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Abstract� We prove versions of the fundamental theorems about Cuntz�
Krieger algebras for the C��algebras of row��nite graphs directed graphs in
which each vertex emits at most �nitely many edges� Special cases of these
results have previously been obtained using various powerful machines� our
main point is that direct methods yield sharper results more easily�
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In the last few years various authors have considered analogues of the Cuntz�
Krieger algebras associated to in�nite directed graphs� In ��� and ��� these graph
C��algebras were studied using a groupoid model and the deep results of Renault
on the ideal structure of groupoid C��algebras� in �	� and ��� they were viewed
as the Cuntz�Pimsner algebras of appropriate Hilbert bimodules� as introduced in
�
�� Because of the technical requirements of these general theories� it has usually
been assumed that the graphs are locally �nite� in the sense that every vertex
receives and emits at most �nitely many edges� and that the graphs do not have
sinks� However� it was pointed out in ��� that to make sense of the Cuntz�Krieger
relations in a C��algebra� one merely needs to insist that the graph is row��nite�
each vertex emits at most �nitely many edges�

Here we shall prove versions of the fundamental theorems about Cuntz�Krieger
algebras for the C��algebras of row��nite graphs� and use them to give a new de�
scription of the primitive ideal spaces of graph C��algebras� We prove a uniqueness
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theorem like that of �� whenever every loop has an exit ���� and �nd a parametri�
sation of the ideals like that of 	� and �� whenever the graph satis�es Condition
�K� of ���� every vertex lies on either no loops or at least two loops� Both theorems
apply to graphs with sinks� this new generality is important because it has been
shown in ��� that the Cuntz�Krieger algebras of all in�nite graphs and matrices
can be approximated by the algebras of �nite graphs with sinks� Our description of
the primitive ideal space applies to any row��nite graph satisfying Condition �K��

To achieve the extra generality in the fundamental theorems� we use direct ar�
guments rather than the machinery of groupoid or Cuntz�Pimsner algebras� Many
of the techniques can be traced back to the original papers of Cuntz and Krieger
�� 	�� but they have been reworked and re�ned many times since then� and we have
been pleasantly surprised to discover how cleanly the arguments have emerged�
Even those who are only interested in the Cuntz�Krieger algebras of �nite f�� �g�
matrices should �nd our arguments much easier than the original ones� To describe
the primitive ideal spaces of graph algebras� on the other hand� we have had to de�
velop new methods� because the arguments used in �� depended heavily on �nite�
ness of the vertex set� Once again� though� the result can be elegantly expressed in
graph�theoretic terms�

We begin in x� by recalling the basic de�nitions from ��� and setting up our
notation� and prove a couple of technical lemmas which can be ignored by those
interested only in �nite graphs without sinks� The second of these lemmas shows
how to reduce questions about graphs with sinks to graphs without sinks� it is cu�
rious to note that even for �nite graphs with sinks� the reduction involves in�nite
graphs� Our approach to the general theory follows that of ��� Thus the graph
algebra C��E� of a directed graph E is by de�nition universal for Cuntz�Krieger
E�families� and the �rst main theorem says that this C��algebra is uniquely char�
acterised by the existence of a canonical action of T called the gauge action �The�
orem ���� compare �� Theorem ������ This gauge�invariant uniqueness theorem

allows us to establish many of the basic properties of graph algebras without any
extra hypotheses on the graph� That there is such a theorem will not be surprising
to those familiar with crossed products B oZ and their generalisations� it is of in�
terest here because for many years authors have assumed that their f�� �g�matrices
A satis�ed Condition �I� of �� merely to ensure that the Cuntz�Krieger algebras
OA were well�de�ned� and now we can see that such hypotheses are required only
if one needs uniqueness when there is no obvious gauge action� As an example of
this� we use the gauge�invariant uniqueness theorem to show that the C��algebras
of a graph and its dual are always canonically isomorphic� improving a result of ���

We prove a generalisation of the full uniqueness theorem of Cuntz and Krieger in
x�� While our result is slightly more general than ��� Theorem ����� and in poten�
tially important ways� we believe the main interest lies in the clarity and directness
of its proof� The same is true of the next section� in which we analyse the ideal
structure of graph algebras� As in ��� we �rst use the gauge�invariant uniqueness
theorem to analyse the gauge�invariant ideals in C��E� without extra hypotheses on
E� it is then relatively easy to deduce from the Cuntz�Krieger uniqueness theorem
that these are all the ideals when E satis�es the analogue �K� of Cuntz�s Condition
�II� introduced in ����

In x
� we characterise the graphs which have simple and purely in�nite C��
algebras� Our criterion for simplicity follows from the analysis of ideals in x��
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To prove in�niteness� we use arguments like those of x� to plug into the standard
program of� for example� �� or ���� in retrospect� our proof is similar to that of ���
x
�� but is expressed in more elementary terms� We close in x	 with our description
of the primitive ideal space of C��E� when E satis�es �K�� which is in Theorem 	��
and Corollary 	�
�

�� The C��algebras of graphs

A directed graph E � �E�� E�� r� s� consists of countable sets E� of vertices and
E� of edges� and maps r� s � E� � E� identifying the range and source of each
edge� The graph is row��nite if each vertex emits at most �nitely many edges� We
write En for the set of paths � � ���� � � ��n of length j�j �� n� that is� sequences
of edges �i such that r��i� � s��i��� for � � i � n� The maps r� s extend to
E� ��

S
n��E

n in an obvious way� and s extends to the set E� of in�nite paths
� � ���� � � � �

Let E be a row��nite �directed� graph� A Cuntz�Krieger E�family in a C��
algebra B consists of mutually orthogonal projections fpv � v � E�g and partial
isometries fse � e � E�g satisfying the Cuntz�Krieger relations

s�ese � pr�e� for e � E� and pv �
X

fe�s�e��vg

ses
�
e whenever v is not a sink�

We shall typically use small letters fse� pvg for Cuntz�Krieger families in a C��
algebra and large letters fSe� Pvg for Cuntz�Krieger families of operators on Hilbert
space�

It is proved in ��� Theorem ���� that there is a C��algebra C��E� generated
by a universal Cuntz�Krieger E�family fse� pvg� in other words� for every Cuntz�
Krieger E�family fte� qvg in a C��algebra B� there is a homomorphism � � �t�q �
C��E�� B such that ��se� � te and ��pv� � qv for all e � E�� v � E�� Since it is
easy to construct families fSe� Pvg in which all the operators are non�zero� we have
pv �� � for all v � E�� a product s� �� s��s�� � � � s�n is non�zero precisely when
� � ���� � � ��n is a path in En� Since the Cuntz�Krieger relations imply that the
range projections ses

�
e are also mutually orthogonal� we have s

�
esf � � unless e � f �

and words in fse� s�fg collapse to products of the form s�s
�
� for �� � � E� satisfying

r��� � r���� �See ��� Lemma ���� for some speci�c formulas�� Indeed� because the
family fs�s��g is closed under multiplication and involution� we have

C��E� � spanfs�s
�
� � �� � � E� and r��� � r���g������

We adopt the conventions that vertices are paths of length �� that sv �� pv for
v � E�� and that all paths �� � appearing in ����� are non�empty� we recover s��
for example� by taking � � r���� so that s�s

�
� � s�pr��� � s��

If z � T� then the family fzse� pvg is another Cuntz�Krieger E�family which
generates C��E�� and the universal property gives a homomorphism �z � C

��E��
C��E� such that �z�se� � zse and �z�pv� � pv� The homomorphism �z is an inverse
for �z� so �z � AutC��E�� and a routine 	
� argument using ����� shows that � is
a strongly continuous action of T on C��E�� It is called the gauge action� Because
T is compact� averaging over � with respect to normalised Haar measure gives an



��� T� Bates� D� Pask� I� Raeburn� and W� Szyma�nski

expectation � of C��E� onto the �xed�point algebra C��E�� �

��a� ��

Z
T

�z�a� dz for a � C��E��

The map � is positive� has norm �� and is faithful in the sense that ��a�a� � �
implies a � ��

When we adapt arguments from �nite graphs to in�nite ones� formulas which
involve sums of projections may contain in�nite sums� To make sense of these� we
use strict convergence in the multiplier algebra of C��E��

Lemma ���� Let E be a row��nite graph� let A be a C��algebra generated by a

Cuntz�Krieger E�family fte� qvg� and let fpng be a sequence of projections in A� If

pnt�t
�
� converges for every �� � � E�� then fpng converges strictly to a projection

p �M�A��

Proof� Since we can approximate any a � A � �t�q�C
��E�� by a linear combination

of t�t
�
� � an 	
��argument shows that fpnag is Cauchy for every a � A� We de�ne

p � A� A by p�a� �� limn�� pna� Since

b�p�a� � lim
n��

b�pna � lim
n��

�pnb�
�a � p�b��a�

the map p is an adjointable operator on the Hilbert C��module AA� and hence
de�nes �left multiplication by� a multiplier p of A ��� Theorem ������ Taking
adjoints shows that apn � ap for all a� so pn � p strictly� It is easy to check that
p� � p � p�� �

It will be important in applications that we allow our graphs to have sinks �see
����� but it is technically easy to reduce to the case where there are no sinks�
Notice� though� that even if we start with �nite graphs� this reduction gives us
in�nite graphs�

By adding a tail at a vertex w we mean adding a graph of the form

�
w

�
v�

�
v�

�
v	

�
v

� � ������������������������������������������������������������������������������������������������������������������������������� ����

��������
e�

������������������������������������������������������������������������������������������������������������������������������ ����
��������

e�
������������������������������������������������������������������������������������������������������������������������������ ����

��������
e	

������������������������������������������������������������������������������������������������������������������������������ ����
��������

e

�����

to E to form a new graph F � thus F � �� E� � fvi � � � i � 	g� F � �� E� � fei �
� � i �	g� and r� s are extended to F � by r�ei� � vi� s�ei� � vi�� and s�e�� � w�
When we add tails to sinks in E we have put exactly one edge out of each sink
and new vertex� so it is easy to extend Cuntz�Krieger E�families to Cuntz�Krieger
families for the larger graph F � and C��E� embeds as a full corner in C��F �� The
next Lemma makes this precise�

Lemma ���� Let F be a directed graph obtained by adding a tail at each sink of a

graph E�

�a� For each Cuntz�Krieger E�family fSe� Pvg on a Hilbert space HE� there is

a Hilbert space HF � HE 
HT and a Cuntz�Krieger F �family fTe� Qvg such that

Te � Se for e � E�� Qv � Pv for v � E�� and
P

v��E� Qv is the projection on HT �

�b� If fTe� Qvg is a Cuntz�Krieger F �family� then fTe� Qv � e � E�� v � E�g is

a Cuntz�Krieger E�family� If w is a sink in E such that Qw �� �� then Qv �� � for

every vertex v on the tail attached to w�
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�c� If fte� qvg are the canonical generators of C��F �� then the homomorphism

�t�q corresponding to the Cuntz�Krieger E�family fte� qv � e � E�� v � E�g is an

isomorphism of C��E� onto the C��subalgebra of C��F � generated by fte� qv � e �
E�� v � E�g� which is the full corner in C��F � determined by the projection p ��P

v�E� qv�

Proof� To get the gist of the argument� we just add one tail� say we add ����� to a
sink w� To extend fSe� Pvg� we let HT be the direct sum of in�nitely many copies
of PwHE � de�ne Pvi to be the projection onto the ith summand� and let Sei be
the identity map of the ith summand onto the �i � ��st� with Se� taking the �rst
summand in HT onto PwH � HE � This gives �a�� because we have not changed
fe � s�e� � vg for any vertex v at which a Cuntz�Krieger E�relation for pv applies�
the extended family is a Cuntz�Krieger F �family� For the same reason� throwing
away the extra elements of a Cuntz�Krieger F �family gives a Cuntz�Krieger E�
family� The last statement in �b� holds because

Se�S
�
e� � Pw �� � � Se�S

�
e� � Pv� � S�e�Se� �� �

� Se�S
�
e� � Pv� � S�e�Se� �� � � � � �

For the �rst part of �c�� just use part �a� to see that every representation of C��E�
factors through a representation of C��F ��

We still have to show that the image of C��E� is a full corner� We �rst claim
that the series

P
v�E� qv converges strictly in M�C��F �� to a projection p� To see

this� order E�� and set pn ��
Pn

i�� qvi � Then for any �� � � F � we have

pnt�t
�
� �

�
t�t

�
� if s��� � vi for some i � n�

� otherwise�

If s��� � E�� then s��� � vi for some i and pnt�t
�
� � t�t

�
� for n � i� if s��� 
� E��

then pnt�t
�
� � � for all n� Thus for �xed �� � the sequence fpnt�t

�
�g is eventually

constant� and Lemma ��� implies that fpng converges strictly to a projection p �
M�C��F �� satisfying

pt�t
�
� �

�
t�t

�
� if s��� � E��

� if s��� 
� E��

It follows from this formula that the corner pC��F �p is precisely the image of C��E��
To see that pC��F �p is full� suppose J is an ideal in C��F � containing pC��F �p�

Then certainly J contains fqv � v � E�g� If v is a vertex in the tail attached to w�
then there is a unique path � with s��� � w and r��� � v� and

qw � J � t� � qwt� � J � qv � t��t� � J�

Thus all the generators fte� qvg of C��F � lie in J � J � C��F �� and pC��F �p is
full� �

�� The gauge�invariant uniqueness theorem

Theorem ���� Let E be a row��nite directed graph� let fSe� Pvg be a Cuntz�Krieger

E�family� and let � � �S�P be the representation of C��E� such that ��se� � Se
and ��pv� � Pv� Suppose that each Pv is non�zero� and that there is a strongly

continuous action � of T on C��Se� Pv� such that �z � � � � � �z for z � T� Then

� is faithful�
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To prove the theorem� we have to show that

�a� � is faithful on the �xed�point algebra C��E�� � and

�b�
���� R

T
�z�a� dz

��� � k��a�k for all a � C��E��

see �� Lemma ����� To establish �a�� we need to analyse the structure of C��E�� �
this analysis will be used again in x�� For each vertex v� we consider

Fk�v� �� spanfs�s
�
� � �� � � Ek� r��� � r��� � vg�

When j�j � j�j � k� we have

s��s� �

�
pr��� if � � �

� otherwise�
�����

Since s�pvs
�
� � s�s

�
� when r��� � r��� � v� it follows that the elements s�s

�
�

are non�zero matrix units parametrised by pairs in f� � Ek � r��� � vg� Thus
Fk�v� is isomorphic to the algebra K�Hv� of compact operators on a possibly�
in�nite�dimensional Hilbert space Hv� When the paths all have length k� we have
s�s

�
�s�s

�
� � � for r��� �� r���� so the subalgebras fFk�v� � v � E�g are mutually

orthogonal� and

Fk �� spanfs�s
�
� � �� � � Ekg

decomposes as a C��algebraic direct sum
L

v�E� Fk�v� of copies of the compact
operators� If r��� � r��� � v and v is not a sink� the Cuntz�Krieger relations give

s�s
�
� � s�pvs

�
� �

X
fe�E��s�e��vg

s��ses
�
e�s

�
� �

X
fe�E��s�e��vg

s�es
�
�e�

so Fk � Fk���

Lemma ���� When E does not have sinks� C��E�� �
S
k��Fk�

Proof� Since �z�s�s
�
�� � zj�j�j�js�s

�
� � we have Fk � C��E�� for all k� On

the other hand� we can approximate any element a of C��E�� by a �nite sumP
����F ���s�s

�
� � Now the continuity of � � b ��

R
�z�b� dz implies that

a � ��a� � �
� X
����F

���s�s
�
�

�
�

X
����F

���

�Z
T

zj�j�j�j dz
�
s�s

�
�

�
X

����F� j�j�j�j

���s�s
�
� �

which belongs to Fk for k � maxfj�j � � � Fg� Thus a �
S
k�� Fk� and C��E�� �S

k��Fk� �

Now suppose that E does have sinks� For each sink w and k � N� we still have a
copyFk�w� of the compact operators� but now there is no Cuntz�Krieger relation for
pw and Fk�w� does not embed in Fk��� However� Fk�w� is orthogonal to Fk���w�
and to every other Fk�v� �this follows from the relations in ��� Lemma ������ Hence
we use instead of Fk the subalgebra

Gk ��
�L

v is not a sinkFk�v�
�L�L

w is a sink

Lk
i�� Fi�w�

�
�

The argument of Lemma ��� carries over to give�
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Lemma ���� For every row��nite graph� C��E�� �
S
k�� Gk�

Corollary ���� If E is a row��nite graph and fSe� Pvg is a Cuntz�Krieger E�

family in which each Pv is non�zero� then the representation � � �S�P is faithful

on C��E�� �

Proof� For any ideal I in C��E�� � we have I �
S
k���I � Gk� by� for example� ��

Lemma ����� thus it is enough to prove that � is faithful on each Gk� Each Gk is the
direct sum of simple algebras of the form Fi�v�� so it is enough to prove that each
non�zero summand contains an element which is not mapped to zero under �� But
if � is any path with r��� � v� then S� is a partial isometry with initial projection
S��S� � Pv �� �� so s�s

�
� � Fj�j�v� satis�es ��s�s

�
�� � S�S

�
� �� �� �

Proof of Theorem ���� The Corollary gives �a�� and �b� follows by averaging
over ��

k����a��k �

Z
T

k���z�a��k dz �

Z
T

k�z���a��k dz �

Z
T

k��a�k dz � k��a�k�

Thus the result follows from �� Lemma ����� �

For our application� let bE be the dual graph of E de�ned by bE� � E��bE� � f�e� f� � e� f � E� and r�e� � s�f�g

and br�e� f� � f � bs�e� f� � e� It is trivial to check that bE is row��nite if E is� For
�nite graphs whose incidence matrices satisfy �I�� the next result is in ��� and was
later rediscovered in ��� Proposition ����� There is an interesting generalisation in
���

Corollary ���� Let E be a row��nite directed graph with no sinks� and let fse� pvg�

fte�f � qeg be the canonical generating Cuntz�Krieger families for C��E�� C�� bE��
Then there is an isomorphism � of C�� bE� onto C��E� such that

��te�f � � sesfs
�
f and ��qe� � ses

�
e ������

Proof� One can easily verify that Te�f �� sesfs
�
f and Qe �� ses

�
e form a Cuntz�

Krieger bE�family in C��E�� and thus the universal property of C�� bE� gives a homo�

morphism � � �T�Q � C�� bE� � C��E� satisfying ������ Because the gauge action
�E on C��E� satis�es �Ez �Te�f � � zTe�f and �Ez �Qe� � Qe� the maps �Ez � � and

� � �
bE
z agree on generators� since both are �automatically continuous� homomor�

phisms of C��algebras� they must agree on all of C�� bE�� Thus Theorem ��� implies
that � is an isomorphism� �

�� The Cuntz�Krieger uniqueness theorem

Theorem ���� Suppose that E is a row��nite directed graph in which every loop

has an exit� and that fSe� Pvg� fTe� Qvg are two Cuntz�Krieger E�families in which

all the projections Pv and Qv are non�zero� Then there is an isomorphism � of

C��Se� Pv� onto C��Te� Qv� such that ��Se� � Te and ��Pv� � Qv for all e � E�

and v � E��
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We �rst claim that we may as well assume that E has no sinks� For suppose it
does have sinks� and that we have proved the theorem for graphs without sinks�
Let F be the graph obtained by adding tails to each sink of E� since we have not
added any loops� all loops in F have exits� By Lemma ���� we can extend fSe� Pvg
and fTe� Qvg to Cuntz�Krieger F �familes in which all the projections are non�zero�
Applying the theorem to these families gives an isomorphism which in particular
takes Se to Te and Pv to Qv� and hence restricts to an isomorphism of C��Se� Pv�
onto C��Te� Qv�� Thus we can suppose that E has no sinks�

We shall prove the theorem by showing that the representations �S�P and �T�Q
of C��E� are faithful� then � �� �T�Q � ���

S�P is the required isomorphism� By

symmetry� it is enough to show that �S�P is faithful� As in x�� it is enough by ��
Lemma ���� to show that

�a� � is faithful on C��E�� � and

�b�
���� R

T
�z�a� dz

��� � k��a�k for a � C��E��

Since we are supposing that E has no sinks� we have already proved �a� in Corol�
lary ����

Before considering �b�� we need a lemma�

Lemma ���� Suppose E has no sinks and every loop in E has an exit� Then for

every vertex v there is an in�nite path  in E such that s�� � v and � ��  for

every �nite path ��

Proof� First suppose there is a �nite path � with s��� � v whose range vertex
r��� is the starting point of distinct loops � and �� Then

 �� ������������� � � �

will do the job� If there is no such path �� then we can construct a path  which
does not pass through the same vertex twice� we just take an exit from a loop
whenever one is available� and we can never return� �See the proof of ��� Lemma
���� for more details�� �

Proof of Theorem ���� Recall that E now has no sinks� and that it is enough to
prove �b� for a in the dense subspace spanfs�s��g� So suppose F is a �nite subset
of E� � E� and a �

P
������F ���s�s

�
� � The idea is to �nd a projection Q such

that compressing by Q does not change the norm of ����a�� but kills the terms in
��a� for which j�j �� j�j� we will then have

k����a��k � kQ����a��Qk � kQ��a�Qk � k��a�k������

For k �� maxfj�j� j�j � ��� �� � Fg� we have

��a� �
X

f������F �j�j�j�jg

���s�s
�
� � Fk�

since there are no sinks� we may suppose by applying the Cuntz�Krieger relations
and changing F that minfj�j� j�jg � k for every pair ��� �� � F with ��� �� �� �So
that� if ��� �� � and j�j � j�j� then j�j � j�j � k�� Since Fk decomposes as a direct
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sum
L

v Fk�v�� so does its image under �� and there is a vertex v such that

k����a��k �
��� X
f������F �j�j�j�j�r����vg

�����s�s
�
��
���

�
��� X
f������F �j�j�j�j�r����vg

���S�S
�
�

����
By Lemma ��� there is an in�nite path � such that s��� � v and �� �� �

for all �nite paths �� since F is �nite� we can truncate � to obtain a �nite path 
such that � does not have the form � for any subpath � of any path in F � With
this choice of � the sum

Q ��
X

f	�Ek�r�	��vg

S	
S
�
	


converges strictly to a projection Q in M�C��Se� Pv��� �Because the partial sums
are all projections� it is enough by Lemma ��� to notice that the partial sums
of
�P

S	
S
�
	


�
S�S

�
� are eventually constant for every �� � � E��� Observe that

whenever r��� � v� S	
 is a partial isometry with initial projection Pr�
�� and hence
is non�zero by hypothesis�

If j�j � j�j � k and r��� � r��� � v� then

QS�S
�
�Q � S�S
S

�

Pr���Pr���S
S

�

S� � S�
S

�
�
 �� ��

We verify using the identities S��S� � ����Pr��� for paths of equal length that

fQS�S
�
�Q � j�j � j�j � k and r��� � r��� � vg

is a family of matrix units parametrised by pairs in f� � Ek � r��� � kg� since we
just showed that all these matrix units are non�zero� we deduce that b �� Q��b�Q
is a faithful representation of Fk�v� �� K�Hv�� Since both � and Q�Q are faithful
on Fk�v�� we have k��b�k � kQ��b�Qk for all b � Fk�v�� and in particular for

b �
X

f������F �j�j�j�j�r����vg

���s�s
�
� �

We conclude that k����a��k � kQ����a��Qk�
We next claim that Q����a��Q � Q��a�Q� For this� we �x ��� �� � F such that

j�j �� j�j� notice that unless r��� � r���� the product s�s
�
� is zero� If r��� � r��� ��

v� then S	
S
�
	
S� � � for every summand S	
S

�
	
 ofQ� So suppose r��� � r��� � v�

One of �� � has length k and the other is longer� say j�j � k and j�j � k� Then

S	
S
�
	
S� �

�
S�S
S

�

 if � � �

� otherwise�

so

QS�S
�
�Q �

X
f	�Ek�r�	��vg

S�
S
�
�
S	
S

�
	
�

Since j�j � j� j� this can only have a non�zero summand if � � ��� for some ��� But
then S��
S	
 � S���
S
 is only non�zero if �� has the form �� which is impossible
by choice of � We deduce that QS�S

�
�Q � � when j�j �� j�j� or equivalently that

Q����a��Q � Q��a�Q�
Putting all this together shows that ����� holds� and we are done� �
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�� Ideals in graph algebras

Our description of the ideals in a graph algebra C��E� is a direct generalisation
of ��� Theorem 	�	�� It therefore di�ers slightly from the description in 	� and ���
where the ideals are completely determined by a preorder on the set of loops in E�
in in�nite graphs we have to take into account in�nite tails as well as loops� So� as
in ���� we phrase our results in terms of a preorder on the vertex set E��

Let E be a directed graph� De�ne a relation on E� by setting v � w if there is
a path � � E� with s��� � v and r��� � w� This relation is transitive� but is not
typically a partial order� for example� v � w � v whenever v and w lie on the same
loop� A subset H of E� is called hereditary if v � w and v � H imply w � H � A
hereditary set H is saturated if every vertex which feeds into H and only into H is
again in H � that is� if

s���v� �� � and fr�e� � s�e� � vg � H � v � H�

The saturation of a hereditary set H is the smallest saturated subset H of E�

containing H � the saturation H is itself hereditary�

Theorem ���� Let E � �E�� E�� r� s� be a row��nite directed graph� For each

subset H of E�� let IH be the ideal in C��E� generated by fpv � v � Hg�

�a� The map H �� IH is an isomorphism of the lattice of saturated hereditary

subsets of E� onto the lattice of closed gauge�invariant ideals of C��E��

�b� Suppose H is saturated and hereditary� If F � �� E� nH� F � �� fe � E� �
r�e� 
� Hg� and F � F �E n H� �� �F �� F �� r� s�� then C��E�
IH is canonically

isomorphic to C��F ��

�c� If X is any hereditary subset of E�� G� �� fe � E� � s�e� � Xg� and G ��
�X�G�� r� s�� then C��G� is canonically isomorphic to the subalgebra C��se� pv � e �
G�� v � X� of C��E�� and this subalgebra is a full corner in the ideal IX �

We are particularly pleased with our proof of Theorem ���� which avoids both the
heavy machinery used in ��� and the subtle approximate identity arguments used
in 	� and ��� The key improvement occurs when we show that we can recover a
saturated hereditary set H from the ideal IH as fv � pv � IHg� our short argument
makes it very clear why we need to assume that H is saturated and hereditary� We
begin with a couple of Lemmas�

Lemma ���� Let I be an ideal in a graph C��algebra C��E�� Then H �� fv � E� �
pv � Ig is a saturated hereditary subset of E��

Proof� Suppose v � H and v � w� so that there is a path � � E� such that
s��� � v and r��� � w� Then

pv � I � s� � pvs� � I � pw � s��s� � I�

so H is hereditary� If w � E� satis�es fr�e� � s�e� � wg � H � then fse � s�e� �
wg � I and pw �

P
s�e��w ses

�
e belongs to I � thus H is saturated� �

Lemma ���� If H is a hereditary subset of E�� then

IH � spanfs�s
�
� � �� � � E� and r��� � r��� � Hg������

In particular� this implies that IH � IH and that IH is gauge�invariant�
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Proof� Following �� Lemma ����� we �rst note that the Cuntz�Krieger relations
imply that fv � E� � pv � IHg is a saturated set� and which therefore contains H�
Thus the right�hand side J of ����� is contained in IH � Any non�zero product of the
form �s�s

�
���s�s

�
�� collapses to another of the form s�s

�
� � from an examination of

the various possibilities for � and �� and the hereditary property of H � we deduce
that J is an ideal� Since J certainly contains the generators of IH � we deduce that
J � IH � The last two remarks follow easily� �

Proof of Theorem ���� We begin by showing that H �� IH is onto� Let I be a
non�zero gauge�invariant ideal in C��E�� and set H �� fv � E� � pv � Ig� which is
saturated and hereditary by Lemma ���� Since IH � I � pv 
� I implies pv 
� IH � and
I and IH contain exactly the same set of projections fpv � v � Hg� Let F � F �EnH�
be the graph of part �b�� and let fte� qvg be the canonical Cuntz�Krieger F �family
generating C��F �� Both quotients C��E�
I and C��E�
IH are generated by Cuntz�
Krieger F �families in which all the projections are non�zero� and� since both I and
IH are gauge�invariant� both quotients carry gauge actions� Thus two applications
of Theorem ��� show that there are isomorphisms � � C��F � � C��E�
I and
� � C��F � � C��E�
IH such that ��fte� qvg� � fse � I� pv � Ig and ��fte� qvg� �
fse� IH � pv� IHg� But now ����� is an isomorphism of C��E�
IH onto C��E�
I
which agrees with the quotient map on generators� thus the quotient map is an
isomorphism� and I � IH �

To see that the map H �� IH is injective� we have to show that if H is saturated
and hereditary� then the corresponding set fv � pv � IHg is precisely H � We
trivially have that v � H implies pv � IH � For the converse� consider the graph
F � F �E nH� of �b�� and choose a Cuntz�Krieger F �family fSe� Pvg with all the
projections Pv non�zero �for example� the canonical generating family for C��F ���
Setting Pv � � for v � H and Se � � when r�e� � H extends this to a Cuntz�Krieger
E�family� to see this� we need to use that H is hereditary to get the Cuntz�Krieger
relation at vertices in H � and that H is saturated to see that there are no vertices
in F � � E� nH at which a new Cuntz�Krieger relation is being imposed �in other
words� that all the sinks of F are also sinks in E�� The universal property of C��E�
gives a homomorphism � � C��E� � C��Se� Pv�� which vanishes on IH because it
kills all the generators fpv � v � Hg� But ��pv� � Pv �� � for v 
� H � so v 
� H
implies pv 
� IH � Thus fv � pv � IHg � H � as required�

We have now shown that H �� IH is bijective� Since it preserves containment�
it is a lattice isomorphism� and we have proved �a�� Since H � fv � pv � IHg� the
quotient C��E�
IH is generated by a Cuntz�Krieger F �family with all projections
non�zero� which is isomorphic to C��F � by Theorem ����

For �c�� we �x a hereditary subset X of E�� and de�ne qX ��
P

v�X pv using
Lemma ���� We claim that qXIXqX is generated by the Cuntz�Krieger G�family
fse� pv � s�e�� v � Xg� Certainly this family lies in the corner� on the other hand� if
r��� � r��� � X� then qX �s�s

�
��qX � � unless � and � both start in X � Thus the

claim is veri�ed� and Theorem ��� implies that qXIXqX is isomorphic to C��G�� To
see that the corner is full� suppose J is an ideal in IX containing qXIXqX � Then
Lemma ��� implies that fv � pv � Jg is a saturated set containing X � and hence
containing X� but this implies that J contains all the generators of IX � and hence
is all of IX � �
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To obtain a version of Theorem ��� which describes all the ideals of C��E�� we
need to impose conditions on the graph E� Loosely speaking� we need to know that
the uniqueness Theorem ��� is valid in every subgraph F � F �E n H� associated
to the complement of a saturated hereditary subset H �cf� Theorem ����b��� The
appropriate condition was formulated in ��� as Condition �K�� For i � �� i � �
and i � �� let E�

i denote the set of vertices v for which there are� respectively� no
loops� precisely one loop� or at least two distinct loops based at v� Then E satis�es
Condition �K� if E� � E�

� � E�
� � Since the property �every loop based at v has an

exit� is vacuously satis�ed at vertices in E�
� � and since every loop lies entirely within

or without a hereditary set� Theorem ��� applies to every subgraph F � F �E nH��
If E satis�es �K� we can follow the �rst paragraph in the proof of Theorem ���

using Theorem ��� in place of Theorem ���� and deduce that every ideal I in C��E�
has the form IH for some saturated hereditary subset H of E�� Thus all the ideals in
C��E� are gauge�invariant� and Theorem ��� gives the following mild improvement
on ��� Theorem 	�	��

Theorem ���� Suppose E is a row��nite directed graph which satis�es Condition

�K�� Then H �� IH is an isomorphism of the lattice of saturated hereditary subsets

of E� onto the lattice of ideals in C��E��

Remark ���� The hypothesis �every loop has an exit� was called Condition �L� in
���� its relation to �K� is exactly the same as that of the Cuntz�Krieger condition
�I� to �II�� If E satis�es �K�� so does each subgraph F �E n H� associated to a
saturated hereditary set H � The weaker Condition �L�� on the other hand� does
not pass to subgraphs� a loop in E which misses H could have all its exits heading
into H � and then the corresponding loop in F has no exit in F �

�� Simplicity and pure in�niteness

As in ���� we can use our classi�cation of ideals to characterise the graphs
whose C��algebras are simple� Recall from ��� that a graph is co�nal if every
vertex v connects to every in�nite path � there exists n � � such that v � r�n��
�Unfortunately the proof of ��� Corollary 	��� is incomplete� the same direction
was proved twice� However� the missing direction is not di�cult� as we shall see��

Proposition ���� Let E be a row��nite directed graph with no sinks� Then C��E�
is simple if and only if E is co�nal and every loop has an exit�

Proof� First suppose E is co�nal and every loop has an exit� Suppose v is a vertex
on a loop �� There is an exit e from �� and by applying co�nality to the path
��� � � � we see that there must be a return path from r�e� to �� which gives a
second loop based at v� Thus E satis�es �K�� and Theorem ��� applies�

We next claim that every saturated hereditary subset H is empty or all of E��
Suppose there is a vertex v which is not in H � Because H is saturated� we can
construct inductively an in�nite path  with s�� � v and r�n� 
� H for all n�
If w � H � then the co�nality implies that w connects to some r�n�� which is
impossible because H is hereditary and r�n� 
� H � Thus H must be empty� as
claimed� Now Theorem ��� implies that the only non�zero ideal in C��E� is C��E�
itself� and C��E� is simple�

For the converse� we suppose that C��E� is simple and prove �rst that E is
co�nal� Let  � E� and v � E�� Then H
 �� fw � w � r�n� for all ng is a
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saturated hereditary set� which is certainly not all of E� because r�n� 
� H
� On
the other hand� if H
 were non�empty then IH�

would then be a proper ideal by
Theorem ���� hence H
 � �� In particular� v is not in H
� and hence connects to
�

Next we suppose that C��E� is simple and prove that every loop in E has an
exit� Suppose � is a loop with no exit� Then the vertices on � form a hereditary
set H � whose saturation H must be all of E� �or IH would be a proper ideal�� Thus
if we set G� �� fe � E� � s�e� � Hg and G �� �H�G�� r� s�� then Theorem ����c�
implies that C��G� is a full corner in C��E�� But since � has no exit� G is a simple
loop� and �� Lemma ���� implies that C��G� �� C�T�MjHj�C ��� which is impossible
since C��E� and hence also C��G� are simple� Thus � must have an exit� �

Remark ���� When E has sinks� the concept of co�nality is inappropriate� Since
simplicity is preserved by passing to full corners� one can test for simplicity by
adding tails and applying Proposition 
�� to the enlarged graph F � Notice� though�
that C��E� cannot be simple if E has more than one sink� one sink in E is not
connected in F to the tail attached to another� and hence F is not co�nal�

Proposition ���� Suppose E is a row��nite directed graph in which every vertex

connects to a loop and every loop has an exit� Then C��E� is purely in�nite�

For the proof we need a simple lemma�

Lemma ���� Let w � E� and let t be a positive element of Fk�w�� Then there is

a projection r in the C��subalgebra of Fk�w� generated by t such that rtr � ktkr�

Proof� We know from x� that Fk�w� is spanned by the matrix units fs�s��g
where �� � run through the set S �� f� � Ek � r��� � wg� and hence the map
� �

P
c��s�s

�
� �� �c��� is an isomorphism of Fk�w� onto K��

��S��� Since ��t� is
a positive compact operator it has an eigenvector with eigenvalue k��t�k � ktk
�by 
� Lemma 
���� for example�� and we can take r to be the element ����R�
corresponding to the projection R onto the span of this eigenvector� �

Proof of Proposition ���� We have to show that every hereditary subalgebra A
of C��E� contains an in�nite projection� we shall produce one which is dominated
by a �xed positive element a � A whose average ��a� � C��E�� has norm �� Choose
a �nite sum b �

P
i cis�is

�
�i in C��E� such that b � � and ka � bk � �
�� Then

b� �� ��b� satis�es kb�k � �
� and b� � �� We may suppose by applying the Cuntz�
Krieger relations a few times that there is a �xed k � N such that min�j�ij� j�ij� � k
for all i� and then b� �

L
fw�w�r��i�gFk�w�� In fact kb�k must be attained in some

summand Fk�w�� let b� be the component of b� in Fk�w�� and note that b� � � and
kb�k � kb�k� By Lemma 
�� there is a projection r � C��b�� � Fk�w� such that
rb�r � kb�kr� Since b� is a �nite sum of s�is

�
�i and r � C��b��� we can write r as a

sum
P

c��s�s
�
� over all pairs of paths in

S � f� � Ek � � � �i or �i for some i� and r��� � wg�

notice that the S � S�matrix �c��� is also a projection�
Now let � be an in�nite path with s��� � w and � �� �� for any �nite

path � �see Lemma ����� Since there are only �nitely many summands in b� we can
truncate � to obtain a �nite path  with s�� � w such that  is not the initial
segment of � for any �nite segment � of any �i or �i� Then because fs�
s��
g is
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also a family of nonzero matrix units parametrised by S�S� q ��
P

����S c��s�
s
�
�


is a projection� and

r �
X

c��s�s
�
� �

X
c��s��s
s

�

 � �pw � s
s

�

��s

�
� � q�

Our choice of  ensures that qs�is
�
�iq � � unless r��i� � r��i� � w and j�ij �

j�ij � k� Since q � r� we have

qbq � qb�q � qb�q � qrb�rq � kb�krq � kb�kq �
	

q�

Because ka� bk � �

 � we have qaq � qbq� �


q �
�
�q� so qaq is invertible in qC

��E�q�

Let c denote its inverse� and put v � c���qa���� Then vv� � c���qaqc��� � q� and
v�v � a���qcqa��� � kcka� so v�v belongs to the hereditary subalgebra A�

To �nish o�� we show that v�v is an in�nite projection� By hypothesis� there
is a path � such that s��� � r�� and v �� r��� lies on a loop �� we may as well
suppose that � has an exit e with s�e� � v �otherwise replace v by the source of an
exiting edge�� Then

pv � s��s� � s�s
�
� � s��

s���
� s��

s���
� ses

�
e � pv �

so pv is in�nite� But if � is any path with j�j � k and r��� � w � s��� then ���
is a path with range v� so

pv � s��
��s�
�� � s�
��s
�
�
�� � s�
s

�
�
�

which is a minimal projection in the matrix algebra spanfs�
s��
 � �� � � Sg�
and hence is equivalent to a subprojection of q� Thus q is in�nite too� Since
q � vv� � v�v� this completes the proof� �

Remark ���� The converse of Proposition 
�� is also true� if C��E� is purely
in�nite� then every vertex connects to a loop and every loop has an exit� The
argument in the third and fourth paragraphs of ��� page ���� works for row��nite
graphs and is elementary�

Remark ���� One can deduce from Propositions 
�� and 
�� a more general version
of the dichotomy of ��� Corollary ������ if C��E� is simple� then it is either AF
or purely in�nite� For if E has no loops� Theorem ��� of ��� says that C��E� is
AF� �Note that the proof of ��� Theorem ���� is elementary�� If E does have loops�
Proposition 
�� says they all have exits �we can apply this argument to the larger
graph F if E has sinks�� and that E is co�nal� thus every vertex connects to every
loop and Proposition 
�� applies�

�� The primitive ideal space

In this section we describe the primitive ideal space of the C��algebra of a graph
E which satis�es Condition �K�� Our description will necessarily look quite di�erent
from its analogue in �� for �nite graphs� because new phenomena arise in in�nite
graphs� in particular� they need not contain any loops or sinks� We shall indicate
at the end how �� Proposition ���� may be deduced from our analysis�

We know from Theorem ��� that the ideals all have the form IH for some sat�
urated hereditary subset H of E�� so our �rst problem is to determine the sets H
for which IH is primitive �or equivalently� for which IH is prime�� Interestingly� it
is easier to describe the complements of these sets� To begin with� we shall assume
that E has no sinks� and later extend our results using Lemma ����
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Proposition ���� Let E be a row��nite graph with no sinks which satis�es �K��
and suppose H � E�� Then H is a saturated hereditary subset of E� such that IH
is primitive if and only if � �� E� nH is non�empty and satis�es

�a� for every v�� v� � � there exists z � � such that v� � z and v� � z�

�b� for every v � � there is an edge e with s�e� � v and r�e� � �� and

�c� v � w and w � � imply v � ��

The proof needs a lemma which allows us to get our hands on elements of satu�
rations�

Lemma ���� Suppose F is a directed graph with no sinks and v � F �� If y �
fx � F � � v � xg� then there exists z � F � such that v � z and y � z�

Proof� First note that Lv �� fx � F � � v � xg is hereditary� so its saturation is
by de�nition the smallest saturated set containing Lv� Suppose K is any saturated
set containing Lv� Then K� �� fw � K � w � x for some x � Lvg contains Lv�
we claim that it is saturated� For suppose z � F � and r�e� � K� for all edges
e with s�e� � z� Then z � K because K is saturated� Since there is at least
one edge e with s�e� � z� and since we then have r�e� � x for some x � Lv
because r�e� � K�� we have z � x for some x � Lv� Thus z � K�� and K� is
saturated� as claimed� Thus if K is the smallest saturated set containing Lv� then
K � fw � K � w � x for some x � Lvg� �

Proof of Proposition ���� First suppose that � � E� satis�es �a�� �b� and �c��
From �c� we see immediately that H �� E� n � is hereditary� and from �b� that
H � E� n � is saturated� To see that IH is prime� suppose I�� I� are ideals in
C��E� such that I� � I� � IH � Theorem ��� implies that there are saturated sets
Hi such that Ii � IHi

� and that IH��H�
� IH�

� IH�
� Thus I� � I� � IH implies

H� � H� � H � If H� �� H and H� �� H � there are vertices vi � Hi n H � By �a��
there exists v � � such that v� � v and v� � v� Then v � H� � H� because the
Hi are hereditary� and v 
� H because � � E� nH � this contradicts H� �H� � H �
Thus either H� � H or H� � H and I� � IH�

� IH or I� � IH�
� IH � This shows

that IH is prime� and hence primitive�
Next we suppose that H is saturated and hereditary� and IH is primitive� The

complement of any saturated set satis�es �c� and� because E has no sinks� � ��
E� nH also satis�es �b�� We prove �a� by passing to the quotient C��E�
IH � which
by Theorem ��� is isomorphic to C��F �E nH��� Because IH is primitive in C��E��
f�g is primitive in C��F �E n H��� Suppose v�� v� � E� n H � Then Hi �� fx �
E� nH � vi � xg are non�empty hereditary subsets of E� nH � F �E nH��� Since
f�g is prime in C��F �E n H��� we must have IH�

� IH�
�� f�g� and Theorem ���

implies that H� � H� �� �� Say y � H� � H�� Applying the Lemma to F �E nH�
and v� shows there exists x � E� n H such that y � x and v� � x in F �E n H��
Since y � H� and H� is hereditary� we have x � H�� and another application of the
Lemma gives z � E� nH satisfying x � z and v� � z� We now have v� � x � z
and v� � z in F �E nH�� Thus we have proved that E� nH satis�es �a�� �

We shall call a subset � of E� satisfying Conditions �a�� �b� and �c� of Proposi�
tion 	�� a maximal tail � the word �tail� is meant to convey the sense of Conditions
�a� and �b�� and �maximal� that of Condition �c�� We denote by �E the set of
maximal tails in E �whether or not E has sinks��
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For subsets K�L of E�� we write K � L to mean that for each v � K� there
exists w � L such that v � w� Thus Condition �c� of Proposition 	�� says that
�v � � � v � ��� In view of �c�� we can describe the saturated hereditary set
H� corresponding to � � �E as either H� � E� n � or H� � fv � v � �g� this
second description makes our parametrisation of PrimC��E� look more like that of
�� Proposition �����

Theorem ���� Let E be a row��nite directed graph which satis�es Condition �K�
and has no sinks� Then there is a topology on the set �E of maximal tails in E
such that

S �
	
� � �E � � �

S
��S�



for S � �E� and then � �� IH�

is a homeomorphism of �E onto PrimC��E��

Proof� We verify that the operation S �� S satis�es Kuratowski�s closure axioms�

The axiom � � � is trivially true� That S � S is trivial� We then have S � S� If

� � S� then for every vertex v � � there exist 	 � S and w � 	 such that v � w�
But 	 � S� so there exist � � S and z � � such that w � z� and then v � z� Thus
v �

S
��S � for all v � �� and we have � � S�

For S� T � �E � we trivially have S � S � T � T � S � T and S � T � S � T � so
to see that S � T � S � T it su�ces to prove S � T � S � T � Let � � S � T � and
set

�S �� fv � � � v �
S
��S �g� �T �� fv � � � v �

S
��T �g�

Then � � �S � �T � we claim that � is either �S or �T � If not� there exist w � �S n �T
and v � �T n �S � Because � is a tail� there is a vertex z � � such that w � z and
v � z� Then z � �S or z � �T � and either leads to a contradiction� for example� if
z � �S � then v � z implies v � �S � Thus � must be either �S or �T � as claimed� and
this is just a convoluted way of saying that � � S or � � T �

We have now veri�ed that the closure operation S �� S does de�ne a topology
on �E � Theorem ��� and Proposition 	�� imply that I � � �� IH�

is a bijection of
�E onto PrimC��E�� To see that I is a homeomorphism� we let S be a subset of

�E � and show that I�S� � I�S�� Because all tails in �E are maximal� � �
S
��S �

if and only if � �
S
��S �� and hence

I�S� � fIH�
� � �

S
��S �g

� fIH�
� H� �

T
��SH�g

� fIH�
� IH�

� I���SH�
g�

Now because H �� IH is order�preserving and bijective� general nonsense shows
that I�H�

�
T
IH�

� thus

I�S� � fIH�
� IH�

�
T
��SIH�

g � I�S��

and I is a homeomorphism� �

Remark ���� Finding maximal tails in E is easy� just take the vertices on any
in�nite path and toss in the vertices which connect to the path� In other words� let
x � E� and take

� �� fv � E� � v � r�xn� for some n � �g�
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Two paths x and y give the same maximal tail if and only if for every n � � there
exist j� k such that r�xn� � r�yj� and r�yn� � r�xk��

To describe PrimC��E� when E has sinks� we apply Theorem 	�� to the graph
F obtained by adding a tail Tv at every sink v� as in Lemma ���� Each sink v gives
a maximal tail

�v �� Tv � fw � E� � w � vg�

in �F � and �F � �E � f�v � v is a sink in Eg� Since the full corner pC��F �p �
C��E� is Morita equivalent to C��F � via the imprimitivity bimodule X �� pC��F ��
it follows from Theorem 	�� and ��� Corollary ����� that the map � �� X�Ind IH�

is a homeomorphism of �F onto PrimC��E��
To get a more concrete description of this homeomorphism� we �rst note that if

pAp is a full corner in a C��algebraA and I is an ideal in A� then by ��� Proposition
����� we have

pA�Ind I � spanfpAphpA � I� pAig � p�AIA�p � pIp�

Applying this to IH�
and using the description of IH�

in Lemma ��� gives

pC��F ��Ind IH�
� spanfps�s

�
�p � r��� � r��� � �g�

Now ps�s
�
�p � � unless s��� and s��� are in E� and r��� � r���� if r��� � F � nE��

say r��� � Tv� then we can write � � ����� with �� � E� and r���� � v� and
r����� � r����� forces ��� � ���� s���s

�
��� � pv� and ps�s

�
�p � s��s

�
�� � Truncating � at

v does not a�ect whether or not r��� � �� so

pC��F ��Ind IH�
� spanfs��s

�
�� � �

�� �� � E� and r���� � r���� � E� � �g�

Thus if we let v �� fw � E� � w � vg and set

�E �� �E � fv � v is a sink in Eg�

then

 �� IH�
�� spanfs�s

�
� � �� � � E� and r��� � r��� � g

is a bijection of �E onto PrimC��E�� To sum up�

Corollary ���� Suppose E is a row��nite graph which satis�es Condition �K��
Then there is a topology on �E such that

S �
	
� � �E � � �

S

�S



for S � �E� and then the map  �� IH�

is a homeomorphism of �E onto PrimC��E��

Remark ���� If E is a �nite graph with no sinks and � is an equivalence class in
the set �E described in ��� then �� �� fv � E� � v � �g belongs to �E � We claim
that � �� �� is a homeomorphism of �E onto �E � To see that it is injective� note
that � � ��� and hence �� � �� if and only if � � �� To see that it is surjective�
let � � �E � and note that a class � � �E is either contained in � or entirely misses
�� Let � be a minimal element of f� � �E � � � �g� in fact� there is a unique
such � because � is a tail� and we have � � ��� The map � �� �� is easily seen to
preserve the closure operation� and hence is a homeomorphism� as claimed� Thus
we recover �� Proposition ���� from Theorem 	���
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At this stage� however� we have been unable to �nd a satisfactory extension of ��
Theorem ���� to describe the primitive ideal space of the C��algebra of an arbitrary
row��nite graph�
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