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Circumscribing Constant-Width Bodies with
Polytopes

Greg Kuperberg

Abstract. Makeev conjectured that every constant-width body is inscribed
in the dual difference body of a regular simplex. We prove that homologi-
cally, there are an odd number of such circumscribing bodies in dimension 3,
and therefore geometrically there is at least one. We show that the homo-
logical answer is zero in higher dimensions, a result which is inconclusive for
the geometric question. We also give a partial generalization involving affine
circumscription of strictly convex bodies.
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Any set of diameter 2 in Rn is contained in a convex body of constant width 2.
Consequently, if some polytope P circumscribes every convex body of constant
width 2, it contains every set of diameter 2. For example, every constant-width
body in two dimensions is inscribed in a regular hexagon (Figure 1). A conjecture
of Makeev [4] generalizes this theorem to higher dimensions:

Conjecture 1 (V. V. Makeev). Every constant width body in Rn is inscribed in a
polytope similar to Dn, the dual of the difference body of a regular simplex.

The conjecture is motivated by the fact that Dn has n(n+ 1) sides, the largest
number possible for a polytope that has the circumscribing property [4]. Figure 2
illustrates D3, a standard rhombic dodecahedron.
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Figure 1. A Rouleaux triangle inscribed in a regular hexagon

Figure 2. The convex hull of D3, a rhombic dodecahedron

In this note, we will prove that every constant width body in R3 is circumscribed
by an odd number of congruent copies of D3 (in a homological sense), as is also the
case in two dimensions. In particular, we prove Conjecture 1 for n = 3, a special
case which was conjectured in 1974 by Chakerian. We also prove the following
partial generalization:

Theorem 1. Every strictly convex body in R3 is inscribed in a polyhedron which
is affinely equivalent to the standard rhombic dodecahedron.

It’s not clear if the strict convexity condition is necessary.
In fact, Conjecture 1 and Theorem 1 can be generalized further: We can replace

D3 by the polyhedron

P = {(x, y, z) : |x| ≤ 1, |y| ≤ 1, a|x|+ a|y|+ b|z| ≤
√

2a2 + b2}
See Section 6.

All of these results are analogous to old results in two dimensions: Every convex
body is circumscribed by an affinely regular hexagon and there are homologically
an odd number of them [1]. Instead of a regular hexagon, we can take any centrally
symmetric hexagon that circumscribes the unit circle.

Unfortunately, for n ≥ 4, there are homologically zero circumscribing copies of
Dn. However, this does not disprove Conjecture 1.
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1. Support functions

We establish an equivalence between constant-width bodies and antisymmetric
functions on the sphere.

Let K be a convex body in Rn containing 0, the origin. For each unit vector v,
let

f(v) = d(Hv, 0),

where Hv is the hyperplane which supports K, which is orthogonal to v, and which
is on the same side of the origin as v. The function f is called the support function
of K. The function

g(v) = f(v)− 1

be the adjusted support function of K.
Conversely, if g is any continuous function on the sphere Sn−1 ⊂ Rn which is

strictly less than 1, and if the spherical graph of

f(v) = 1/(g(v) + 1)

is convex, then g is the adjusted support function of some convex body K, namely
the polar body of the graph of f . We will call such a function g pre-convex.
Moreover, g is antisymmetric if and only if K has constant width 2. In conclusion,
convex bodies in Rn correspond to pre-convex functions on Sn−1 and those that
have constant width 2 correspond to antisymmetric pre-convex functions.

Proposition 1. Let P be a polytope that circumscribes the sphere Sn−1 and let
T be the set of points at which it is tangent. Every convex body K (of constant
width 2) is circumscribed by an isometric image of P if and only if every continuous
(antisymmetric) function g agrees with a linear function on some isometric image
of T .

Proof. Let K be such a body and let g be its adjusted support function. The
polytope P circumscribes K is equivalent to the statement that g vanishes iden-
tically on T . Translating K is equivalent to adding a linear function to g. This
establishes the “if” direction of the proposition. It also establishes part of the “only
if” direction, namely for pre-convex g rather than for arbitrary continuous g.

Consider the set X of all continuous g which agree with a linear function on
some isometric image of T . This set is closed under multiplication by a scalar, and
it is also a closed subset of the space of continuous functions on Sn−1 taken with
the Hausdorff topology. If X contains all pre-convex functions, then it must be
the entire space of continuous functions, because every continuous function lies in
the closure of the pre-convex functions in this double sense. (Any smooth function
becomes pre-convex if multiplied by a sufficiently small constant and any continuous
function can be approximated by smooth functions.) This completes the argument
for the “only if” direction.

Both arguments also hold in the antisymmetric case. �

Proposition 1 demonstrates that the circumscription problem for constant-width
bodies belongs to a family of questions that includes the Knaster problem. This
problem asks which finite families of points T on the unit sphere Sd−1 ⊂ Rd have
the property that any continuous function from the sphere to Rn is constant on an
isometric image of T . The more general problem goes as follows: Given a finite set
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of points T on Sd−1 and given a linear subspace L of the vector space of functions
from T to Rn, does every continuous function

f : Sd−1 → Rn

admit an isometry R such that f ◦ R lies in L after restriction to T? Even more
generally, given any subspace V of finite codimension in the space of continuous
functions on the sphere, does every continuous f admit an isometry R such that
f ◦R ∈ V ? Of course the answer in general depends on V as well as d and n.

If the polytope P is the dual difference body Dn, then T is the set of vertices
of the difference body of a regular simplex, also known as the root system An.
In this case, Conjecture 1 is equivalent to the assertion that for every continuous,
antisymmetric f on Sn−1 ⊂ Rn, there is a position of the root system An such that
the restriction of f is linear.

2. Two dimensions

The root system A2 consists of six equally spaced points on the unit circle Let
C be the space of all isometric images T of A2. The set C is a topological circle.
It has a natural 3-dimensional vector bundle F whose fiber at each S ∈ C is the
vector space of antisymmetric functions on T . If we divide this fiber by the linear
functions on T , the result is a new vector bundle E on C. It is easy to check that
the bundle E is a Möbius bundle.

R

S1

R

S1

Figure 3. A section of the Möbius bundle

If g is an antisymmetric, continuous function on the unit circle, it yields a section
of F given by restricting g to each sextuplet T . In turn, one gets a section s of the
bundle E. We wish to know whether the section s must have a zero. Since E is a
Möbius bundle, this is true (Figure 3).

Thus we have proved that any constant-width body in the plane is circumscribed
by a regular hexagon. The proof is actually just the traditional proof with some un-
conventional terminology. This terminology will be useful in the higher-dimensional
cases.

3. Three dimensions

We wish to show that every continuous, antisymmetric function on the 2-sphere
agrees with a linear function on some isometric image of the root system A3, the
vertices of a standard cuboctahedron (Figure 4). The set of such isometric images
is a 3-manifold

M = SO(3)/Γ,
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where Γ is the rotation group of A3 (acting by right multiplication on SO(3)). The
group Γ is the rotation group of the cube and is isomorphic to S4, the symmetric
group on four letters. The manifold M has a 6-dimensional bundle F which at each
point is the vector space of antisymmetric functions on the corresponding image of
A3. We quotient F by the linear functions to obtain a 3-dimensional bundle E.

Figure 4. A3 forms a cuboctahedron

We first rephrase the topological argument of the previous section in terms of
characteristic classes of vector bundles [6]. An n-dimensional bundle B on an
arbitrary topological space X (at least a reasonable one such as a CW complex)
defines a characteristic cohomology class χ(B) called the Euler class. If X is a
closed manifold, this class is dual to the homology class represented by the zero
locus of a generic section of B. If B is orientable, then χ(B) is an element of the
ordinary cohomology Hn(X). But in general

χ(B) ∈ Hn(X, det(B)).

I.e., the Euler class lies in the cohomology of X in a twisted coefficient system, the
determinant bundle of B. In our case, E is a non-orientable 3-plane bundle on the
closed, orientable 3-manifold M . Therefore

χ(E) ∈ H3(M, det(E)) ∼= Z/2.
In other words, the Euler class χ(E) is either 0 or 1, depending on whether a generic
section has an even or odd number of zeroes.

Theorem 2. The bundle E has a non-trivial Euler class:

χ(E) = 1 ∈ Z/2.
Proof. There are two ways to argue this. The first way is by direct geometric
construction. Consider the function xyz on S2. It produces a section s of E. The
symmetry group of xyz, including antisymmetries, is the same group Γ; thus, the
section s has the same symmetries. The group Γ acts on the manifold M by means
of symmetries that preserve or negate xyz but move some isometric image of A3.
This is the left action of Γ on the coset space M = SO(3)/Γ; the quotient is the
double coset space Γ\SO(3)/Γ. The action has one fixed point (coming from the
identity in SO(3)) and one orbit of size 3 (coming from a rotation by 45 degrees in
SO(3)). All other orbits have even order. An elementary calculation shows that the
fixed point is a transverse zero of the section s, while s is non-zero on the orbit of
order 3. Thus the odd orbits make an odd contribution to the intersection between
s and the zero section. The remaining zeroes of s, if there are any, lie on even-sized
orbits and make an even contribution. Thus the Euler class of E is 1 and not 0.
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The second way is by means of algebraic topology. Suppose that a vector bundle
V on a space X lifts to a trivialized bundle Ṽ on some covering space X̃. Then V

together with the choice of Ṽ is called a flat bundle. Both F and E are trivial if
lifted to SO(3), as well as flat on M , by construction. In general a flat bundle on a
space X is described by some linear representation of the group of deck translations
of X̃ over X, assuming for simplicity that the covering is regular. In this case, the
representation R of Γ that encodes E is simply the action of Γ on antisymmetric
functions (modulo linear functions) on one copy of the A3 root system. By writing
down the character of this representation, or by writing down the representation
explicitly, we can see that it is isomorphic to V ⊗ L, where V is the 3-dimensional
representation of SO(3) restricted to Γ and L is the 1-dimensional representation
of Γ coming from the sign homomorphism from Γ = S4 to {±1}. We can express
this in terms of bundles with the equation

E ∼= EV ⊗ EL,
where EV and EL are the bundles defined by the representations V and L.

If a flat bundle X on a coset space G/H is given by a representation of H that
is induced from G, it is a trivial bundle. For example, the bundle EV is trivial for
this reason. Thus the bundle E is actually three copies of the line bundle EL. It
is a general property of Euler classes that if X and Y are two bundles, the Euler
class of the direct sum is the cup product of the Euler classes:

χ(X ⊕ Y ) = χ(X) ∪ χ(Y ).

In this case we begin with the simpler Euler class

c = χ(EL) ∈ H1(M,Z/2)

from which we compute
χ(E) = c ∪ c ∪ c.

We abbreviate Hi(M,Z/2) as just Hi. The cohomology group H1 can be under-
stood as the set of homomorphisms from π1(M) to Z/2. In this case, all homo-
morphisms factor through Γ and H1 ∼= Z/2. By this interpretation c is the same
homomorphism as the one defining L, i.e., the non-trivial one. By Poincaré duality,
H2 ∼= Z/2 as well, while H3 ∼= Z/2 automatically because M is a closed 3-manifold.
The cup product

∪ : H1 ×H2 → H3

is a non-degenerate pairing. To determine χ(E), the only question is whether c∪ c
is non-zero. In general, if X is a reasonable topological space and x ∈ H1(X,Z/2)
corresponds to a homomorhism from π1(X) to Z/2, then x∪x vanishes if and only
if the homomorphism lifts to Z/4. One can check that the sign homomorphism of
Γ does not lift, so c∪ c is non-zero. Therefore the Euler class χ(E) does not vanish,
as desired. �

Let Γ2 be the Sylow 2-subgroup of Γ and let

M2 = SO(3)/Γ2

be the corresponding covering space of M . Since the covering M2 → M has odd
degree, the lift of the bundle E to M2 also has odd Euler class. This means that the
theorem that every constant-width body is circumscribed by a D3 generalizes to
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other polyhedra P with symmetry group Γ2, provided that the corresponding bun-
dle EP on M2 is isomorphic to E, or that the corresponding representation is still
R. For example, P can be any of the dodecahedra mentioned in the introduction.

4. The bad news

In any dimension n, there is a rotation group Γ which preserves the An root
system and there is a manifold

M = SO(n)/Γ

of positions of the root system. The set of antisymmetric functions modulo linear
functions is a flat bundle E on M whose dimension agrees with M . Let

d = n(n− 1)/2

be the dimension of M .
If n is 0 or 1 modulo 4, the bundle E is orientable, and its Euler class is therefore

an element of Hd(M,Z), i.e., an integer, if an orientation is chosen. In general, the
rational Euler class of a bundle X has a Chern-Weil formula, an expression in terms
of the curvature of X. Since our bundle E is flat, this integral expression vanishes.
The Euler class is therefore 0. Another way to argue this is that, as in 3 dimensions,
E is a sum of line bundles. Negating one of the line bundles yields an orientation-
reversing automorphism of E. The existence of such an automorphism tells us that
the Euler class is its own negative.

If n is 2 or 3 modulo 4, the Euler class is an element of

Hd(M,Z/2) ∼= Z/2.
We argue that for n ≥ 4, this number also vanishes.

Proposition 2. For n ≥ 4, M admits a fixed-point free involution σ that extends
to E.

If we accept this proposition, we are done, since whatever χ(E) is on M/σ, it is
an even multiple of it on M itself. It therefore vanishes modulo 2.

Proof. (Sketch) It suffices to find an involution g in SO(n) that centralizes Γ but
is not in Γ. For then the group Γ′ generated by Γ and g would be a Cartesian
product Γ × Z/2, the linear representation R would extend from Γ to Γ′, and the
bundle E would descend from M to

M/g = SO(n)/Γ′.

The group of all isometries of a simplex in Rn is the permutation group Sn+1.
Adding central inversion, the full isometry group of Dn is

Sn+1 × Z/2 ⊂ O(n).

The group Γ is an index 2 subgroup of this isometry group. The embedding of
Sn+1 in O(n) is a linear representation which is almost the linear extension of the
permutation representation on n+1 letters; the difference is that a trivial summand
has been deleted. Let Sn+1;2 be the Sylow 2-subgroup of Sn+1. The action of Sn+1;2

on Rn can be analyzed with arcane but standard computations. The property of this
action that we need is that for n ≥ 4, there are more representation endomorphisms
in O(n) (meaning isometries that commute with the action of Sn+1;2) than those
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provided by the center of Sn+1;2 × Z/2 [2]. These extra endomorphisms include
orientation-preserving involutions. The element g above can be any such involution.

�

The author also considered the natural conjecture that every constant-width
body K in R4 is circumscribed by a regular cross polytope C (generalized octahe-
dron). Since it has four fewer sides than the polytope D4, a 2-parameter family
of copies of C circumscribes K if K is chosen generically. Unfortunately, another
calculation shows that the set of such circumscribing polytopes is null-homologous
in SO(4)/Γ, where Γ is the rotation group of C.

Finally, a constant-width body in R3 is inscribed in homologically zero regular
dodecahedra. Chakerian has also asked whether there is always such a dodecahe-
dron.

5. Affine circumscription

Interestingly, the affine case of Theorem 1 is a corollary of the constant-width
case. For simplicity we begin with the argument in two dimensions. It is again an
Euler class argument, except it is more complicated because the base space of the
bundle is not compact. In this case a section of the bundle has a well-defined Euler
class if it is proper, in the same sense that a map between non-compact spaces may
be proper.

Let K be a convex body in the plane and let H be a regular hexagon whose
inscribed circle has radius 1. Let

G = GL+(2,R)nR2

be the space of orientation-preserving affine transformations of the plane. There is
a map Φ from G to R6 defined as follows: For a given affinity α, the coordinates of
Φ(α) are the distances from the lines containing the sides of H to α(K). If α(K)
is on the same side of such a line as H is, the distance is taken to be negative,
otherwise it is positive. Apparently Φ is continuous.

We wish to show that for a sufficiently small open neighborhood U of 0, Φ−1(U)
is bounded (contained in a compact subset of G), for then Φ has a well-defined
degree. More precisely, we identify R6 − U to a point to make the target of Φ a
ball, and we extend the domain to the one-point compactification of G. Then the
degree of Φ is the degree of this modified map.

Lemma 1. For a suitable U (independent of K) containing the origin, the region
Φ−1(U) is contained in a compact set.

Proof. (Informally) We argue that if α ∈ G is sufficiently close to infinity, Φ(α)
is bounded away from 0. (Sufficiently close to infinity means sufficiently near the
compactification point in the one-point compactification of G, or outside of a suf-
ficiently large compact subset of G.) In general an element α may be close to
infinity if the corresponding affine image α(K) has one of four properties: It may
be translated far from H, it may be tiny, it may be enormous, or it may be highly
anisotropic (needle-like). In the first three cases Φ(α) is clearly bounded away from
0.

The last case is more subtle, particularly since the conclusion would not hold if
H were a square rather than a hexagon (Figure 5). However, the smallest convex
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Figure 5. A needle-like ellipse inscribed in a square

Figure 6. A square inscribed in a rhombic dodecahedron

body inscribed in a regular hexagon is an equilateral triangle meeting three vertices.
This follows from the more general fact that the smallest convex body inscribed
in an arbitrary convex polygon is the convex hull of some of the vertices. (Such a
body must touch each side and one of the endpoints of each side is always better
than points in the middle.) If α(K) is so needle-like that its area is half of that of
this triangle, then Φ(α) is again bounded away from 0. �

Since the set U in Lemma 1 is independent of K, and since K can be varied
continuously, the degree of Φ is independent of K as well. Unfortunately it vanishes.
However, the rotation group Γ of H acts on G and on R6, and Φ is equivariant with
respect to this action. Thus Φ represents a section of a bundle F on W = G/Γ that
also satisfies Lemma 1.

The section Φ : W → F has an Euler class rather than a degree. To compute
it we take K to be the unit circle. The zero locus of Φ is then M = SO(2)/Γ, the
manifold that appears in the constant-width case. Moreover, Φ is transverse to the
zero section of F in the directions normal to M . These directions are character-
ized by affinities whose matrices are symmetric, i.e., by stretching or squeezing K
along orthogonal axes. The derivative of such a motion is radially a homogeneous
quadratic function on the boundary of the circle K. The key fact to check is that a
homogeneous quadratic function is determined by its values on A2, the tangencies
of the hexagon H. In other words, the derivative of Φ here is essentially restric-
tion to A2, a linear transformation which is nonsingular for homogeneous quadratic
functions. If we quotient F on M by the image under Φ of the normal bundle NM
of M , we are left with the bundle E on M considered previously. Thus the Euler
class of Φ on W equals the Euler class of E on M , namely 1 ∈ Z/2.

This argument generalizes verbatim to three dimensions, except that unfortu-
nately Lemma 1 no longer holds. Among closed convex sets inscribed in the rhombic
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dodecahedron D3, a square, which has volume zero, has the least volume (Figure 6).
The square is the unique minimum up to isometry. If K is strictly convex, its affine
image α(K) is bounded away from a square, and therefore Φ(α) is again bounded
away from 0 for α sufficiently close to infinity.

Thus in three dimensions the Euler class of Φ is well-defined when K is strictly
convex. Moreover, a finite path {Kt}t∈[0,1] of strictly convex bodies is strictly
convex in a uniform fashion by compactness. Therefore the Euler class of Φ does
not change along such a path. For every strictly convex K it must always equal its
value when K is a round sphere, namely 1 ∈ Z/2.

6. Odds and ends

Following the computations of Section 4, we did not really need the full symmetry
group of the rhombic dodecahedron D3, but only its Sylow 2-subgroup Γ2 and the
way that this subgroup permutes its faces. Because if we lift the bundle E of
Section 3 to an odd-order covering of M , its Euler class remains non-zero. Thus
the argument applies to any other polytope which is symmetric under Γ2, whose
faces are permuted by Γ2 in the same way, which is centrally symmetric, and which
circumscribes the sphere. In particular the results hold for the polytope P described
in the introduction.

It would be interesting if there were a convex body K which does not affinely
inscribe in a rhombic dodecahedron. We can obtain some information about such
a K from the arguments of Section 5. It would necessarily affinely project onto a
square. Given any sequence of strictly convex bodies

K1,K2, . . .→ K,

their affine inscriptions in D3 would necessarily converge to an inscribed square.
Affine circumscriptions of D3 around each Kn would converge to an infinite paral-
lelogram prism circumscribing K, and K would meet all four edges of this prism.
Otherwise some subsequence of the affine images of D3 would converge to an affine
image circumscribing K.
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