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Stationary Measures for Random Walks in a
Random Environment with Random Scenery

Russell Lyons and Oded Schramm

Abstract. Let Γ act on a countable set V with only finitely many orbits.
Given a Γ-invariant random environment for a Markov chain on V and a
random scenery, we exhibit, under certain conditions, an equivalent stationary
measure for the environment and scenery from the viewpoint of the random
walker. Such theorems have been very useful in investigations of percolation
on quasi-transitive graphs.
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1. Introduction

Given a state space for a Markov chain, one might assign transition probabilities
randomly in order to finish specifying the Markov chain. In such a case, one speaks
about random walk in a random environment , or RWRE for short. If we do not
condition on the transition probabilities, such a stochastic process is usually no
longer a Markov chain. The first investigation of RWREs is due to Solomon [9].
Their properties are often surprising.

Alternatively, given a completely specified Markov chain, which we shall refer
to as a random walk, there might be a random field on the state space, i.e., a
collection of random variables indexed by the state space. This random field is
called a random scenery . As the random walker moves, he observes the scenery
at his location. Perhaps the first explicit investigation of random walks in random
scenery was Lang and Nguyen [6].
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Of course, one may combine these processes to obtain a random walk in a random
environment with random scenery , or RWRERS for short. This has not been looked
at much except in the case where the scenery arises from percolation on a graph
and determines the environment (Häggström [4], Häggström and Peres [5], Lyons
and Schramm [8]). In fact, the purpose of those investigations was to find out
information about the scenery; the corresponding RWRE was used as a tool to
probe the scenery.

In general, one would like a stationary probability measure on the trajectories
of an RWRERS that is equivalent to (mutually absolutely continuous with) the
natural probability measure giving the environment, the scenery, and the trajectory
of the Markov chain given the environment. Here, stationarity means that when
looked at from the viewpoint of the random walker, one should see a stationary
environment and a stationary scenery. In order to make sense of this, one needs to
be able to compare the environment and scenery at one state to those at another.
The simplest assumption is that there is a group Γ of “symmetries” of the state
space V that acts transitively on V . Then Γ induces an action on functions on
V , in particular, on environments and sceneries. Restricting one’s attention to the
σ-field I of Γ-invariant events, one can ask whether there is a stationary probability
measure on I that is equivalent to the natural one.

In many cases of interest, there is such a stationary probability measure that
one can explicitly give. We present some general theorems of this sort. These are
“soft” theorems, in contrast to most theorems in the literature that describe more
quantitative behavior of the processes. There are some surprising phenomena even
with such soft theorems. Compare the following two examples:

Example 1. Consider a regular tree T = (V,E) of degree 3 and fix o ∈ V . Let
Γ be the group of automorphisms of T . Declare each edge in E “open” with
probability 2/3 independently. Let ω consist of the subgraph formed by the open
edges. Consider simple random walk starting at o on the connected component C(o)
of o in ω. This has an equivalent stationary initial probability measure, namely,
the law of ω (product measure) biased by the degree of o in ω.

Example 2. With notation as above, let ζ be a fixed end of T . Let Γζ be the group
of automorphisms on T that fix ζ. This subgroup is also transitive on V . However,
in this case, simple random walk on C(o) does not have any stationary probability
measure equivalent to the natural probability measure: Let Y (x) be the vertex in
C(x) that is closest to ζ. Let w(n) denote the location of the walker at time n.
Let An be the event that C

(
w(n)

)
is infinite and w(n) = Y

(
w(n)

)
; this event is

Γζ-invariant. Note that when the walker starts at o, we have C
(
w(n)

)
= C(o)

and Y
(
w(n)

)
= Y (o). As time evolves, the probability of An tends to 0, yet the

probability of A0 is positive.

It turns out that an important issue for finding a stationary measure is whether
Γ is unimodular or not (see Section 2 for the definition). The group Γ of Example 1
is unimodular, but the group Γζ of Example 2 is not. In many applications, V is
a countable group Γ such as Zd, in which case Γ acts on itself by multiplication;
since Γ is countable, it is unimodular.
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In order to state one of our theorems, we need some notation. The space of
trajectories of the walk is V N. Let (Ξ,F) be a measurable space which will be used
to define the environment and the scenery.

Define the shift S : V N → V N by

(Sw)(n) := w(n+ 1) ,

and let

S(ξ, w) := (ξ,Sw) ∀(ξ, w) ∈ Ξ× V N .
For γ ∈ Γ, we set

γ(ξ, w) := (γξ, γw) ,

where (γw)(n) := γ
(
w(n)

)
.

A quadruple (Ξ,F ,P,Γ) is called a measure-preserving dynamical system if Γ
acts measurably on the measure space (Ξ,F ,P) preserving the measure P. We call a
measurable function p : Ξ×V ×V → [0, 1], written p : (ξ, x, y) 7→ pξ(x, y), a random
environment (from Ξ) if for all ξ ∈ Ξ and all x ∈ V , we have

∑
y∈V pξ(x, y) = 1.

The natural action of Γ on p is the one induced by the diagonal one, (γp)(ξ, x, y) :=
p(γ−1ξ, γ−1x, γ−1y). Unless otherwise stated, we shall use such actions implicitly.
Given x ∈ V and a measurable map ξ 7→ νξ(x) from Ξ→ [0,∞), let P̂x denote the
joint distribution on Ξ× V N of ξ biased by νξ(x) and the trajectory of the Markov
chain determined by pξ starting at x. That is, if θxξ denotes the probability measure
on V N determined by pξ with w0 = x, then for all events A, we have

P̂x[A] :=
∫

Ξ

dP(ξ) νξ(x)
∫

(ξ,w)∈A
dθxξ (w) .

Let I be the σ-field of Γ-invariant events in Ξ × V N. We assume throughout
this note that Γ is a locally compact group acting on V and that all stabilizers of
elements of V have finite Haar measure.

The following theorem generalizes similar results in Häggström [4], Häggström
and Peres [5], Lyons [7], and Lyons and Schramm [8].

Theorem 1. Let V be a countable set with a transitive action by a unimodular
group Γ. Let (Ξ,F ,P,Γ) be a measure-preserving dynamical system and p be a
Γ-invariant random environment from Ξ. Suppose that ν : (ξ, x) 7→ νξ(x) is a Γ-
invariant measurable mapping from Ξ×V → [0,∞) such that for each ξ ∈ Ξ, νξ is a
stationary distribution for the Markov chain determined by pξ. Then for any o ∈ V ,
the restriction of P̂o to the Γ-invariant σ-field is an S-invariant measure; that is,
(Ξ× V N, I, P̂o,S) is a measure-preserving dynamical system. If E[ν•(o)] = 1, then
P̂o is a probability measure.

As an example of an I-measurable function, we offer pξ(w(0), •), the environment
at the location of the walker. A function Υ : Ξ × V → R can be regarded as a
random real-valued scenery, where Υ(ξ, x) is the scenery at x given by the outcome
ξ. If Υ is a Γ-invariant measurable function, then Υ

(
ξ, w(0)

)
is I-measurable.

Thus, the theorem implies that the walker will see a stationary scenery.
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Example 3 (Alili [1]). Let V := Γ := Z, Ξ := (0, 1)Z, P be any Z-invariant mea-
sure on Ξ, and for all ξ ∈ Ξ,

pξ(x, y) :=


ξ(x) if y = x+ 1,
1− ξ(x) if y = x− 1,
0 otherwise.

Write ρ(x) := ξ(x − 1)/ξ(x). Suppose that A(x) :=
∑
n≥x

∏n
k=x+1 ρ(x) < ∞ a.s.

Then νξ(x) :=
(
1 + ρ(x)

)
A(x) is a stationary measure with (ξ, x) 7→ νξ(x) being

Z-invariant.

Example 4. Suppose that G = (V,E) is a graph and Γ is a closed transitive (on
vertices) group of automorphisms of G. Let P be a Γ-invariant probability measure
on 2E . That is, we choose a random subgraph of G. The case that P is product
measure, as in Example 1, is called Bernoulli percolation. The random subgraph
has connected components, often called “percolation clusters”. These clusters are of
great interest. One method that has recently proven quite powerful for studying the
clusters is to use them for a random environment (and/or scenery). Namely, let D
be the degree of vertices in G. Denote the subgraph by ω. An RWRE called delayed
simple random walk is defined via the transition probabilities pω(x, y) := 1/D if
[x, y] ∈ ω and pω(x, x) = dω(x)/D, where dω(x) is the degree of x in ω. This was
introduced by Häggström [4] and used also by Häggström and Peres [5], Benjamini,
Lyons, and Schramm [3], and Lyons and Schramm [8]. If Γ is unimodular, we take
Ξ := 2E and ν ≡ 1 in Theorem 1.

Example 5. In the same setting as Example 4, consider the transition probabilities
pω(x, y) := 1/dω(x) if [x, y] ∈ ω and dω(x) 6= 0, with pω(x, x) = 1 if dω(x) = 0.
This is called simple random walk on percolation clusters. In this case, we take
νω(x) := dω(x) if dω(x) 6= 0 and νω(x) := 1 if dω(x) = 0. The paper by Benjamini,
Lyons, and Schramm [3] gives a number of potential-theoretic properties of simple
random walk on percolation clusters.

2. Definitions

Let V be a countable set. If Γ acts on V (on the left), we say that Γ is transitive
if for every x, y ∈ V , there is a γ ∈ Γ with γx = y. If the orbit space Γ\V is finite,
then Γ is quasi-transitive.

Recall that on every locally compact group Γ, there is a unique (up to a constant
scaling factor) Borel measure | • | that, for every γ ∈ Γ, is invariant under left multi-
plication by γ; this measure is called (left) Haar measure. The group is unimodular
if Haar measure is also invariant under right multiplication. For example, when
Γ is countable, the Haar measure is (a constant times) counting measure, so Γ is
unimodular.

When Γ acts on V , let

S(x) := {γ ∈ Γ : γx = x}
denote the stabilizer of x. We shall write

m(x) := |S(x)| .
As stated prior to Theorem 1, we make the standing assumption that Γ is a lo-

cally compact group acting on V and that all stabilizers of elements of V have finite
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Haar measure. Under this assumption, it is not hard to show that the following
conditions are equivalent:

1. Γ is unimodular.
2. m(•) is Γ-invariant.
3. For all x and y in the same orbit, |S(x)y| = |S(y)x|.

(See Trofimov [10].)

Häggström [4] introduced the Mass-Transport Principle in studying percolation
on regular trees. Following is a generalization.

Lemma 1. Let Γ act quasi-transitively on V and f : V × V → [0,∞] be invariant
under the diagonal action of Γ. Choose a complete set {o1, . . . , oL} of representa-
tives in V of the orbits of Γ and write mi := m(oi). Then

L∑
i=1

∑
z∈V

f(oi, z) =
L∑
j=1

1/mj

∑
y∈V

f(y, oj)m(y) .

See Cor. 3.7 of Benjamini, Lyons, Peres, and Schramm [2].

3. Proofs

Theorem 1 generalizes as follows to quasi-transitive actions:

Theorem 2. Let V be a countable set with a quasi-transitive action by a unimodu-
lar group Γ. Let {o1, . . . , oL} be a complete set of representatives of Γ\V and write
mi := m(oi). Let (Ξ,F ,P,Γ) be a measure-preserving dynamical system and p be
a Γ-invariant random environment from Ξ. Suppose that ν : (ξ, x) 7→ νξ(x) is a
Γ-invariant measurable mapping from Ξ× V → [0,∞) such that for each ξ ∈ Ξ, νξ
is a stationary distribution for the Markov chain determined by pξ. Write

P̂ :=
L∑
i=1

m−1
i P̂oi .

Then the restriction of P̂ to the Γ-invariant σ-field is an S-invariant measure. If∑
i

m−1
i E[ν•(oi)] = 1 ,

then P̂ is a probability measure.

Still more generally, we may remove the hypothesis that Γ be unimodular by
means of the following modification:

Theorem 3. Let V be a countable set with a quasi-transitive action by a group Γ.
Let {o1, . . . , oL} be a complete set of representatives of Γ\V and write mi := m(oi).
Let (Ξ,F ,P,Γ) be a measure-preserving dynamical system and p be a Γ-invariant
random environment from Ξ. Suppose that ν : (ξ, x) 7→ νξ(x) is a Γ-invariant
measurable mapping from Ξ×V → [0,∞) such that for each ξ ∈ Ξ, x 7→ m(x)νξ(x)
is a stationary distribution for the Markov chain determined by pξ. Write

P̂ :=
L∑
i=1

P̂oi .
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Then the restriction of P̂ to the Γ-invariant σ-field is an S-invariant measure. If∑
i

E[ν•(oi)] = 1 ,

then P̂ is a probability measure.

Note that this incorporates Theorem 2 because when Γ is unimodular, the func-
tion (ξ, x) 7→ m(x)νξ(x) is Γ-invariant.

Proof. Let F be a Γ-invariant function on Ξ×V N. We must show that
∫
dP̂F ◦S =∫

dP̂F .
Set

f(x, y; ξ) := νξ(x)pξ(x, y)
∫
dθyξ (w)F (ξ, w) .

Thus, we have ∫
dP̂F ◦ S =

L∑
i=1

∑
y∈V

∫
dP(ξ) f(oi, y; ξ) .

Our assumptions imply that f , and hence E[f(x, y; •)], is Γ-invariant. Consequently,
Lemma 1 gives∫

dP̂F ◦ S =
L∑
j=1

∑
y∈V

∫
dP(ξ)m(y)f(y, oj ; ξ)/mj

=
L∑
j=1

∫
dP(ξ)

∑
y∈V

νξ(y)m(y)pξ(y, oj)/mj

∫
dθ
oj
ξ (w)F (ξ, w)

=
L∑
j=1

∫
dP(ξ) νξ(oj)

∫
dθ
oj
ξ (w)F (ξ, w) =

∫
dP̂F .

�

Example 6. Suppose that G = (V,E) is a graph and Γ is a closed quasi-transitive
group of automorphisms of G. Let P be a Γ-invariant probability measure on 2E .
Write

α(x) :=
∑

[x,y]∈E

√
m(y)/m(x) .

Given ω ∈ 2E , consider the transition probabilities pω(x, y) := α(x)−1
√
m(y)/m(x)

for [x, y] ∈ ω and pω(x, x) := 1−∑[x,y]∈ω pω(x, y). The resulting Markov chain on ω
is reversible with stationary measure x 7→ m(x)α(x). In the unimodular transitive
case, this Markov chain is delayed simple random walk. Whether Γ is unimodular
or not, we may take Ξ := 2E and νω(x) := α(x) in Theorem 3.
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