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On Classes of p-adic Lie Groups

C. R. E. Raja

Abstract. We consider non-contracting p-adic Lie groups and we establish
equivalence relations and connections among the following classes of p-adic Lie
groups: (1) non-contracting; (2) type R; (3) distal and (4) Tortrat. We also
deduce that non-contracting p-adic Lie groups are unimodular and IN p-adic
Lie groups are non-contracting.

In this note we prove p-adic analogue of results in [DR2] and [Ro].
Let G be a locally compact group and e denote the identity of G. Let P(G)

be the space of all regular Borel probability measures on G, equipped with the
weak* topology with respect to all bounded continuous functions on G: see [H] for
more details on probability measures on locally compact groups. A locally compact
group G is called non-contracting if e is not a limit point of {xngx−n | n ∈ Z} for
any g ∈ G \ (e) and any x ∈ G.

Let V be a finite-dimensional vector space over Qp and T be a group of linear
transformations on V . Then we say that V is of type RT if all eigenvalues of T
are of absolute value one. A p-adic Lie group G is called type R if L(G) is type
RAd(G) where L(G) is the Lie algebra of G. Let Aut(L(G)) be the group of all
Lie algebra automorphisms of L(G). It should be noted that Aut(L(G)) is an
algebraic subgroup of GL(L(G)), the general linear group on L(G). We now prove
the following using methods in [Wa2].

Theorem 1. Let G be a p-adic Lie group and L(G) be the Lie algebra of G. Then
the following are equivalent.

(1) G is non-contracting.
(2) For each x ∈ G there exists an open subgroup U(x) invariant under the conju-

cation of x and for any compact subset C of U(x) the orbit {xnCx−n | n ∈ Z}
is relatively compact.

(3) The closed subgroup generated by Ad(x) is compact in Aut(L(G)) for any
x ∈ G.

(4) G is of type R.

Proof. Let x ∈ G and α : G → G be α(g) = xgx−1 for all g ∈ G. Suppose G is
non-contracting. Then Theorem 3.6 of [Wa2] implies (2).
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We now prove (2) ⇒ (3). Suppose there is an open subgroup U invariant under
α and orbits of the cyclic group generated by α in U are all relatively compact.
Then let α = αuαs be the Jordan decomposition of α in Aut(L(G)) where αs
and αu are semisimple and unipotent parts of α respectively. Let T be the torus
generated by αs and Ta and Td be the anisotropic and split parts of T . Then
Ta(Qp)Td(Qp) is of finite index in T (Qp) (see [Wa2]). By considering a power of
αs we may assume that αs is in Ta(Qp)Td(Qp) and let αd be the split part of α.
Since the closed subgroup generated by αu and the subgroup Ta(Qp) are compact,
to prove the closed subgroup generated by α is compact it is enough to prove that
the subgroup generated by αd is relatively compact. Since orbits in U for the cyclic
group generated by α are relatively compact the eigenvalues of αd are of p-adic
absolute value one and hence the closed subgroup generated by αd is compact.

It is easy to see that (3) ⇒ (4). We now claim that (4) ⇒ (1). Suppose there
exits a g ∈ G and h ∈ G such that e is a limit point (gnhg−n). Let Vx = {v ∈ L(G) |
Ad(x)n(v)→ 0}, for x ∈ G. Suppose G is of type R. Then both Vg and Vg−1 are of
dimension zero. Then by Theorem 3.6 of [Wa2], there exists a closed open subgroup
M of G such that gMg−1 = M and {gnxg−n | n ∈ Z} is relatively compact for
all x ∈ M . Since e is a limit point of (gnhg−n), h belongs to any neighbourhood
of e in G that is invariant under the conjugation by g. By Corollary 1.4 of [Wa2],
M has arbitrarily small open subgroups invariant under the conjugation by g and
hence h = e. This proves that G is non-contracting. �
Corollary 1. Let G be a p-adic Lie group. Suppose G is non-contracting. Then
G is unimodular.

Proof. Let m be the left Haar measure on G and ∆ be the unimodular homo-
morphism on G, that is m(Ex) = ∆(x)m(E) for all x ∈ G and for all Borel sets
E of G. Let x ∈ G. Then by Theorem 1, there exists an open subgroup U such
that xUx−1 = U . Since G is totally disconnected, there exists a compact open
subgroup K of U . Again by Theorem 1, we get that ∪xnKx−n = L, say is a rela-
tively compact open subgroup of G and xLx−1 = L. Thus, m(L) = m(xLx−1) =
m(Lx−1) = ∆(x−1)m(L). Since L is a relatively compact open subgroup, we have
0 < m(L) <∞. This implies that ∆(x) = 1. Thus, G is unimodular. �
Proposition 1. Let G be a Zariski-connected p-adic algebraic group. Suppose G
is non-contracting. Then G is a compact extension of its nilradical.

Proof. Let G be connected algebraic group that is non-contracting. Let us first
consider the case when G is semisimple. Let T be a maximal Qp-split torus of
G. Then AdT is isomorphic to (Q∗p)n for some n where Q∗p is the multiplicative
group of units in Qp. By Theorem 1, every element of AdT generates a relatively
compact subgroup. This implies that T is central and hence since G is semisimple,
T is trivial. Now by Theorem 3.1 of [PR], G is compact.

We now consider the case when G is solvable. Let U be the unipotent radical of
G and T be a torus such that G is the semidirect product of U and T . Let Ts be the
Qp-split part of T . Then as in the previous case, we may prove that Ts centralizes
U . This implies that G is a compact extension of a nilpotent normal subgroup.

Now let G be any connected algebraic group. Let S and U be the solvable and
unipotent radicals of G respectively. By a result of G. D. Mostow, there exists a
reductive Levi subgroup L of G such that G is the semidirect product of L and U
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and the connected component of identity in the center of L, say T is a maximal
torus of S (see 11.22 and Theorem 11.23 of [B]). Also, by Theorem 2.4 of [PR],
L = RT where R is a connected semisimple subgroup of G and hence since S = TU
(see Theorem 10.6 of [B]), we have G = LU = RTU = RS. Since G is non-
contracting, R is also non-contracting. This implies that R is compact. Since S is
a solvable connected that is non-contracting, we have S is a compact extension of
its nilradical. Since the nilradical of S is same as the nilradical of G, we get that
G is a compact extension of its nilradical. �

A locally compact group G is called distal if e is not a limit point of {gxg−1 |
g ∈ G} for any x ∈ G \ (e).

A locally compact group G is said to be a IN-group if there exists a compact
invariant neighbourhood of e. See [GM] and [P] for more details on IN-groups.

A locally compact group G is called Tortrat if a sequence of the form (gnλg−1
n ),

where λ ∈ P(G) and (gn) is a sequence in G, has an idempotent limit point only if
λ is an idempotent. See [Ra] for more details on Tortrat groups.

A local field K is a commutative non-discrete locally compact field (see [We]). A
locally compact group G is said to be a linear group if G is a closed subgroup of
GL(V ), the general linear group on a finite-dimensional vector space V over a local
field K.

It is proved in [Ro], that compact extensions of nilpotent normal subgroups
are distal. Here, we prove that compact extensions of (not necessarily normal)
unipotent groups are distal.

Proposition 2. Let G be a linear group. Suppose there exist an unipotent algebraic
(not necessarily normal) subgroup U of G such that G/U is compact. Then G is
distal.

Proof. Let V be a finite-dimensional vector space over a local field such that G is
a closed subgrup of GL(V ). Let W be the algebra of all linear endomorphisms on
V . Now, for g ∈ GL(V ), define φg : W → W by φg(w) = gwg−1 for all w ∈ W .
Let (gn) be a sequence in G such that gnxg−1

n → e for some x ∈ G. Since G/U is
compact, by passing to a subsequence of (gn), we may assume that there exists a
sequence (hn) in G such that un = h−1

n gn ∈ U and hn → h ∈ G. This implies that
unxu

−1
n → e. Let φn = φun . Then by Lemma 2.2 of [DR1], there exist sequences

(an) and (bn) in U such that un = anbn, an → a in U and bnwb
−1
n = w for all w

such that (unwu−1
n ) converges. Since unxu−1

n → e, we have bnxb−1
n → e and hence

x = e. This proves that G is distal. �

A p-adic Lie group G is called Ad-regular if Z(G) is the kernel of the adjoint
representation of G.

Theorem 2. Let G be a Ad-regular p-adic Lie group. Then the following are equiv-
alent:

(1) G is non-contracting;
(2) G is distal;
(3) G is of type R.

In addition, if G is a p-adic linear group, then (1), (2) and (3) are equivalent to
(4) G is Tortrat.
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Proof. In view of Theorem 1, it is enough to prove that (1) is equivalent to (2).
Let G be a Ad-regular p-adic Lie group. Suppose G is non-contracting. Let H be
the algebraic closure of Ad(G). Then any Qp-split semisimple element occurring in
the Jordan decomposition of any element of Inn (G) generates a relatively compact
subgroup and hence Ad(G) is contained in a compact extension of an unipotent
subgroup of H. By Proposition 2, we get that Ad(G) is distal. Since the kernel
of the adjoint representation is the center of G, G is distal. This proves that (1)
⇒ (2). That (2) ⇒ (1) is obvious. The second part of the theorem is proved in
Theorem 2 of [Ra]. �

Remark 1. Let G be a p-adic Lie group. Suppose for each g ∈ G there exists a
compact neighbourhood K(g) of e such that gK(g)g−1 = K(g). Then G is non-
contracting, which may be seen as follows: Let x be a point in G and C(x) = {g ∈
G | xngx−n → e}. Then it is easy to see that C(x) ⊂ K(x). By Theorem 3.6
of [Wa2], C(x) is a closed subgroup of G. Thus, C(x) is compact and hence it is
trivial (see Theorem 3.5 of [Wa2]). By Theorem 1, we have G is non-contracting.
In particular, IN p-adic Lie groups are non-contracting. In fact, a similar argument
proves that IN p-adic Lie groups are distal without using Theorem 2.

A compactly generated locally compact group is said to be of polynomial growth
if for every compact neighbourhood U of e, m(Un) ≤ Knl for all n and for some
constant K and an integer l where m is a Haar measure on G. See [Gu], [L] and [P]
for more details on the theory of polynomial growth. Since only reductive p-adic
algebraic groups are compactly generated (see Proposition 3.15 of [PR]), we have
the following.

Corollary 2. Let G be a Zariski-connected p-adic reductive algebraic group. Then
(1), (2), (3) and (4) of Theorem 2 are equivalent to either of the following conditions.

(5) G has polynomial growth.
(6) G is an IN-group.

Proof. Suppose G has polynomial growth. Then by Theorem 2 of [L], there exists
a compact normal subgroup H of G such that G/H is a real Lie group. Since G
is totally disconnected, G/H is discrete. This implies that G has a compact open
normal subgroup H. Thus, G is an IN-group. This proves (5) implies (6) and that
(6) implies (1) follows from Remark 1.

Suppose G is non-contracting. By Proposition 1, G is a compact extension of
its nilradical, say N . Since G is a reductive group, the connected component of
the identity of the center of G, say Z, is a torus and Z is the solvable radical of G
(see 11.21 of [B]). This implies that N ⊂ Z. Thus, G is a compact extension of its
center and hence G has polynomial growth (see [P]). �

Remark 2. The results in this note may be proved for any linear algebraic group
G defined over a non-Archimedean local field K provided G is connected and has a
Levi-decomposition defined over K. It may be mentioned that results in [Wa1] are
used in the place of results in [Wa2] in the arguement.
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