everything in E� and to use vector
notation�most notably� the cross product� Of course� the rotation group SO���
and its Lie algebra so��� have been lurking in the background all along� but this
point would have been little more than a distraction in the foregoing discussion In
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this last section� however� we wish to describe some constructions related to curves
which tie our subject more directly to the standard machinery of soliton theory�

Thus� we need to introduce notation for the rotation group�or rather� its double

cover� SU���� An element of the latter will be written as ' �

�
� 

�( (�

�
� where

�(�!  ( � �� thus� ' � SU��� is a �� � unitary matrix with determinant !�� For
the Lie algebra su���� consisting of �� � skew�Hermitian matrices of trace zero� we
use the su��� basis e� � �i

� �
�� e� � �i

� �
�� e� � �i

� �
�� where ��� ��� �� are the

Pauli matrices

�� �

�
� �

� �

�
� �� �

�
� �i
i �

�
� �� �

�
� �

� ��

�

The commutator bracket �A�B� � AB � BA on su��� may be written �ei� ej � �
�ijkek� where �ijk is skewsymmetric in i� j� k and �ijk � �� with the convention
that repeated indices are summed over� Using the Cartan�Killing form� K�B�C� �
tr�adBadC�� su��� is naturally identi�ed with E�� in fact� e�� e�� e� form an or�
thonomal basis with respect to the Euclidean inner product� h � i � � �

�K� Further�

the adjoint representation� Ad�B � 'B'��� de�nes the well�known two�to�one
homomorphism of SU��� onto SO����

As usual� the tangent space to G � SU��� at the identity will be identi�ed with
su���� and the tangent space at ' � SU��� may be represented as G� � fB' �
B � su���g� Further� a matrix di�erential equation of the form 's � Q' with
Q � Q�s� � su��� may be regarded as an ODE on SU���� to which the usual
existence%uniqueness theorems apply� with SU��� as the underlying manifold� Of
course� the simplest case for such a Lie equation occurs when Q�s� � Q� � constant�
in which case the general solution has the form '�s� � esQ�'�� In particular� the
choices Q � ej � with initial condition '��� � Id� result in the standard one�
parameter subgroups�

ese� �

�
e�i

s

� �

� ei
s

�

�
� ese� �

�
cos s

� �i sin s
�

�i sin s
� cos s

�

�
� ese� �

�
cos s

� � sin s
�

sin s
� cos s

�

�

By virtue of the adjoint representation� SU��� Lie equations may be used to
induce Frenet systems for curves in E�� We will use a non�standard notation
to discuss this construction� Namely� we consider a given su����valued curvature

function� Q�s� �
P�

j�� qj�s�ej � and corresponding '�s� solving the Lie system

's � Q' �with arbitrarily speci�ed initial conditions�� Now let B � B�s� be
any su����valued function� and let fBg denote the corresponding E��valued vector
function� de�ned by fBg � Ad���B � '��B'� Also� we will use the shorthand
fB�Cg � f�B�C�g� In this situation� one has the following computational fact
�which is standard� and easy to verify��

Lemma ��� absolute velocity � relative velocity ! transferred velocity

fBgs � fBsg! fB�Qg
In particular� by Ad�invariance of the Cartan�Killing form� we may de�ne an

orthonormal frame in E� according to Ei � feig� and by antidi�erentiation� we
may regard T � E� as the tangent indicatrix of a curve � in E�� By the lemma�
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we then obtain �generalized� Frenet equations for ��

E�i � fei� Qg � �ijkqjEk�

Further� computing T � Ad���e� in terms of the usual quadratic expressions in
�� � one obtains the following �Weierstrass representation� for the resulting curve
� �

R
Tds � x�e� ! x�e� ! x�e��

x� �

Z
�(� �  (ds� x� ! ix� �

Z
��(ds

The classical Frenet equations for fT � E�� N � E�� B � E�g are recovered in
the special case Q � ��e���e�� while the choice Q � ��e�!u�e��u�e� yields the
natural Frenet system� Equation ��� for fT � E�� U� � E�� U� � E�g� By analogy
with rigid body mechanics� one may also write the Frenet equations as E�j � $�Ej �
where the Darboux vector is given by $ � �fQg� for the standard Frenet system�
$ � �T ! �B� and for natural frames� $ � �T � u�U� ! u�U��

We note that if ' satis�es the Lie equation 's �
P�

j�� qj�s�ej' as above� then

the ratio z � �(� solves the Riccati equation iz� � �
� �q�� iq��!q�z� �

� �q� ! iq��z
��

For the standard Frenet frame� this becomes z� � i�z! 	
� ��!z��� and for the natural

frame one gets z� � �
�

(� ! i�z ! �
��z

�� where � � u� ! iu�� As is well known� such
equations are not integrable by quadrature for general coe�cients� On the other
hand� it follows from our earlier discussion that for invariants �� � �or �� of a soliton
curve� the above Riccati equations are indeed integrable by quadrature� In fact� if
the Frenet frame F has been constructed �say� using Corollary ��� then one can lift
F to a curve ' in SU��� via the adjoint representation� and set z � �(�� from one
solution� the general solution can be constructed by quadrature� Solutions z may
also be described more geometrically as stereographic images of �xed Euclidean
basis vectors� say� projecting from the pole T onto the equatorial complex plane

determined by the remaining frame vectors�
We remark that the theory of Riccati equations re�ects the richer setting of the

M�obius group� and the representation of a curve � in terms of a general solution
z � aP�Q

aR�S leads to consideration of curves in C� �� sl��� C�� This representa�

tion� developed by Lie and Darboux �see �Ei�� �St��� expresses the coordinates of
� � �x�� x�� x�� as antiderivatives of ratios of quadratic expressions in P�Q�R� S�
resulting in xj which are generally complex�

Still on the theme of representations of unit speed curves� we consider now the
Sym�Pohlmeyer construction �see �Sym��� which takes advantage of the spectral
parameter � in the Lie system for the natural Frenet equations�

Lemma ��� Let q � u��s�e� � u��s�e�� A � e�� let '�s��� solve the Lie equation

's � �q � �A�'����

for each value of � �with initial conditions possibly depending on ��� and de�ne a

family of curves in su��� by

��s���� � �
�
'��

	'

	�

�
����

����

Then for each �xed ��� ��s���� is a unit speed curve with natural curvatures u�� u�
and spectral parameter ���
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Proof� Applying the formula � �
�s'�� � �'��'s'

��� we compute �
�s'��'� �

�'��'s'
��'� ! '��'�s � �'���q � �A�'� ! '�� �

�� �q � �A�' � �'��A'�
It follows that s is indeed a unit speed parameter for ��s� ���� whose unit tangent
vector may be written T � fAg� Further di�erentiation recovers the natural Frenet
equations� as above� �

Note that this construction realizes the parametrized family �� of Proposi�
tion ���in particular� it may be used to represent a family of planar�like solitons
with a single formula� It has the further interesting feature that no �nal antidif�
ferentiation is required to produce the curve� after the frame equations have been
solved� �Of course� one must �rst solve the ��dependent Lie system� but for many
purposes� analytic dependence of solutions on the parameter may be invoked�� We
mention that the technique is actually rather general� as may be inferred from the
proof� starting with appropriate Lie groups and making suitable specializations�
one obtains useful representations of curves in higher dimensional Euclidean spaces
�see �L�P ���� as well as spherical� hyperbolic� and Lorentzian geometries� Return�
ing to curves in R�� one could also adapt the technique for standard Frenet systems
�though introduction of the parameter appears more arti�cial�� or one could use
SO��� Lie equations� But the above version is of particular relevance here� because
Equation �� is precisely the spectral equation for NLS� to be discussed below�

We conclude this section by describing a B�acklund transformation for constant
torsion curves� followed by simple examples� Our treatment of this interesting
topic is cursory� we include it to tie together a number of previous topics and
examples� �For more extensive discussions and interesting applications� see �Ca��
�C�I ��� �Iv��� The construction we describe here is really just the classical B�acklund
transformation for pseudospherical surfaces �i�e�� for the sine�Gordon equation��
restricted to a single asymptotic curve� We recall that transformation moves a
�xed distance from the �old� curve �surface� to the �new� one� preserving unit
speed parametrization�

Given the representation Equation ��� it is natural to try to make use of a gauge

transformation� namely� if a curve � corresponds to 's � Q'� we can ask what new
curve )� and new curvature vector )Q correspond to )' � G'� for a given G� Writing
Gs � gG and G� � G�� one �nds that )'s � )Q)' holds for )Q � g !AdGQ� and one

obtains )� � �
h

)'�� � ���

i
� � �Ad���� and )T � Ad����e� ! �s ! ���Q��� Evidently�

we are looking for a special G� depending on Q� such that � and �e� ! �s ! ���Q��
have constant norm� The actual story is a bit subtle� however� the following result
can also be veri�ed by direct computation�

Proposition ��� Let � be a unit speed curve in R�� with curvature �� constant
torsion � � and Frenet frame T�N�B� For C a constant� let w � tan����� satisfy

the Riccati equation

ws � Cw !
�

�
�� ! w��� i�e�� �s � C sin � � ����

Then the formulas

)� � � !
�C

C� ! ��
�cos �T ! sin �N�� )� � �� �C sin �����

describe a new unit speed curve )� with curvature )�� and torsion � �
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Now we observe that Equation � would be exactly that satis�ed by z � �(�
given earlier� if only � had constant imaginary torsion � � �iC �Which would
mean � actually lies in the Lorentz space R�

��� More to the point� if the starting
curve � is known� solving Equation � for w amounts to analytic continuation in �
of a known quantity z�

Example ��� �Lines and loops� circles and rings� Since we
re doing geometry� one�
parameter subgroups of SU��� are not all alike For Q � ��e�� the Lie equation
's � Q' has solution ' � e��se�'�� and Ad��� yields �the frame of� a spinning
line �� The Riccati equation for z � ��( reduces to z� � i�z� The B�acklund trans�
form of � is quick to compute� and gives Hasimoto loops )� � ��� the appearance
of hyperbolic functions should be no surprise� since one just replaces i� by C in
z � z�e

i�s� to go from solutions of one Riccati equation to the other�
On the other hand� for Q � ���e�� �� � constant� the Lie equation has solution

' � e�	�se�'�� and Ad��� yields a circle � � ��� This time� the B�acklund trans�
form gives �not necessarily closed� �buckled rings� )� � �	� with curvature functions
given by rational expressions in sines and cosines or exponential functions� To do
the computations by analytic continuation� one needs to use the �spinning circle��
which satis�es z� � i�z ! 	�

� �� ! z��� and again replace i� by C�

Example ��� �Helices and the Cli�ord torus� For Q � ��e� ! u�e� � u�e� �
constant� we obtain all helices� and can interpolate between circles and spinning
lines� The computations for B�acklund transforms of helices are not essentially di�er�
ent from the circular case� and give either quasiperiodic or asymptotic perturbations
of the original helix �examples of which are pictured in �C�I ����

We now reconsider how the homotopy of Theorem 	c� achieves the interpolation
just mentioned �essentially continuing Example �� with a normalization �xing ��!
��� Starting from a given helix ��s�� the standard Frenet frame F �s��� of ��s���
may be regarded as an immersed cylinder in SO���� such that the projection p �
SO��� 	� S�� p�F � � T � is onto and one�to�one� except that the boundary circles
F �s���� project to north and south poles T �s����� Now F �s��� lifts to SU���

and then extends as follows� Set � � �s� cot� � ���
�
	 � and let '��� �� � e�e�e��e� �

Then one can check that ' and F are identi�ed via the mapping ' 	� Ad����
Further� the new variables �� � allow us to extend ' fourfold by formula� the result is
a conformal parametrization of the Cli�ord torus�a �at minimal submanifold of S��
As a two�dimensional surface in C� �� R	� ' � ��� � � �X�� X�� X�� X	� satis�es
not only �(� !  ( � �� but also Im��� ! �� � �� A more standard representation
of this surface is obtained by making the isometric coordinate transformation Y� �
�p
�
�X� ! X��� Y� � �p

�
�X� ! X	�� Y� � �p

�
�X� � X��� Y	 � �p

�
�X� � X	�� and

the conformal change of angular variables � � � ! �� and � � � � �� Then ' �
�Y�� Y�� Y�� Y	� � �p

�
�cos �� sin �� cos �� sin �� parametrizes the Cli�ord torus� with

angular range �� � �� � 
 �� It would be interesting to know if Y is similarly well�
behaved at � � �� for a large class of �quasiperiodic� soliton curves�in particular�
whether corresponding constructions result in immersed tori ' � T � 	� S�� as above�

���� The NLS hierarchy� We begin by recalling the setting of the NLS hierar�
chy as a family of compatibility conditions for the following overdetermined linear
system �see �Pa� for more background� and a survey of related topics in soliton
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's � Q' � �q � �A�'� 't � P'����

Here� the eigenfunction '�s� t��� is SU����valued while Q�s� t��� and P �s� t��� have
values in the Lie algebra su���� Further� A is the �xed element A � e�� and the
potential� q � q�s� t� � q�e� ! q�e�� is meant to evolve isospectrally�this may be
regarded as the essence of integrability�hence the lack of dependence on the the

spectral parameter �� �Note that both equations may be regarded as SU����Lie
equations� depending on parameters�� Cross�di�erentiating the pair of equations
gives the zero curvature condition �ZCC�� Qt � Ps ! �Q�P � � �� i�e��

qt � Ps ! �P� q� ! ��A�P �����

The procedure for �nding suitable P satisfying this compatibility condition begins
with the polynomial ansatz P �

Pm
j��

)Xj�s� t�����m�j � �One may prefer to write
)Xj �q��we are actually seeking ordinary di�erential operators� acting on potentials
q�� Substituting into the zero curvature condition and solving for the coe�cients
of ��� ��� � � � � �m� one straightforwardly obtains the NLS recursion scheme�

)J )Xn � 	 )Xn�� ! � )Xn��� q�� n � �� � � � �m����

Here� 	 � �
�s � and )J is the operator on su��� de�ned by )JB � adAB � �A�B�� and

the starting term for the recursion is )X� � �A �forced� up to scalar factor� by the
�m���term in the expansion�� Finally� the constant ���� term describes isospectral

evolution of the potential� qt � 	 )Xm ! � )Xm� q��

To express the latter in the usual scalar form� we use the linear map )Z � su��� �
C de�ned by )Z�ae� ! be� ! ce�� � b! ic� In particular� restriction of )Z to the two�
dimensional subspace m � span�e�� e�� gives a convenient identi�cation of m with
the complex plane� Thus� e�g�� we may associate to q the complex�valued function
� � u� ! iu� � i )Zq � �q� ! iq�� Note that with the identi�cation m �� C� )J jm
corresponds to multiplication by i� The equations of the NLS hierarchy take the
form �t � i )Z�	 )Xm ! � )Xm� q�� � � )Z )Xm���

Proposition �	� The nth equation in the NLS hierarchy is an �n � ��st�order
polynomial partial di�erential equation for ��s� t�� In fact� applying our usual nor�

malization� it may be written

�t � �ZYn � ��gn ! ihn���������

where gn and hn are the operators computed in x���� This yields exactly NLS for

n � �� mKdV for n � 	� and for n even� reality of an initial function ��s� t��
is preserved in time� Finally� Equations �� and �� may be used to construct an

evolving curve ��s� t� with complex curvature satisfying ���

Proof� We may solve the NLS recursion scheme by imitating the argument for FM�
Setting )X �

P�
n�� �

n )Xn� ���� becomes )J )X � �	 )X ! �� )X� q�� hence� �	h )X� )Xi �

�h�	 )X� )Xi � �h )J )X��� )X� q�� )Xi � �� One then solves for )fn in terms of )X�� � � � � )Xn��
just as in x�� and obtains the inductive formula )Xn � )fne�� )J�	 )Xn��!�� )Xn��� q���
The �rst claim follows�

Alternatively� writing )Xn � )fne�! )gne�!)hne�� we note that ���� gives precisely

Equation ��� with )fn � fn� )gn � gn� )hn � hn� Thus� with the normalization
h )Y � )Y i � �� we can identify coe�cients of )Y with ��frame coe�cients of Y � For the
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last claim� we solve Equation �� for '�s� t��� and then apply Equation �� for each
time t� using �� � �� The result still depends on the choice of initial condition� say
'��� t���� and one may conveniently choose to eliminate the usual gauge term� �

For simplicity� we have used � � � in the above proposition� however� a fuller
interpretation of the FM�NLS recursion scheme equivalence is obtained by the fol�
lowing observation� Assume )X� � �A� )X�� � � � � )Xn � � � satisfy ����� De�ne corre�

sponding X�
n � f )Xng � '�� )Xn' using a solution ' to the Lie system ����� with

� not necessarily zero� Then

	X�
n�� � f	 )Xn�� ! � )Xn��� q � �A�g � f )J� )Xn ! � )Xn��g � J�X�

n ! �X�
n���

In other words� the X�
n solve the shifted FM recursion scheme� discussed in x	��

�and this one�line computation might have su�ced as a proof of the proposition��
To pursue this one more step� we can de�ne vector�elds Z�

n �as in x	��� so that
R�Z�

n � Y �
n �ignoring the gauge terms�� Then the evolution equations �t � Z�

n

have the property that the evolution of ��curvatures is independent of ��a version
of isospectrality on the curve level� In any event� one could choose to regard the
FM recursion scheme as a consequence of this �or the usual� isospectrality ansatz�

Thus we have come full circle� We have not touched on interesting geometric
aspects of many closely related topics�e�g�� analogues of the FM hierarchy in hy�
perbolic� Lorentzian� and other geometric settings� connections to the Schwarzian
KdV equation �C�L�� Certainly� much of our discussion could be merged nicely with
these areas� however� to maintain the direct approach and narrow focus of this pa�
per� we have disallowed topics which might argue for a broader synthesis �say� in
the SL��� C� context�� We have also not begun to introduce many of the power�
ful techniques of soliton theory into the picure�Lie algebraic� algebraic geometric�
analytic�which are obviously relevant� but well beyond the scope of this paper�
Some of these related topics may be found amoung the references� but we have not
attempted to compile a comprehensive or representative bibliography�
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