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Higher Rank Graph C∗-Algebras

Alex Kumjian and David Pask

Abstract. Building on recent work of Robertson and Steger, we associate a
C∗–algebra to a combinatorial object which may be thought of as a higher
rank graph. This C∗–algebra is shown to be isomorphic to that of the associ-
ated path groupoid. Various results in this paper give sufficient conditions on
the higher rank graph for the associated C∗–algebra to be: simple, purely in-
finite and AF. Results concerning the structure of crossed products by certain
natural actions of discrete groups are obtained; a technique for constructing
rank 2 graphs from “commuting” rank 1 graphs is given.
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In this paper we shall introduce the notion of a higher rank graph and associate
a C∗–algebra to it in such a way as to generalise the construction of the C∗–algebra
of a directed graph as studied in [CK, KPRR, KPR] (amongst others). Graph C∗–
algebras include up to strong Morita equivalence Cuntz–Krieger algebras and AF
algebras. The motivation for the form of our generalisation comes from the recent
work of Robertson and Steger [RS1, RS2, RS3]. In [RS1] the authors study crossed
product C∗–algebras arising from certain group actions on Ã2-buildings and show
that they are generated by two families of partial isometries which satisfy certain
relations amongst which are Cuntz–Krieger type relations [RS1, Equations (2), (5)]
as well as more intriguing commutation relations [RS1, Equation (7)]. In [RS2] they
give a more general framework for studying such algebras involving certain families
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of commuting 0− 1 matrices. In particular the associated C∗–algebras are simple,
purely infinite and generated by a family of Cuntz–Krieger algebras associated to
these matrices. It is this framework which we seek to cast in graphical terms to
include a wider class of examples (including graph C∗–algebras).

What follows is a brief outline of the paper. In the first section we introduce the
notion of a higher rank graph as a purely combinatorial object: a small category Λ
gifted with a degree map d : Λ→ Nk (called shape in [RS2]) playing the role of the
length function. No detailed knowledge of category theory is required to read this
paper. The associated C∗–algebra C∗(Λ) is defined as the universal C∗–algebra
generated by a family of partial isometries {sλ : λ ∈ Λ} satisfying relations similar
to those of [KPR]. (Our standing assumption is that our higher rank graphs satisfy
conditions analogous to a directed graph being row–finite and having no sinks.)
We then describe some basic examples and indicate the relationship between our
formalism and that of [RS2].

In the second section we introduce the path groupoid GΛ associated to a higher
rank graph Λ (cf. [R, D, KPRR]). Once the infinite path space Λ∞ is formed (and
a few elementary facts are obtained) the construction is fairly routine. It follows
from the gauge-invariant uniqueness theorem (Theorem 3.4) that C∗(Λ) ∼= C∗(GΛ).
By the universal property C∗(Λ) carries a canonical action of Tk defined by

αt(sλ) = td(λ)sλ(1)

called the gauge action. In the third section we prove the gauge–invariant unique-
ness theorem, which is the key result for analysing C∗(Λ) (cf. [BPRS, aHR], see
also [CK, RS2] where similar techniques are used to prove simplicity). It gives
conditions under which a homomorphism with domain C∗(Λ) is faithful: roughly
speaking, if the homomorphism is equivariant for the gauge action and nonzero on
the generators then it is faithful. This theorem has a number of interesting con-
sequences, amongst which are the isomorphism mentioned above and the fact that
the higher rank Cuntz–Krieger algebras of [RS2] are isomorphic to C∗–algebras
associated to suitably chosen higher rank graphs.

In the fourth section we characterise, in terms of an aperiodicity condition on Λ,
the circumstances under which the groupoid GΛ is essentially free. This aperiodicity
condition allows us to prove a second uniqueness theorem analogous to the original
theorem of [CK]. In 4.8 and 4.9 we obtain conditions under which C∗(Λ) is simple
and purely infinite respectively which are similar to those in [KPR] but with the
aperiodicity condition replacing condition (L).

In the next section we show that, given a functor c : Λ→ G where G is a discrete
group, then as in [KP] one may construct a skew product G ×c Λ which is also a
higher rank graph. If G is abelian then there is a natural action αc : Ĝ→ AutC∗(Λ)
such that

αcχ(sλ) = 〈χ, c(λ)〉sλ;(2)

moreover C∗(Λ) oαc Ĝ ∼= C∗(G ×c Λ). Comparing (1) and (2) we see that the
gauge action α is of the form αd and as a consequence we may show that the
crossed product of C∗(Λ) by the gauge action is isomorphic to C∗(Zk ×d Λ); this
C∗–algebra is then shown to be AF. By Takai duality C∗(Λ) is strongly Morita
equivalent to a crossed product of this AF algebra by the dual action of Zk. Hence
C∗(Λ) belongs to the bootstrap class N of C∗–algebras for which the UCT applies
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(see [RSc]) and is consequently nuclear. If a discrete group G acts freely on a k-
graph Λ, then the quotient object Λ/G inherits the structure of a k–graph; moreover
(as a generalisation of [GT, Theorem 2.2.2]) there is a functor c : Λ/G → G such
that Λ ∼= G×c (Λ/G) in an equivariant way. This fact allows us to prove that

C∗(Λ)oG ∼= C∗(Λ/G)⊗K (`2(G)
)

where the action of G on C∗(Λ) is induced from that on Λ. Finally in Section 6,
a technique for constructing a 2-graph from “commuting” 1-graphs A,B with the
same vertex set is given. The construction depends on the choice of a certain
bijection between pairs of composable edges: θ : (a, b) 7→ (b′, a′) where a, a′ ∈ A1

and b, b′ ∈ B1; the resulting 2-graph is denoted A ∗θ B. It is not hard to show that
every 2-graph is of this form.

Throughout this paper we let N = {0, 1, . . . } denote the monoid of natural
numbers under addition. For k ≥ 1, regard Nk as an abelian monoid under addition
with identity 0 (it will sometimes be useful to regard Nk as a small category with
one object) and canonical generators ei for i = 1, . . . , k. We shall also regard Nk as
the positive cone of Zk under the usual coordinatewise partial order: thus m ≤ n
if and only if mi ≤ ni for all i, where m = (m1, . . . ,mk), and n = (n1, . . . , nk).
(This makes Nk a lattice.)

We wish to thank Guyan Robertson and Tim Steger for providing us with an
early version of their paper [RS2]; the first author would also like to thank them for
a number of stimulating conversations and the staff of the Mathematics Department
at Newcastle University for their hospitality during a recent visit.

1. Higher rank graph C∗–algebras

In this section we first introduce what we shall call a higher rank graph as a
purely combinatorial object. (We do not know whether this concept has been
studied before.) Our definition of a higher rank graph is modelled on the path
category of a directed graph (see [H], [Mu], [MacL, §II.7] and Example 1.3). Thus
a higher rank graph will be defined to be a small category gifted with a degree
map (called shape in [RS2]) satisfying a certain factorisation property. We then
introduce the associated C∗–algebra whose definition is modelled on that of the
C∗–algebra of a graph as well as the definition of [RS2].

Definitions 1.1. A k-graph (rank k graph or higher rank graph) (Λ, d) consists
of a countable small category Λ (with range and source maps r and s respectively)
together with a functor d : Λ → Nk satisfying the factorisation property: for
every λ ∈ Λ and m,n ∈ Nk with d(λ) = m+ n, there are unique elements µ, ν ∈ Λ
such that λ = µν and d(µ) = m, d(ν) = n. For n ∈ Nk we write Λn := d−1(n).
A morphism between k-graphs (Λ1, d1) and (Λ2, d2) is a functor f : Λ1 → Λ2

compatible with the degree maps.

Remarks 1.2. The factorisation property of 1.1 allows us to identify Obj(Λ), the
objects of Λ with Λ0. Suppose λα = µα in Λ then by the the factorisation prop-
erty λ = µ; left cancellation follows similarly. We shall write the objects of Λ as
u, v, w, . . . and the morphisms as greek letters λ, µ, ν . . . . We shall frequently refer
to Λ as a k-graph without mentioning d explicitly.
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It might be interesting to replace Nk in Definition 1.1 above by a monoid or
perhaps the positive cone of an ordered abelian group.

Recall that λ, µ ∈ Λ are composable if and only if r(µ) = s(λ), and then λµ ∈ Λ;
on the other hand two finite paths λ, µ in a directed graph may be composed to
give the path λµ provided that r(λ) = s(µ); so in 1.3 below we will need to switch
the range and source maps.

Example 1.3. Given a 1-graph Λ, define E0 = Λ0 and E1 = Λ1. If we define
sE(λ) = r(λ) and rE(λ) = s(λ) then the quadruple (E0, E1, rE , sE) is a directed
graph in the sense of [KPR, KP]. On the other hand, given a directed graph
E = (E0, E1, rE , sE), then E∗ = ∪n≥0E

n, the collection of finite paths, may be
viewed as small category with range and source maps given by s(λ) = rE(λ) and
r(λ) = sE(λ). If we let d : E∗ → N be the length function (i.e., d(λ) = n iff
λ ∈ En) then (E∗, d) is a 1-graph.

We shall associate a C∗–algebra to a k-graph in such a way that for k = 1 the
associated C∗–algebra is the same as that of the directed graph. We shall consider
other examples later.

Definitions 1.4. The k-graph Λ is row finite if for each m ∈ Nk and v ∈ Λ0

the set Λm(v) := {λ ∈ Λm : r(λ) = v} is finite. Similarly Λ has no sources if
Λm(v) 6= ∅ for all v ∈ Λ0 and m ∈ Nk.

Clearly if E is a directed graph then E is row finite (resp. has no sinks) if and
only if E∗ is row finite (resp. has no sources). Throughout this paper we will assume
(unless otherwise stated) that any k-graph Λ is row finite and has no sources, that
is

0 < #Λn(v) <∞ for every v ∈ Λ0 and n ∈ Nk.(3)

The Cuntz–Krieger relations [CK, p.253] and the relations given in [KPR, §1]
may be interpreted as providing a representation of a certain directed graph by
partial isometries and orthogonal projections. This view motivates the definition
of C∗(Λ).

Definitions 1.5. Let Λ be a k-graph (which satisfies the standing hypothesis (3)).
Then C∗(Λ) is defined to be the universal C∗–algebra generated by a family {sλ :
λ ∈ Λ} of partial isometries satisfying:

(i) {sv : v ∈ Λ0} is a family of mutually orthogonal projections,
(ii) sλµ = sλsµ for all λ, µ ∈ Λ such that s(λ) = r(µ),

(iii) s∗λsλ = ss(λ) for all λ ∈ Λ,
(iv) for all v ∈ Λ0 and n ∈ Nk we have sv =

∑
λ∈Λn(v)

sλs
∗
λ.

For λ ∈ Λ, define pλ = sλs
∗
λ (note that pv = sv for all v ∈ Λ0). A family of partial

isometries satisfying (i)–(iv) above is called a ∗–representation of Λ.

Remarks 1.6. (i) If {tλ : λ ∈ Λ} is a ∗–representation of Λ then the map
sλ 7→ tλ defines a ∗–homomorphism from C∗(Λ) to C∗({tλ : λ ∈ Λ}).

(ii) If E∗ is the 1-graph associated to the directed graph E (see 1.3), then by
restricting a ∗–representation to E0 and E1 one obtains a Cuntz–Krieger
family for E in the sense of [KPR, §1]. Conversely every Cuntz–Krieger
family for E extends uniquely to a ∗–representation of E∗.
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(iii) In fact we only need the relation (iv) above to be satisfied for n = ei ∈ Nk for
i = 1, . . . , k, the relations for all n will then follow (cf. [RS2, Lemma 3.2]).
Note that the definition of C∗(Λ) given in 1.5 may be extended to the case
where there are sources by only requiring that relation (iv) hold for n = ei
and then only if Λei(v) 6= ∅ (cf. [KPR, Equation (2)]).

(iv) For λ, µ ∈ Λ if s(λ) 6= s(µ) then sλs
∗
µ = 0. The converse follows from 2.11.

(v) Increasing finite sums of pv’s form an approximate identity for C∗(Λ) (if Λ0

is finite then
∑
v∈Λ0 pv is the unit for C∗(Λ)). It follows from relations (i)

and (iv) above that for any n ∈ Nk, {pλ : d(λ) = n} forms a collection of
orthogonal projections (cf. [RS2, 3.3]); likewise increasing finite sums of these
form an approximate identity for C∗(Λ) (see 2.5).

(vi) The above definition is not stated most efficiently. Any family of operators
{sλ : λ ∈ Λ} satisfying the above conditions must consist of partial isometries.
The first two axioms could also be replaced by:

sλsµ =

{
sλµ if s(λ) = r(µ)
0 otherwise.

Examples 1.7. (i) If E is a directed graph, then by 1.6 (i) and (ii) we have
C∗(E∗) ∼= C∗(E) (see 1.3).

(ii) For k ≥ 1 let Ω = Ωk be the small category with objects Obj (Ω) = Nk,
and morphisms Ω = {(m,n) ∈ Nk × Nk : m ≤ n}; the range and source
maps are given by r(m,n) = m, s(m,n) = n. Let d : Ω → Nk be defined by
d(m,n) = n−m. It is then straightforward to show that Ωk is a k-graph and
C∗(Ωk) ∼= K (`2(Nk)

)
.

(iii) Let T = Tk be the semigroup Nk viewed as a small category, then if d : T →
Nk is the identity map then (T, d) is a k-graph. It is not hard to show that
C∗(T ) ∼= C(Tk), where sei for 1 ≤ i ≤ k are the canonical unitary generators.

(iv) Let {M1, . . . ,Mk} be square {0, 1} matrices satisfying conditions (H0)–(H3)
of [RS2] and let A be the associated C∗-algebra. For m ∈ Nk let Wm be the
collection of undecorated words in the finite alphabet A of shape m as defined
in [RS2] then let

W =
⋃

m∈Nk

Wm.

Together with range and source maps r(λ) = o(λ), s(λ) = t(λ) and product
defined in [RS2, Definition 0.1]W is a small category. If we define d : W → Nk

by d(λ) = σ(λ), then one checks that d satisfies the factorisation property,
and then from the second part of (H2) we see that (W,d) is an irreducible
k-graph in the sense that for all u, v ∈W0 there is λ ∈W such that s(λ) = u
and r(λ) = v.

We claim that the map sλ 7→ sλ,s(λ) for λ ∈W extends to a *-homomorphism
C∗(W ) → A for which sλs

∗
µ 7→ sλ,µ (since these generate A this will show

that the map is onto). It suffices to verify that {sλ,s(λ) : λ ∈W} constitutes a
∗–representation of W . Conditions (i) and (iii) are easy to check, (iv) follows
from [RS2, 0.1c,3.2] with u = v ∈W 0. We check condition (ii): if s(λ) = r(µ)
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apply [RS2, 3.2]

sλ,s(λ)sµ,s(µ) =
∑

Wd(µ)(s(λ))

sλν,νsµ,s(µ) = sλµ,µsµ,s(µ) = sλµ,s(λµ)

where the sum simplifies using [RS2, 3.1, 3.3] . We shall show below that
C∗(W ) ∼= A.

We may combine higher rank graphs using the following fact, whose proof is
straightforward.

Proposition 1.8. Let (Λ1, d1) and (Λ2, d2) be rank k1, k2 graphs respectively, then
(Λ1×Λ2, d1×d2) is a rank k1 +k2 graph where Λ1×Λ2 is the product category and
d1×d2 : Λ1×Λ2 → Nk1+k2 is given by d1×d2(λ1, λ2) = (d1(λ1), d2(λ2)) ∈ Nk1×Nk2

for λ1 ∈ Λ1 and λ2 ∈ Λ2.

An example of this construction is discussed in [RS2, Remark 3.11]. It is clear
that Ωk+`

∼= Ωk × Ω` where k, ` > 0.

Definition 1.9. Let f : N` → Nk be a monoid morphism, then if (Λ, d) is a k-
graph we may form the `-graph f∗(Λ) as follows: (the objects of f∗(Λ) may be
identified with those of Λ and) f∗(Λ) = {(λ, n) : d(λ) = f(n)} with d(λ, n) = n,
s(λ, n) = s(λ) and r(λ, n) = r(λ).

Examples 1.10. (i) Let Λ be a k–graph and put ` = 1, then if we define the
morphism fi(n) = nei for 1 ≤ i ≤ k, we obtain the coordinate graphs
Λi := f∗i (Λ) of Λ (these are 1–graphs).

(ii) Suppose E is a directed graph and define f : N2 → N by (m1,m2) 7→ m1+m2;
then the two coordinate graphs of f∗(E∗) are isomorphic to E∗. We will show
below that C∗(f∗(E∗)) ∼= C∗(E∗)⊗ C(T).

(iii) Suppose E and F are directed graphs and define f : N → N2 by f(m) =
(m,m) then f∗(E∗ × F ∗) = (E × F )∗ where E × F denotes the cartesian
product graph (see [KP, Def. 2.1]).

Proposition 1.11. Let Λ be a k-graph and f : N` → Nk a monoid morphism,
then there is a ∗–homomorphism πf : C∗(f∗(Λ)) → C∗(Λ) such that s(λ,n) 7→ sλ;
moreover if f is surjective, then πf is too.

Proof. By 1.6(i) it suffices to show that this is a ∗–representation of f∗(Λ). Prop-
erties (i)–(iii) are straightforward to verify and property (iv) follows by observing
that for fixed n ∈ N` and v ∈ Λ0 the map f∗(Λ)n(v)→ Λf(n)(v) given by (λ, n) 7→ λ
is a bijection. If f is surjective, then it is clear that every generator sλ of C∗(Λ) is
in the range of πf . �

Later in 3.5 we will also show that πf is injective if f is injective.

2. The path groupoid

In this section we construct the path groupoid GΛ associated to a higher rank
graph (Λ, d) along the lines of [KPRR, §2]. Because some of the details are not
quite the same as those in [KPRR, §2] we feel it is useful to sketch the construction.
First we introduce the following analog of an infinite path in a higher rank graph:
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Definitions 2.1. Let Λ be a k-graph, then

Λ∞ = {x : Ωk → Λ : x is a k-graph morphism},
is the infinite path space of Λ. For v ∈ Λ0 let Λ∞(v) = {x ∈ Λ∞ : x(0) = v}. For
each p ∈ Nk define σp : Λ∞ → Λ∞ by σp(x)(m,n) = x(m + p, n + p) for x ∈ Λ∞

and (m,n) ∈ Ω. (Note that σp+q = σp ◦ σq).
By our standing assumption (3) one can show that for every v ∈ Λ0 we have

Λ∞(v) 6= ∅. Our definition of Λ∞ is related to the definition of W∞, the space
of infinite words, given in the proof of [RS2, Lemma 3.8]. If E∗ is the 1-graph
associated to the directed graph E then (E∗)∞ may be identified with E∞.

Remarks 2.2. By the factorisation property the values of x(0,m) for m ∈ Nk

completely determine x ∈ Λ∞. To see this, suppose that x(0,m) is given for all
m ∈ Nk then for (m,n) ∈ Ω, x(m,n) is the unique element λ ∈ Λ such that
x(0, n) = x(0,m)λ.

More generally, let {nj : j ≥ 0} be an increasing cofinal sequence in Nk with
n0 = 0 (for example one could take nj = jp where p = (1, . . . , 1) ∈ Nk); then
x ∈ Λ∞ is completely determined by the values of x(0, nj). Moreover, given a
sequence {λj : j ≥ 1} in Λ such that s(λj) = r(λj+1) and d(λj) = nj − nj−1 there
is a unique x ∈ Λ∞ such that x(nj−1, nj) = λj . For (m,n) ∈ Ω we define x(m,n) by
the factorisation property as follows: let j be the smallest index such that n ≤ nj .
Then x(m,n) is the unique element of degree n−m such that λ1 · · ·λj = µx(m,n)ν
where d(µ) = m and d(ν) = nj − n. It is straightforward to show that x has the
desired properties.

We now establish a factorisation property for Λ∞ which is an easy consequence
of the above remarks.

Proposition 2.3. Let Λ be a rank k graph. For all λ ∈ Λ and x ∈ Λ∞ with
x(0) = s(λ), there is a unique y ∈ Λ∞ such that x = σd(λ)y and λ = y(0, d(λ)); we
write y = λx. Note that for every x ∈ Λ∞ and p ∈ Nk we have x = x(0, p)σpx.

Proof. Fix λ ∈ Λ and x ∈ Λ∞ with x(0) = s(λ). The sequence {nj : j ≥ 0}
defined by n0 = 0 and nj = (j − 1)p + d(λ) for j ≥ 1 is cofinal. Set λ1 = λ and
λj = x((j − 2)p, (j − 1)p) for j ≥ 2 and let y ∈ Λ∞ be defined by the method given
in 2.2. Then y has the desired properties. �

Next we construct a basis of compact open sets for the topology on Λ∞ indexed
by Λ.

Definitions 2.4. Let Λ be a rank k graph. For λ ∈ Λ define

Z(λ) = {λx ∈ Λ∞ : s(λ) = x(0)} = {x : x(0, d(λ)) = λ}.
Remarks 2.5. Note that Z(v) = Λ∞(v) for all v ∈ Λ0. For fixed n ∈ Nk the sets
{Z(λ) : d(λ) = n} form a partition of Λ∞ (see 1.6(v)); moreover for every λ ∈ Λ
we have

Z(λ) =
⋃

d(µ)=n
r(µ)=s(λ)

Z(λµ).(4)

We endow Λ∞ with the topology generated by the collection {Z(λ) : λ ∈ Λ}.
Note that the map given by λx 7→ x induces a homeomorphism between Z(λ) and
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Z(s(λ)) for all λ ∈ Λ. Hence, for every p ∈ Nk the map σp : Λ∞ → Λ∞ is a local
homeomorphism.

Lemma 2.6. For each λ ∈ Λ, Z(λ) is compact.

Proof. By 2.5 it suffices to show that Z(v) is compact for all v ∈ Λ0. Fix v ∈ Λ0

and let {xn}n≥1 be a sequence in Z(v). For every m, xn(0,m) may take only finitely
many values (by (3)). Hence there is a λ ∈ Λm such that xn(0,m) = λ for infinitely
many n. We may therefore inductively construct a sequence {λj : j ≥ 1} in Λp

such that s(λj) = r(λj+1) and xn(0, jp) = λ1 · · ·λj for infinitely many n (recall
p = (1, . . . , 1) ∈ Nk). Choose a subsequence {xnj} such that xnj (0, jp) = λ1 · · ·λj .
Since {jp} is cofinal, there is a unique y ∈ Λ∞(v) such that y((j− 1)p, jp) = λj for
j ≥ 1; then xnj → y and hence Z(v) is compact. �

Note that Λ∞ is compact if and only if Λ0 is finite.

Definition 2.7. If Λ is k-graph then let

GΛ = {(x, n, y) ∈ Λ∞ × Zk × Λ∞ : σ`x = σmy, n = `−m}.
Define range and source maps r, s : GΛ → Λ∞ by r(x, n, y) = x, s(x, n, y) = y. For
(x, n, y), (y, `, z) ∈ GΛ set (x, n, y)(y, `, z) = (x, n+`, z), and (x, n, y)−1 = (y,−n, x);
GΛ is called the path groupoid of Λ (cf. [R, D, KPRR]).

One may check that GΛ is a groupoid with Λ∞ = G0
Λ under the identification

x 7→ (x, 0, x). For λ, µ ∈ Λ such that s(λ) = s(µ) define

Z(λ, µ) = {(λz, d(λ)− d(µ), µz) : z ∈ Λ∞(s(λ))}.
We collect certain standard facts about GΛ in the following result.

Proposition 2.8. Let Λ be a k–graph. The sets {Z(λ, µ) : λ, µ ∈ Λ, s(λ) = s(µ)}
form a basis for a locally compact Hausdorff topology on GΛ. With this topology
GΛ is a second countable, r–discrete locally compact groupoid in which each Z(λ, µ)
is a compact open bisection. The topology on Λ∞ agrees with the relative topology
under the identification of Λ∞ with the subset G0

Λ of GΛ.

Proof. One may check that the sets Z(λ, µ) form a basis for a topology on GΛ.
To see that multiplication is continuous, suppose that (x, n, y)(y, `, z) = (x, n +
`, z) ∈ Z(γ, δ). Since (x, n, y), (y, `, z) are composable in GΛ there are κ, ν ∈ Λ and
t ∈ Λ∞ such that x = γκt, y = νt and z = δκt. Hence (x, k, y) ∈ Z(γκ, ν) and
(y, `, z) ∈ Z(ν, δκ) and the product maps the open set G2

Λ ∩ (Z(γκ, ν) × Z(ν, δκ))
into Z(γ, δ). The remaining parts of the proof are similar to those given in [KPRR,
Proposition 2.6]. �

Note that Z(λ, µ) ∼= Z(s(λ)), via the map (λz, d(λ) − d(µ), µz) 7→ z. Again
we note that in the case k = 1 we have Λ = E∗ for some directed graph E and
the groupoid GE∗ ∼= GE , the graph groupoid of E which is described in detail in
[KPRR, §2].

Proposition 2.9. Let Λ be a k-graph and let f : N` → Nk be a morphism. The
map x 7→ f∗(x) given by f∗(x)(m,n) = (x(f(m), f(n)), n−m) defines a continuous
surjective map f∗ : Λ∞ → f∗(Λ)∞. Moreover, if the image of f is cofinal (equiv-
alently f(p) is strictly positive in the sense that all of its coordinates are nonzero)
then f∗ is a homeomorphism.
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Proof. Given x ∈ f∗(Λ)∞ choose a sequence {mi} such that nj =
∑j
i=1mi

is cofinal in N`. Set n0 = 0 and let λj ∈ Λf(mj) be defined by the condi-
tion that x(nj−1, nj) = (λj ,mj). We must show that there is an x′ ∈ Λ∞

such that x′(f(nj−1), f(nj)) = λj . It suffices to show that the the intersection
∩jZ(λ1 · · ·λj) 6= ∅. But this follows by the finite intersection property. One checks
that x = f∗(x′). Furthermore the inverse image of Z(λ, n) is Z(λ) and hence f∗ is
continuous.

Now suppose that the image of f is cofinal, then the procedure defined above
gives a continuous inverse for f∗. Given x ∈ f∗(Λ)∞, then since f(nj) is cofinal,
the intersection ∩jZ(λ1 · · ·λj) contains a single point x′. Note that x′ depends on
x continuously. �

For higher rank graphs of the form f∗(Λ) with f surjective (see 1.9), the associ-
ated groupoid Gf∗(Λ) decomposes as a direct product as follows.

Proposition 2.10. Let Λ be a k-graph and let f : N` → Nk be a surjective mor-
phism. Then

Gf∗(Λ)
∼= GΛ × Z`−k.

Proof. Since f is surjective, the map f∗ : Λ∞ → f∗(Λ)∞ is a homeomorphism (see
2.9). The map f extends to a surjective morphism f : Z` → Zk. Let j : Zk → Z`

be a section for f and let i : Z`−k → Z` be an identification of Z`−k with ker f .
Then we get a groupoid isomorphism by the map

((x, n, y),m) 7→ (f∗x, i(m) + j(n), f∗y),

where ((x, n, y),m) ∈ GΛ × Z`−k. �

Finally, as in [RS2, Lemma 3.8] we demonstrate that there is a nontrivial
∗–representation of (Λ, d).

Proposition 2.11. Let (Λ, d) be a k-graph. Then there exists a representation
{Sλ : λ ∈ Λ} of Λ on a Hilbert space with all partial isometries Sλ nonzero.

Proof. Let H = `2(Λ∞), then for λ ∈ Λ define Sλ ∈ B(H) by

Sλey =
{
eλy if s(λ) = y(0),
0 otherwise,

where {ey : y ∈ Λ∞} is the canonical basis for H. Notice that Sλ is nonzero since
Λ∞(s(λ)) 6= ∅; one then checks that the family {Sλ : λ ∈ Λ} satisfies conditions
1.5(i)–(iv). �

3. The gauge invariant uniqueness theorem

By the universal property of C∗(Λ) there is a canonical action of the k-torus Tk,
called the gauge action: α : Tk → AutC∗(Λ) defined for t = (t1, . . . , tk) ∈ Tk

and sλ ∈ C∗(Λ) by

αt(sλ) = td(λ)sλ(5)

where tm = tm1
1 · · · tmkk for m = (m1, . . . ,mk) ∈ Nk. It is straightforward to show

that α is strongly continuous. As in [CK, Lemma 2.2] and [RS2, Lemma 3.6] we
shall need the following.
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Lemma 3.1. Let Λ be a k-graph. Then for λ, µ ∈ Λ and q ∈ Nk with d(λ),
d(µ) ≤ q we have

s∗λsµ =
∑

λα=µβ
d(λα)=q

sαs
∗
β .(6)

Hence every nonzero word in sλ, s∗µ may be written as a finite sum of partial isome-
tries of the form sαs

∗
β where s(α) = s(β); their linear span then forms a dense

∗–subalgebra of C∗(Λ).

Proof. Applying 1.5(iv) to s(λ) with n = q − d(λ), to s(µ) with n = q − d(µ) and
using 1.5 (ii) we get

s∗λsµ = ps(λ)s
∗
λsµps(µ) =

 ∑
Λq−d(λ)(s(λ))

sαs
∗
α

 s∗λsµ

 ∑
Λq−d(µ)(s(µ))

sβs
∗
β


=

 ∑
Λq−d(λ)(s(λ))

sαs
∗
λα

 ∑
Λq−d(µ)(s(µ))

sµβs
∗
β

 .(7)

By 1.6(iv) if d(λα) = d(µβ) but λα 6= µβ, then the range projections pλα, pµβ
are orthogonal and hence one has s∗λαsµβ = 0. If λα = µβ then s∗λαsµβ = pv
where v = s(α) and so sαs∗λαsµβs

∗
β = sαpvs

∗
β = sαs

∗
β ; formula (6) then follows from

formula (7). The rest of the proof is now routine. �

Following [RS2, §4]: for m ∈ Nk let Fm denote the C∗–subalgebra of C∗(Λ)
generated by the elements sλs∗µ for λ, µ ∈ Λm where s(λ) = s(µ), and for v ∈ Λ0

denote Fm(v) the C∗–subalgebra generated by sλs∗µ where s(λ) = v.

Lemma 3.2. For m ∈ Nk, v ∈ Λ0 there exist isomorphisms

Fm(v) ∼= K (`2({λ ∈ Λm : s(λ) = v}))
and Fm ∼= ⊕

v∈Λ0 Fm(v). Moreover, the C∗–algebras Fm, m ∈ Nk, form a
directed system under inclusion, and FΛ = ∪Fm is an AF C∗–algebra.

Proof. Fix v ∈ Λ0 and let λ, µ, α, β ∈ Λm be such that s(λ) = s(µ) and s(α) =
s(β), then by 1.6(v) we have(

sλs
∗
µ

) (
sαs
∗
β

)
= δµ,αsλs

∗
β ,(8)

so that the map which sends sλs∗µ ∈ Fm(v) to the matrix unit

evλ,µ ∈ K
(
`2({λ ∈ Λm : s(λ) = v}))

for all λ, µ ∈ Λm with s(λ) = s(µ) = v extends to an isomorphism. The second
isomorphism also follows from (8) (since s(µ) 6= s(α) implies µ 6= α). We claim
that Fm is contained in Fn whenever m ≤ n. To see this we apply 1.5(iv) to give

sλs
∗
µ = sλps(λ)s

∗
µ =

∑
Λ`(s(λ))

sλsγs
∗
γs
∗
µ =

∑
Λ`(s(λ))

sλγs
∗
µγ(9)

where ` = n−m. Hence the C∗–algebras Fm, m ∈ Nk, form a directed system as
required. �
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Note that FΛ may also be expressed as the closure of ∪∞j=1Fjp where p =
(1, . . . , 1) ∈ Nk.

Clearly for t ∈ Tk the gauge automorphism αt defined in (5) fixes those elements
sλs
∗
µ ∈ C∗(Λ) with d(λ) = d(µ) (since αt(sλs∗µ) = td(λ)−d(µ)sλs

∗
µ) and hence FΛ

is contained in the fixed point algebra C∗(Λ)α. Consider the linear map on C∗(Λ)
defined by

Φ(x) =
∫

Tk
αt(x) dt

where dt denotes normalised Haar measure on Tk and note that Φ(x) ∈ C∗(Λ)α

for all x ∈ C∗(Λ). As the proof of the following result is now standard, we omit it
(see [CK, Proposition 2.11], [RS2, Lemma 3.3], [BPRS, Lemma 2.2]).

Lemma 3.3. Let Φ, FΛ be as described above.
(i) The map Φ is a faithful conditional expectation from C∗(Λ) onto C∗(Λ)α.

(ii) FΛ = C∗(Λ)α.

Hence the fixed point algebra C∗(Λ)α is an AF algebra. This fact is key to the
proof of the gauge–invariant uniqueness theorem for C∗(Λ) (see [BPRS, Theorem
2.1], [aHR, Theorem 2.3], see also [CK, RS2] where a similar technique is used in
the proof of simplicity).

Theorem 3.4. Let B be a C∗–algebra, π : C∗(Λ) → B be a homomorphism and
let β : Tk → Aut (B) be an action such that π ◦ αt = βt ◦ π for all t ∈ Tk. Then π
is faithful if and only if π(pv) 6= 0 for all v ∈ Λ0.

Proof. If π(pv) = 0 for some v ∈ Λ0 then clearly π is not faithful. Conversely,
suppose that π is equivariant and that π(pv) 6= 0 for all v ∈ Λ0. We first show
that π is faithful on C∗(Λ)α =

⋃
j≥0 Fjp. For any ideal I in C∗(Λ)α, we have

I =
⋃
j≥0(I ∩ Fjp) (see [B, Lemma 3.1], [ALNR, Lemma 1.3]). Thus it is enough

to prove that π is faithful on each Fn. But by 3.2 it suffices to show that it is
faithful on Fn(v), for all v ∈ Λ0. Fix v ∈ Λ0 and λ, µ ∈ Λn with s(λ) = s(µ) = v
we need only show that π(sλs∗µ) 6= 0. Since π(pv) 6= 0 we have

0 6= π(p2
v) = π(s∗λsλs

∗
µsµ) = π(s∗λ)π(sλs∗µ)π(sµ).

Hence π(sλs∗µ) 6= 0 and π is faithful on C∗(Λ)α. Let a ∈ C∗(Λ) be a nonzero
positive element; then since Φ is faithful Φ(a) 6= 0 and as π is faithful on C∗(Λα)
we have

0 6= π(Φ(a)) = π

(∫
Tk
αt(a) dt

)
=
∫

Tk
βt(π(a)) dt,

hence π(a) 6= 0 and π is faithful on C∗(Λ) as required. �

Corollary 3.5.
(i) Let (Λ, d) be a k-graph and let GΛ be its associated groupoid. Then there is an

isomorphism C∗(Λ) ∼= C∗(GΛ) such that sλ 7→ 1Z(λ,s(λ)) for λ ∈ Λ. Moreover,
the canonical map C∗(GΛ)→ C∗r (GΛ) is an isomorphism.

(ii) Let {M1, . . . ,Mk} be a collection of matrices satisfying (H0)–(H3) of [RS2]
and W the k-graph defined in 1.7(iv). Then C∗(W ) ∼= A, via the map sλ 7→
sλ,s(λ) for λ ∈W .
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(iii) If Λ is a k-graph and f : N` → Nk is injective, then the ∗-homomorphism πf :
C∗(f∗(Λ)) → C∗(Λ) (see 1.11) is injective. In particular the C∗–algebras of
the coordinate graphs Λi for 1 ≤ i ≤ k form a generating family of subalgebras
of C∗(Λ). Moreover, if f is surjective then C∗(f∗(Λ)) ∼= C∗(Λ)⊗ C(T`−k).

(iv) Let (Λi, di) be ki-graphs for i = 1, 2, then C∗(Λ1 × Λ2) ∼= C∗(Λ1) ⊗ C∗(Λ2)
via the map s(λ1,λ2) 7→ sλ1 ⊗ sλ2 for (λ1, λ2) ∈ Λ1 × Λ2.

Proof. For (i) we note that sλ 7→ 1Z(λ,s(λ)) for λ ∈ Λ is a ∗-representation of Λ;
hence there is a ∗-homomorphism π : C∗(Λ)→ C∗(GΛ) such that π(sλ) = 1Z(λ,s(λ))

for λ ∈ Λ (see 1.6(i)). Let β denote the Tk-action on C∗(GΛ) induced by the Zk-
valued 1–cocycle defined on GΛ by (x, k, y) 7→ k (see [R, II.5.1]); one checks that
π◦αt = βt◦π for all t ∈ Tk. Clearly for v ∈ Λ0 we have 1Z(v,v) 6= 0, since Λ∞(v) 6= ∅
and π is injective. Surjectivity follows from the fact that π(sλs∗µ) = 1Z(λ,µ) together
with the observation that C∗(GΛ) = span{1Z(λ,µ)}. The same argument shows that
C∗r (GΛ) ∼= C∗(Λ) and so C∗r (GΛ) ∼= C∗(GΛ)1 .

For (ii) we note that there is a surjective ∗-homomorphism π : C∗(W ) → A
such that π(sλ) = sλ,s(λ) for λ ∈ W (see 1.7(iv)) which is clearly equivariant for
the respective Tk–actions. Moreover by [RS2, Lemma 2.9] we have sv,v 6= 0 for all
v ∈W0 = A and so the result follows.

For (iii) note that the injection f : N` → Nk extends naturally to a homomor-
phism f : Z` → Zk which in turn induces a map f̂ : Tk → T` characterised by
f̂(t)p = tf(p) for p ∈ N`. Let B be the fixed point algebra of the gauge action of Tk

on C∗(Λ) restricted to the kernel of f̂ . The gauge action restricted to B descends
to an action of T` = Tk/Ker f̂ on B which we denote α. Observe that for t ∈ Tk

and (λ, n) ∈ f∗(Λ) we have

αt(πf (s(λ,n))) = tf(n)sλ = f̂(t)nsλ;

hence Imπf ⊆ B (if t ∈ Ker f̂ , then f̂(t)n = 1). By the same formula we see that
πf ◦ α = α ◦ πf and the result now follows by 3.4. The last assertion follows from
part (i) together with the fact that Gf∗(Λ)

∼= GΛ × Z`−k (see 2.10).
For (iv), define a map π : C∗(Λ1 × Λ2)→ C∗(Λ1)⊗ C∗(Λ2) given by s(λ1,λ2) 7→

sλ1 ⊗ sλ2 ; this is surjective as these elements generate C∗(Λ1)⊗ C∗(Λ2). We note
that C∗(Λ1) ⊗ C∗(Λ2) carries a Tk1+k2 action β defined for (t1, t2) ∈ Tk1+k2 and
(λ0, λ1) ∈ Λ1 ×Λ2 by β(t1,t2)(sλ1 ⊗ sλ2) = αt1sλ1 ⊗ αt2sλ2 . Injectivity then follows
by 3.4, since π is equivariant and for (v, w) ∈ (Λ1 ×Λ2)0 we have pv ⊗ pw 6= 0. �

Henceforth we shall tacitly identify C∗(Λ) with C∗(GΛ).

Remark 3.6. Let Λ be a k-graph and suppose that f : N` → Nk is an injective
morphism for which H, the image of f , is cofinal. Then πf induces an isomorphism
of C∗(f∗(Λ)) with its range, the fixed point algebra of the restriction of the gauge
action to H⊥.

4. Aperiodicity and its consequences

The aperiodicity condition we study in this section is an analog of condition (L)
used in [KPR]. We first define what it means for an infinite path to be periodic or
aperiodic.

1This can be also deduced from the amenability of GΛ (see 5.5).
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Definitions 4.1. For x ∈ Λ∞ and p ∈ Zk we say that p is a period of x if for
every (m,n) ∈ Ω with m+ p ≥ 0 we have x(m+ p, n+ p) = x(m,n). We say that
x is periodic if it has a nonzero period. We say that x is eventually periodic if
σnx is periodic for some n ∈ Nk, otherwise x is said to be aperiodic.

Remarks 4.2. For x ∈ Λ∞ and p ∈ Zk, p is a period of x if and only if σmx = σnx
for all m,n ∈ Nk such that p = m − n. Similarly x is eventually periodic, with
eventual period p 6= 0 if and only if σmx = σnx for some m,n ∈ Nk such that
p = m− n.

Definition 4.3. The k-graph Λ is said to satisfy the aperiodicity condition (A)
if for every v ∈ Λ0 there is an aperiodic path x ∈ Λ∞(v).

Remark 4.4. Let E be a directed graph which is row finite and has no sinks.
Then the associated 1-graph E∗ satisfies the aperiodicity condition if and only if
every loop in E has an exit (i.e., satisfies condition (L) of [KPR]). However, if we
consider the 2-graph f∗(E∗) where f : N2 → N is given by f(m1,m2) = m1 +m2

then p = (1,−1) is a period for every point in f∗(E∗)∞ (even if E has no loops).

Proposition 4.5. The groupoid GΛ is essentially free (i.e., the points with trivial
isotropy are dense in G0

Λ) if and only if Λ satisfies the aperiodicity condition.

Proof. Observe that if x ∈ Λ∞ is aperiodic then σmx = σnx implies that m = n
and hence x ∈ Λ∞ = G0

Λ has trivial isotropy, and conversely. Hence GΛ is essentially
free if and only if aperiodic points are dense in Λ∞. If aperiodic points are dense
in Λ∞ then Λ clearly satisfies the aperiodicity condition, for Z(v) = Λ∞(v) must
then contain aperiodic points for every v ∈ Λ0. Conversely, suppose that Λ satisfies
the aperiodicity condition, then for every λ ∈ Λ there is x ∈ Λ∞(s(λ)) which is
aperiodic. Then λx ∈ Z(λ) is aperiodic. Hence the aperiodic points are dense in
Λ∞. �

The isotropy group of an element x ∈ Λ∞ is equal to the subgroup of its eventual
periods (including 0).

Theorem 4.6. Let π : C∗(Λ) → B be a ∗–homomorphism and suppose that Λ
satisfies the aperiodicity condition. Then π is faithful if and only if π(pv) 6= 0 for
all v ∈ Λ0.

Proof. If π(pv) = 0 for some v ∈ Λ0 then clearly π is not faithful. Conversely,
suppose π(pv) 6= 0 for all v ∈ Λ0; then by 3.5(i) we have C∗(Λ) = C∗r (GΛ) and hence
from [KPR, Corollary 3.6] it suffices to show that π is faithful on C0(G0

Λ). If the
kernel of the restriction of π to C0(G0

Λ) is nonzero, it must contain the characteristic
function 1Z(λ) for some λ ∈ Λ. It follows that π(sλs∗λ) = 0 and hence π(sλ) = 0; in
which case π(ps(λ)) = π(s∗λsλ) = 0, a contradiction. �

Definition 4.7. We say that Λ is cofinal if for every x ∈ Λ∞ and v ∈ Λ0 there is
λ ∈ Λ and n ∈ Nk such that s(λ) = x(n) and r(λ) = v.

Proposition 4.8. Suppose Λ satisfies the aperiodicity condition, then C∗(Λ) is
simple if and only if Λ is cofinal.

Proof. By 3.5(i) C∗(Λ) = C∗r (GΛ); since GΛ is essentially free, C∗(Λ) is simple if
and only if GΛ is minimal. Suppose that Λ is cofinal and fix x ∈ Λ∞ and λ ∈ Λ;
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then by cofinality there is a µ ∈ Λ and n ∈ Nk so that s(µ) = x(n) and r(µ) = s(λ).
Then y = λµσnx ∈ Z(λ) and y is in the same orbit as x; hence all orbits are dense
and GΛ is minimal.

Conversely, suppose that GΛ is minimal and that x ∈ Λ∞ and v ∈ Λ0. Then
there is y ∈ Z(v) such that x, y are in the same orbit. Hence there exist m,n ∈ Nk

such that σnx = σmy; then it is easy to check that λ = y(0,m) and n have the
desired properties. �

Notice that second hypothesis used in the following corollary is the analog of the
condition that every vertex connects to a loop and it is equivalent to requiring that
for every v ∈ Λ0, there is an eventually periodic x ∈ Λ∞(v) with positive eventual
period (i.e., the eventual period lies in Nk\{0}). The proof follows the same lines
as [KPR, Theorem 3.9].

Proposition 4.9. Let Λ satisfy the aperiodicity condition. Suppose that for every
v ∈ Λ0 there are λ, µ ∈ Λ with d(µ) 6= 0 such that r(λ) = v and s(λ) = r(µ) = s(µ).
Then C∗(Λ) is purely infinite in the sense that every hereditary subalgebra contains
an infinite projection.

Proof. Arguing as in [KPR, Lemma 3.8] one shows that GΛ is locally contracting.
The aperiodicity condition guarantees that GΛ is essentially free, hence by [A-D,
Proposition 2.4] (see also [LS]) we have C∗(Λ) = C∗r (GΛ) is purely infinite. �

5. Skew products and group actions

Let G be a discrete group, Λ a k-graph and c : Λ→ G a functor. We introduce
an analog of the skew product graph considered in [KP, §2] (see also [GT]); the
resulting object, which we denote G ×c Λ, is also a k-graph. As in [KP] if G is
abelian the associated C∗–algebra is isomorphic to a crossed product of C∗(Λ) by
the natural action of Ĝ induced by c (more generally it is a crossed product by
a coaction — see [Ma, KQR]). As a corollary we show that the crossed product
of C∗(Λ) by the gauge action, C∗(Λ) oα Tk, is isomorphic to C∗(Zk ×d Λ), the
C∗–algebra of the skew-product k-graph arising from the degree map. It will then
follow that C∗(Λ)oα Tk is AF and that GΛ is amenable.

Definition 5.1. Let G be a discrete group, (Λ, d) a k-graph. Given c : Λ → G a
functor then define the skew product G×cΛ as follows: the objects are identified
withG×Λ0 and the morphisms are identified withG×Λ with the following structure
maps

s(g, λ) = (gc(λ), s(λ)) and r(g, λ) = (g, r(λ)).

If s(λ) = r(µ) then (g, λ) and (gc(λ), µ) are composable in G×c Λ and

(g, λ)(gc(λ), µ) = (g, λµ).

The degree map is given by d(g, λ) = d(λ).

One must check that G×cΛ is a k-graph. If k = 1 then any function c : E1 → G
extends to a unique functor c : E∗ → G (as in [KP, §2]). The skew product graph
E(c) of [KP] is related to our skew product in a simple way: G×c E∗ = E(c)∗. A
key example of this construction arises by regarding the degree map d as a functor
with values in Zk.
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The functor c induces a cocycle c̃ : GΛ → G as follows: given (x, `−m, y) ∈ GΛ

so that σ`x = σmy then set

c̃(x, `−m, y) = c(x(0, `))c(y(0,m))−1.

As in [KP] one checks that this is well-defined and that c̃ is a (continuous) cocycle;
regarding the degree map d as a functor with values in Zk, we have d̃(x, n, y) = n for
(x, n, y) ∈ GΛ. In the following we show that the skew product groupoid obtained
from c̃ (as defined in [R]) is the same as the path groupoid of the skew product
(cf. [KP, Theorem 2.4]).

Theorem 5.2. Let G be a discrete group, Λ a k-graph and c : Λ → G a functor.
Then GG×cΛ ∼= GΛ(c̃) where c̃ : GΛ → G is defined as above.

Proof. We first identify G× Λ∞ with (G×c Λ)∞ as follows: for (g, x) ∈ G× Λ∞

define (g, x) : Ω→ G×c Λ by

(g, x)(m,n) = (gc(x(0,m)), x(m,n));

it is straightforward to check that this defines a degree–preserving functor and thus
an element of (G×cΛ)∞. Under this identification σn(g, x) = (gc(x(0, n)), σnx) for
all n ∈ Nk, (g, x) ∈ (G×c Λ)∞. As in the proof of [KP, Theorem 2.4] define a map
φ : GΛ(c̃)→ GG×cΛ as follows: for x, y ∈ Λ∞ with σ`x = σmy set φ([x, `−m, y], g) =
(x′, `−m, y′) where x′ = (g, x) and y′ = (gc̃(x, `−m, y), y). Note that

σmy′ = σm(gc̃(x, `−m, y), y) = σm(gc(x(0, `))c(y(0,m))−1, y)

= (gc(x(0, `)), σmy) = (gc(x(0, `)), σ`x) = σ`(g, x)

= σ`x′,

and hence (x′, `−m, y′) ∈ GG×cΛ. The rest of the proof proceeds as in [KP, Theorem
2.4] mutatis mutandis. �
Corollary 5.3. Let G be a discrete abelian group, Λ a k-graph and c : Λ → G a
functor. There is an action αc : Ĝ→ AutC∗(Λ) such that for χ ∈ Ĝ and λ ∈ Λ

αcχ(sλ) = 〈χ, c(λ)〉sλ.
Moreover C∗(Λ)oαc Ĝ ∼= C∗(G×cΛ). In particular the gauge action is of the form,
α = αd, and so C∗(Λ)oα Tk ∼= C∗(Zk ×d Λ).

Proof. Since C∗(Λ) is defined to be the universal C∗–algebra generated by the
sλ’s subject to the relations (1.5) and αc preserves these relations it is clear that it
defines an action of Ĝ on C∗(Λ). The rest of the proof follows in the same manner
as that of [KP, Corollary 2.5] (see [R, II.5.7]). �

In order to show that C∗(Λ)oα Tk is AF, we need the following lemma.

Lemma 5.4. Let Λ be a k-graph and suppose there is a map b : Λ0 → Zk such that
d(λ) = b(s(λ))− b(r(λ)) for all λ ∈ Λ, then C∗(Λ) is AF.

Proof. For every n ∈ Zk let An be the closed linear span of elements of the form
sλs
∗
µ with b(s(λ)) = n. Fix λ, µ ∈ Λ with b(s(λ)) = b(s(µ)) = n. We claim that

s∗λsµ = 0 if λ 6= µ. If s∗λsµ 6= 0 then by 3.1 there are α, β ∈ Λ with s(λ) = r(α) and
s(µ) = r(β) such that λα = µβ; but then we have

d(α) + n = d(α) + b(s(λ)) = b(s(λα)) = b(s(µβ)) = d(β) + b(s(µ)) = d(β) + n.
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Thus d(α) = d(β) and hence by the factorisation property α = β. Consequently
λ = µ by cancellation and the claim is established. It follows that for each v with
b(v) = n the elements sλs∗µ with s(λ) = s(µ) = v form a system of matrix units
and two systems associated to distinct v’s are orthogonal (see 3.2). Hence we have

An ∼=
⊕
b(v)=n

K (`2(s−1(v)
)
.

By an argument similar to that in the proof of Lemma 3.2, if n ≤ m then An ⊆ Am
(see equation (9)); our conclusion now follows. �

Note that An in the above proof is the C∗–algebra of a subgroupoid of GΛ which
is isomorphic to the disjoint union⊔

b(v)=n

Rv × Λ∞(v)

where Rv is the transitive principal groupoid on s−1(v). Since GΛ is the increasing
union of these elementary groupoids, it is an AF-groupoid and hence amenable (see
[R, III.1.1]). The existence of such a function b : Λ0 → Zk is not necessary for
C∗(Λ) to be AF since there are 1–graphs with no loops which do not have this
property (see [KPR, Theorem 2.4]).

Theorem 5.5. Let Λ be a k-graph, then C∗(Λ)oαTk is AF and the groupoid GΛ is
amenable. Moreover, C∗(Λ) falls in the bootstrap class N of [RSc] and is therefore
nuclear. Hence, if C∗(Λ) is simple and purely infinite (see Proposition 4.9), then
it may be classified by its K-theory.

Proof. Observe that the map b : (Zk ×d Λ)0 → Zk given by b(n, v) = n satisfies

b(s(n, λ))− b(r(n, λ)) = b(n+ d(λ), λ)− b(n, r(λ)) = n+ d(λ)− n = d(n, λ)

The first part of the result then follows from 5.4 and 5.3. To show that GΛ is
amenable we first observe that GΛ(d̃) ∼= GZk×dΛ is amenable. Since Zk is amenable,
we may apply [R, Proposition II.3.8] to deduce that GΛ is amenable. Since C∗(Λ)
is strongly Morita equivalent to the crossed product of an AF algebra by a Zk–
action, it falls in the bootstrap class N of [RSc]. The final assertion follows from
the Kirchberg-Phillips classification theorem (see [K, P]). �

We now consider free actions of groups on k-graphs (cf. [KP, §3]). Let Λ be a k-
graph andG a countable group, thenG acts on Λ if there is a group homomorphism
G→ Aut Λ (automorphisms are compatible with all structure maps, including the
degree): write (g, λ) 7→ gλ. The action of G on Λ is said to be free if it is free on
Λ0. By the universality of C∗(Λ) an action of G on Λ induces an action β on C∗(Λ)
such that βgsλ = sgλ.

Given a free action of a group G on a k-graph Λ one forms the quotient Λ/G
by the equivalence relation λ ∼ µ if λ = gν for some g ∈ G. One checks that all
structure maps are compatible with ∼ and so Λ/G is also a k-graph.

Remark 5.6. Let G be a countable group and c : Λ → G a functor, then G acts
freely on G×c Λ by g(h, λ) = (gh, λ); furthermore (G×c Λ)/G ∼= Λ.

Suppose now that G acts freely on Λ with quotient Λ/G; we claim that Λ is
isomorphic, in an equivariant way, to a skew product of Λ/G for some suitably
chosen c (see [GT, Theorem 2.2.2]). Let q denote the quotient map. For every
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v ∈ (Λ/G)0 choose v′ ∈ Λ0 with q(v′) = v and for every λ ∈ Λ/G let λ′ denote the
unique element in Λ such that q(λ′) = λ and r(λ′) = r(λ)′. Now let c : Λ/G → G
be defined by the formula

s(λ′) = c(λ)s(λ)′.

We claim that c(λµ) = c(λ)c(µ) for all λ, µ ∈ Λ with s(λ) = r(µ). Note that

r(c(λ)µ′) = c(λ)r(µ′) = c(λ)r(µ)′ = c(λ)s(λ)′ = s(λ′);

hence, we have (λµ)′ = λ′(c(λ)µ′) (since the image of both sides agree under q and
r). Thus

c(λµ)s(µ)′ = c(λµ)s(λµ)′ = s[(λµ)′] = s(c(λ)µ′) = c(λ)s(µ′) = c(λ)c(µ)s(µ)′

which establishes the desired identity (since G acts freely on Λ). The map (g, λ) 7→
gλ′ defines an equivariant isomorphism between G×c (Λ/G) and Λ as required.

The following is a generalization of [KPR, 3.9, 3.10] and is proved similarly.

Theorem 5.7. Let Λ be a k-graph and suppose that the countable group G acts
freely on Λ, then

C∗(Λ)oβ G ∼= C∗(Λ/G)⊗K (`2(G)
)
.

Equivalently, if c : Λ′ → G is a functor, then

C∗(G×c Λ′)oβ G ∼= C∗(Λ′)⊗K (`2(G)
)

where β, the action of G on C∗(G×cΛ′), is induced by the natural action on G×cΛ′.
If G is abelian this action is dual to αc under the identification of 5.3.

Proof. The first statement follows from the second with Λ′ = Λ/G; indeed, by 5.6
there is a functor c : Λ/G → G such that Λ ∼= G ×c (Λ/G) in an equivariant way.
The second statement follows from applying [KP, Proposition 3.7] to the natural
G-action on GG×cΛ′ ∼= GΛ′(c̃). The final statement follows from the identifications

C∗(Λ)oαc Ĝ ∼= C∗(G×c Λ) ∼= C∗(GΛ(c̃))

and [R, II.2.7]. �

6. 2-graphs

Given a k-graph Λ one obtains for each n ∈ Nk a matrix

Mn
Λ(u, v) = #{λ ∈ Λn : r(λ) = u, s(λ) = v}.

By our standing assumption the entries are all finite and there are no zero rows.
Note that for any m,n ∈ Nk we have Mm+n

Λ = Mm
Λ M

n
Λ (by the factorisation

property); consequently, the matrices Mm
Λ and Mn

Λ commute for all m,n ∈ Nk. If
W is the k-graph associated to the commuting matrices {M1, . . . ,Mk} satisfying
conditions (H0)–(H3) of [RS2] which was considered in Example 1.7(iv), then one
checks that Mei

W = M t
i . Further, if Λ = E∗ is a 1-graph derived from the directed

graph E, then M1
Λ is the vertex matrix of E.

Now suppose that A and B are 1-graphs with A0 = B0 = V such the associated
vertex matrices commute. Set A1 ∗ B1 = {(α, β) ∈ A1 × B1 : s(α) = r(β)} and
B1 ∗ A1 = {(β, α) ∈ B1 × A1 : s(β) = r(α)}; since the associated vertex matrices
commute there is a bijection θ : (α, β) 7→ (β′, α′) from A1 ∗B1 to B1 ∗A1 such that
r(α) = r(β′) and s(β) = s(α′). We construct a 2-graph Λ from A, B and θ. This
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construction is very much in the spirit of [RS2]; roughly speaking an element in Λ
of degree (m,n) ∈ N2 will consist of a rectangular grid of size (m,n) with edges
of A horizontally, edges of B vertically and nodes in V arranged compatibly. First
identify Λ0 = V . For (m,n) ∈ N2 set W (m,n) = {(i, j) ∈ N2 : (i, j) ≤ (m,n)}.
An element in Λ(m,n) is given by v(i, j) ∈ V for (i, j) ∈ W (m,n), α(i, j) ∈ A1 for
(i, j) ∈ W (m− 1, n) and β(i, j) ∈ B1 for (i, j) ∈ W (m,n− 1) (set W (m,n) = ∅ if
m or n is negative) satisfying the following compatibility conditions wherever they
make sense:

i. r(α(i, j)) = v(i, j) and r(β(i, j)) = v(i, j)
ii. s(α(i, j)) = v(i+ 1, j) and s(β(i, j)) = v(i, j + 1)
iii. θ(α(i, j), β(i+ 1, j)) = (β(i, j), α(i, j + 1));

for brevity and with a slight abuse of notation we regard this element as a triple
(v, α, β) (note that α disappears if m = 0 and β disappears if n = 0 and v is
determined by α and/or β if mn 6= 0). Set

Λ =
⋃

(m,n)

Λ(m,n)

and define s(v, α, β) = v(m,n) and r(v, α, β) = v(0, 0).
Note that if λ ∈ Am and µ ∈ Bn with m,n > 0 such that s(λ) = r(µ) there is

a unique element (v, α, β) ∈ Λ(m,n) such that λ = α(0, 0)α(1, 0) · · ·α(m− 1, 0) and
µ = β(m, 0)β(m, 1) · · ·β(m,n− 1); denote this element λµ. Further if λ ∈ Am and
µ ∈ Bn with m,n > 0 such that r(λ) = s(µ) there is a unique element (v, α, β) in
Λ(m,n) such that λ = α(0, n)α(1, n) · · ·α(m−1, n) and µ = β(0, 0)β(0, 1) · · ·β(0, n−
1); denote this element µλ. Using these two facts it is not difficult to verify that
given elements (v, α, β) ∈ Λ(m,n) and (v′, α′, β′) ∈ Λ(m′,n′) with v(m,n) = v′(0, 0)
there is a unique element (v′′, α′′, β′′) ∈ Λ(m+m′,n+n′) such that v′′(i, j) = v(i, j),
α′′(i, j) = α(i, j), β′′(i, j) = β(i, j), v′′(m + i, n + j) = v′(i, j), α′′(m + i, n +
j) = α′(i, j) and β′′(m + i, n + j) = β′(i, j) wherever these formulas make sense.
Write (v′′, α′′, β′′) = (v, α, β)(v′, α′, β′). This defines composition in Λ; note that
associativity and the factorisation property are built into the construction (as in
[RS2]). Finally, we write Λ = A ∗θ B. It is straightforward to verify that up to
isomorphism any 2-graph may be obtained from its constituent 1-graphs in this
way.

If A = B, then we may take θ = ι the identity map. In that case one has
A ∗ι A ∼= f∗(A) where f : N2 → N is given by f(m,n) = m + n. Hence, by
Corollary 3.5(iii) we have C∗(A ∗ι A) ∼= C∗(A)⊗ C(T).

To further emphasise the dependence of the product A ∗θ B on the bijection
θ : A1 ∗B1 → B1 ∗A1 consider the following example.

Example 6.1. Let A = B be the 1-graph derived from the directed graph which
consists of one vertex and two edges, say A1 = {e, f} (note C∗(A) ∼= O2). Then
A1 ∗ A1 = {(e, e), (e, f), (f, e), (f, f)}, and we define the bijection θ to be the flip.
It is easy to show that A ∗θ A ∼= A×A; hence,

C∗(A ∗θ A) ∼= O2 ⊗O2
∼= O2

where the first isomorphism follows from Corollary 3.5(iv) and the second from the
Kirchberg-Phillips classification theorem (see [K, P]). But

C∗(A ∗ι A) ∼= O2 ⊗ C(T);
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hence, A ∗θ A 6∼= A ∗ι A.
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