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Quasilinear Elliptic Systems in Divergence Form
with Weak Monotonicity

Norbert Hungerbühler

Abstract. We consider the Dirichlet problem for the quasilinear elliptic sys-
tem

− div σ(x, u(x), Du(x)) = f on Ω

u(x) = 0 on ∂Ω

for a function u : Ω → Rm, where Ω is a bounded open domain in Rn. For

arbitrary right hand side f ∈W−1,p′ (Ω) we prove existence of a weak solution
under classical regularity, growth and coercivity conditions, but with only very
mild monotonicity assumptions.
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1. Introduction

On a bounded open domain Ω ⊂ Rn we consider the Dirichlet problem for the
quasilinear elliptic system

−div σ(x, u(x), Du(x)) = f on Ω(1)

u(x) = 0 on ∂Ω(2)

for a function u : Ω → Rm. Here, f ∈ W−1,p′(Ω) for some p ∈ (1,∞), and σ
satisfies the conditions (H0)–(H2) below. A feature of this paper is that we treat
a class of problems for which the classical monotone operator methods developed
by Vĭsik [11], Minty [10], Browder [2], Brézis [1], Lions [9] and others do not ap-
ply. The reason for this is that σ does not need to satisfy the strict monotonicity
condition of a typical Leray-Lions operator. The tool we use in order to prove the
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needed compactness of approximating solutions is Young measures. The methods
are inspired by [3].

To fix some notation, let Mm×n denote the real vector space of m× n matrices
equipped with the inner product M : N = MijNij (with the usual summation
convention).

The following notion of monotonicity will play a rôle in part of the exposition:
Instead of assuming the usual pointwise monotonicity condition for σ, we will also
use a weaker, integrated version of monotonicity which is called quasimonotonicity
(see [3]). The definition is phrased in terms of gradient Young measures. Note,
however, that although quasimonotonicity is “monotonicity in integrated form”,
the gradient Dη of a quasiconvex function η is not necessarily quasimonotone.

Definition. A function η : Mm×n →Mm×n is said to be strictly p-quasimonotone,
if ∫

Mm×n
(η(λ)− η(λ̄)) : (λ− λ̄)dν(λ) > 0

for all homogeneous W 1,p-gradient Young measures ν with center of mass λ̄ = 〈ν, id〉
which are not a single Dirac mass.

A simple example is the following: Assume that η satisfies the growth condition

|η(F )| 6 C |F |p−1

with p > 1 and the structure condition∫
Ω

(η(F +∇ϕ)− η(F )) : ∇ϕdx > c
∫

Ω

|∇ϕ|pdx

for all ϕ ∈ C∞0 (Ω) and all F ∈ Mm×n. Then η is strictly p-quasimonotone. This
follows easily from the definition if one uses that for every W 1,p-gradient Young
measure ν there exists a sequence {Dvk} generating ν for which {|Dvk|p} is equi-
integrable (see [4], [6]).

Now, we state our main assumptions.
(H0) (Continuity) σ : Ω× Rm ×Mm×n → Mm×n is a Carathéodory function, i.e.,

x 7→ σ(x, u, F ) is measurable for every (u, F ) ∈ Rm ×Mm×n and (u, F ) 7→
σ(x, u, F ) is continuous for for almost every x ∈ Ω.

(H1) (Growth and coercivity) There exist c1 > 0, c2 > 0, λ1 ∈ Lp′(Ω), λ2 ∈ L1(Ω),
λ3 ∈ L(p/α)′(Ω), 0 < α < p and 0 < q 6 n p−1

n−p such that

|σ(x, u, F )| 6 λ1(x) + c1(|u|q + |F |p−1)
σ(x, u, F ) : F > −λ2(x)− λ3(x)|u|α + c2|F |p

(H2) (Monotonicity) σ satisfies one of the following conditions:
(a) For all x ∈ Ω and all u ∈ Rm, the map F 7→ σ(x, u, F ) is a C1-function

and is monotone, i.e.,

(σ(x, u, F )− σ(x, u,G)) : (F −G) > 0

for all x ∈ Ω, u ∈ Rm and F,G ∈Mm×n.
(b) There exists a function W : Ω×Rm ×Mm×n → R such that σ(x, u, F ) =

∂W
∂F (x, u, F ), and F 7→W (x, u, F ) is convex and C1.

(c) σ is strictly monotone, i.e., σ is monotone and

(σ(x, u, F )− σ(x, u,G)) : (F −G) = 0 implies F = G.
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(d) σ(x, u, F ) is strictly p-quasimonotone in F .

The condition (H0) ensures that σ(x, u(x), U(x)) is measurable on Ω for measurable
functions u : Ω → Rm and U : Ω → Mm×n. (H1) are standard growth and
coercivity conditions. The main point is that we do not require strict monotonicity
or monotonicity in the variables (u, F ) in (H2) as it is usually assumed in previous
work (see, e.g., [7] or [8]). For example, take a potential W (x, u, F ), which is
only convex but not strictly convex in F , and consider the corresponding elliptic
problem (1)–(2) with σ(x, u, F ) = ∂W

∂F (x, u, F ). Even such a very simple situation
cannot be treated by conventional methods: The problem is that the gradients of
approximating solutions do not converge pointwise where W is not strictly convex.
The idea is now, that in a point where W is not strictly convex, it is locally affine,
and therefore, passage to the limit should locally still be possible. Technically, this
can indeed be achieved by a suitable blow-up process, or (and this seems to be
much more efficient) by considering the Young measure generated by the sequence
of gradients.

We prove the following result:

Theorem. If σ satisfies the conditions (H0)–(H2), then the Dirichlet problem (1),
(2) has a weak solution u ∈W 1,p

0 (Ω) for every f ∈W−1,p(Ω).

2. Galerkin approximation

Let V1 ⊂ V2 ⊂ . . . ⊂W 1,p
0 (Ω) be a sequence of finite dimensional subspaces with

the property that ∪i∈NVi is dense in W 1,p
0 (Ω). We define the operator

F : W 1,p
0 (Ω) → W−1,p′(Ω)

u 7→ (
w 7→

∫
Ω

σ(x, u(x), Du(x)) : Dw dx− 〈f, w〉),
where 〈· , ·〉 denotes the dual pairing of W−1,p′(Ω) and W 1,p

0 (Ω). Observe that for
arbitrary u ∈W 1,p

0 (Ω), the functional F (u) is well defined by the growth condition
in (H1), linear, and bounded (again by the growth condition in (H1)).

By the continuity assumption (H0) and the growth condition in (H1), it is easy to
check, that the restriction of F to a finite linear subspace of W 1,p

0 (Ω) is continuous.
Let us fix some k and assume that Vk has dimension r and that ϕ1, . . . , ϕr is a

basis of Vk. Then we define the map

G : Rr → Rr,


a1

a2

...
ar

 7→

〈F (aiϕi), ϕ1〉
〈F (aiϕi), ϕ2〉

...
〈F (aiϕi), ϕr〉

 .

G is continuous, since F is continuous on finite dimensional subspaces. Moreover,
for a = (a1, . . . , ar)t and u = aiϕi ∈ Vk, we have by the coercivity assumption in
(H1) that

G(a) · a = (F (u), u)→∞
as ‖a‖Rr → ∞. Hence, there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we
have G(a) · a > 0 and the usual topological argument (see, e.g., [10] or [9]) gives
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that G(x) = 0 has a solution in BR(0). Hence, for all k there exists uk ∈ Vk such
that

〈F (uk), v〉 = 0 for all v ∈ Vk.

3. The Young measure generated by the Galerkin
approximation

From the coercivity assumption in (H1) it follows that there exists R > 0 with
the property, that 〈F (u), u〉 > 1 whenever ‖u‖W 1,p

0 (Ω) > R. Thus, for the sequence
of Galerkin approximations uk ∈ Vk constructed above, there is a uniform bound

‖uk‖W 1,p
0 (Ω) 6 R for all k.(3)

Thus, we may extract a subsequence (again denoted by uk) such that

uk ⇀ u in W 1,p
0 (Ω)

and such that
uk ⇀ u in measure and in Ls(Ω)

for all s < p∗. The sequence of gradients Duk generates a Young measure νx, and
since uk converges in measure to u, the sequence (uk, Duk) generates the Young
measure δu(x) ⊗ νx (see, e.g., [5]). Moreover, for almost all x ∈ Ω, νx

(i) is a probability measure,
(ii) is a homogeneous W 1,p-gradient Young measure, and
(iii) satisfies 〈νx, id〉 = Du(x).

The proofs are standard (see, e.g., [3]).

4. Passage to the limit

Let us consider the sequence

Ik :=
(
σ(x, uk, Duk)− σ(x, u,Du)

)
:
(
Duk −Du

)
and prove, that its negative part I−k is equiintegrable: To do this, we write I−k in
the form

Ik = σ(x, uk, Duk) : Duk − σ(x, uk, Duk) : Du

− σ(x, u,Du) : Duk + σ(x, u,Du) : Du =: IIk + IIIk + IVk + V.

The sequences II−k and V− are easily seen to be equiintegrable by the coercivity
condition in (H1). Then, to see equiintegrability of the sequence IIIk we take a
measurable subset Ω′ ⊂ Ω and write∫

Ω′
|σ(x, uk,Duk) : Du|dx 6

6
(∫

Ω′
|σ(x, uk, Duk)|p′dx)1/p′(∫

Ω′
|Du|pdx)1/p

6 C
(∫

Ω′
(|λ1(x)p

′
+ |uk|qp′ + |Duk|p)dx

)1/p′(∫
Ω′
|Du|pdx)1/p.

The first integral is uniformly bounded in k by (3). The second integral is arbitrarily
small if the measure of Ω′ is chosen small enough. A similar argument gives the
equiintegrability of the sequence IVk.
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Having established the equiintegrability of I−k , we may use [3, Lemma 6] which
gives that

X := lim inf
k→∞

∫
Ω

Ik >
∫

Ω

∫
Mm×n

σ(x, u, λ) : (λ−Du)dνx(λ)dx.(4)

On the other hand, we will now see that X 6 0. To prove this, we fix ε > 0. Then,
there exists k0 ∈ N such that dist(u, Vk) < ε for all k > k0, or equivalently, that
dist(uk−u, Vk) < ε for all k > k0. Then, for vk ∈ Vk, we may estimate X as follows

X = lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk −Du)dx

= lim inf
k→∞

(∫
Ω

σ(x, uk, Duk) : D(uk − u− vk)dx+
∫

Ω

σ(x, uk, Duk) : Dvkdx
)

6 lim inf
k→∞

((∫
Ω

|σ(x, uk, Duk)|p′dx)1/p′(∫
Ω

|D(uk − u− vk)|pdx)1/p + 〈f, vk〉
)
.

The term
(∫

Ω
|σ(x, uk, Duk)|p′dx

)1/p′

is bounded uniformly in k by the growth
condition in (H1) and (3). On the other hand, by choosing vk ∈ Vk in such a way
that ‖uk−u−vk‖W 1,p

0 (Ω) < 2ε for all k > k0, the term
(∫

Ω
|D(uk − u− vk)|pdx)1/p

is bounded by 2ε. Moreover, we have

|〈f, vk〉| 6 |〈f, vk − (uk − u)〉|+ |〈f, uk − u〉| 6 2ε‖f‖W−1,p(Ω) + o(k).

Since ε > 0 was arbitrary, this proves X 6 0. We conclude from (4), that∫
Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx 6
∫

Ω

∫
Mm×n

σ(x, u, λ) : Dudνx(λ)dx.(5)

Now, we have to prove the theorem separately in the cases (a), (b), (c) and (d)
of (H2). We start with the easiest case:

Case (d): Suppose that νx is not a Dirac mass on a set x ∈ M of positive
Lebesgue measure |M | > 0. Then, by the strict p-quasimonotonicity of σ(x, u, ·),
we have for a.e. x ∈M∫

Mm×n
σ(x, u, λ) : λdνx(λ) >

∫
Mm×n

σ(x, u, λ)dνx(λ) :
∫
Mm×n

λdνx(λ)︸ ︷︷ ︸
= Du(x)

.

Hence, by integrating over Ω, we get∫
Ω

∫
Mm×n

σ(x, u, λ)dνx(λ) : Du(x)dx >∫
Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx >
∫

Ω

∫
Mm×n

σ(x, u, λ)dνx(λ) : Du(x)dx

which is a contradiction. Hence, we have νx = δDu(x) for almost every x ∈
Ω. From this, it follows that Duk → Du in measure for k → ∞, and thus,
σ(x, uk, Duk) → σ(x, u,Du) almost everywhere. Since, by the growth condition
in (H1), σ(x, uk, Duk) is equiintegrable, it follows that σ(x, uk, Duk)→ σ(x, u,Du)
in L1(Ω) by the Vitali convergence theorem. This implies that 〈F (u), v〉 = 0 for all
v ∈ ∪k∈NVk and hence F (u) = 0, which proves the theorem in this case.
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To prepare the proof in the remaining cases (a)–(c), we proceed as follows:
From (5), we infer that∫

Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u,Du)

)
:
(
λ−Du)dνx(λ)dx 6 0.(6)

On the other hand, the integrand in (6) is nonnegative by monotonicity. It follows
that the integrand must vanish almost everywhere with respect to the product
measure dνx ⊗ dx. Hence, we have that for almost all x ∈ Ω

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0 on spt νx(7)

and thus

spt νx ⊂ {λ | (σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0}.(8)

Now, we proceed with the proof in the single cases.
Case (c): By strict monotonicity, it follows from (7) that νx = δDu(x) for almost

all x ∈ Ω, and hence Duk → Du in measure. The reminder of the proof in this case
is exactly as in case (d).

Case (b): We start by showing that for almost all x ∈ Ω, the support of
νx is contained in the set where W agrees with the supporting hyper-plane L :=
{(λ,W (x, u,Du) + σ(x, u,Du)(λ−Du))} in Du(x), i.e., we want to show that

spt νx ⊂ Kx = {λ ∈Mm×n : W (x, u, λ) = W (x, u,Du) + σ(x, u,Du) : (λ−Du)}.
If λ ∈ spt νx then by (8)

(1− t)(σ(x, u,Du)− σ(x, u, λ)) : (Du− λ) = 0 for all t ∈ [0, 1].(9)

On the other hand, by monotonicity, we have for t ∈ [0, 1] that

0 6 (1− t)(σ(x, u,Du+ t(λ−Du))− σ(x, u, λ)) : (Du− λ).(10)

Subtracting (9) from (10), we get

0 6 (1− t)(σ(x, u,Du+ t(λ−Du))− σ(x, u,Du)) : (Du− λ)(11)

for all t ∈ [0, 1]. But by monotonicity, in (11) also the reverse inequality holds and
we may conclude, that

(σ(x, u,Du+ t(λ−Du))− σ(x, u,Du)) : (λ−Du) = 0(12)

for all t ∈ [0, 1], whenever λ ∈ spt νx. Now, it follows from (12) that

W (x, u, λ) = W (x, u,Du) +
∫ 1

0

σ(x, u,Du+ t(λ−Du)) : (λ−Du)dt

= W (x, u,Du) + σ(x, u,Du) : (λ−Du)

as claimed.
By the convexity of W we have W (x, u, λ) ≥W (x, u,Du)+σ(x, u,Du) : (λ−Du)

for all λ ∈Mm×n and thus L is a supporting hyper-plane for all λ ∈ Kx. Since the
mapping λ 7→W (x, u, λ) is by assumption continuously differentiable we obtain

σ(x, u, λ) = σ(x, u,Du) for all λ ∈ Kx ⊃ spt νx(13)

and thus

σ̄ :=
∫
Mm×n

σ(x, u, λ) dνx(λ) = σ(x, u,Du) .(14)
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Now consider the Carathéodory function

g(x, u, p) = |σ(x, u, p)− σ̄(x)| .
The sequence gk(x) = g(x, uk(x), Duk(x)) is equiintegrable and thus

gk ⇀ ḡ weakly in L1(Ω)

and the weak limit ḡ is given by

ḡ(x) =
∫
Rm×Mm×n

|σ(x, η, λ)− σ̄(x)| dδu(x)(η)⊗ dνx(λ)

=
∫

spt νx

|σ(x, u(x), λ)− σ̄(x)| dνx(λ) = 0

by (13) and (14). Since gk > 0 it follows that

gk → 0 strongly in L1(Ω).

This again suffices to pass to the limit in the equation and the proof of the case (b)
is finished.

Case (a): We claim that in this case for almost all x ∈ Ω the following identity
holds for all µ ∈Mm×n on the support of νx:

σ(x, u, λ) : µ = σ(x, u,Du) : µ+ (∇σ(x, u,Du)µ) : (Du− λ),(15)

where ∇ is the derivative with respect to the third variable of σ. Indeed, by the
monotonicity of σ we have for all t ∈ R

(σ(x, u, λ)− σ(x, u,Du+ tµ)) : (λ−Du− tµ) ≥ 0,

whence, by (7),

−σ(x, u, λ) : (tµ) > −σ(x, u,Du) : (λ−Du) + σ(x, u,Du+ tµ) : (λ−Du− tµ)

= t
(
(∇σ(x, u,Du)µ)(λ−Du)− σ(x, u,Du) : µ

)
+ o(t).

The claim follows from this inequality since the sign of t is arbitrary. Since the
sequence σ(x, uk, Duk) is equiintegrable, its weak L1-limit σ̄ is given by

σ̄ =
∫

spt νx

σ(x, u, λ)dνx(λ)

=
∫

spt νx

σ(x, u,Du)dνx(λ) + (∇σ(x, u,Du))t
∫

spt νx

(Du− λ)dνx(λ)

= σ(x, u,Du),

where we used (15) in this calculation. This finishes the proof of the case (a) and
hence of the theorem.

Remark. Notice, that in case (b) we have σ(x, uk, Duk)→ σ(x, u,Du) in L1(Ω).
In the cases (c) and (d), we even have Duk → Du in measure as k →∞.
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Dunod; Gauthier-Villars, Paris 1969, MR 41 #4326, Zbl 189.40603.

[10] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962),
341–346, MR 29 #6319, Zbl 111.31202.
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