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The Canonical Height of an Algebraic Point on an

Elliptic Curve

G� Everest and T� Ward

Abstract� We use elliptic divisibility sequences to describe a method for es�
timating the global canonical height of an algebraic point on an elliptic curve�
This method requires almost no knowledge of the number �eld or the curve

is simple to implement
 and requires no factorization� The method is ideally
suited to searching for algebraic points with small height
 in connection with
the elliptic Lehmer problem� The accuracy of the method is discussed�
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�� Introduction

Let K denote an algebraic number 	eld
 with ring of algebraic integers OK 
 and
E an elliptic curve de	ned over K
 given by a generalized Weierstrass equation

y� � a�xy � a�y � x� � a�x
� � a�x� a��
��

with coe�cients a�� � � � � a� � OK � Let Q � 
x� y� denote a K�rational point of E


Q � E
K�� The global canonical height is a function �h � E
K� � R with the
properties�

�� �h
Q� � � if and only if Q is a torsion point of E
K��

�� �h
P �Q� � �h
P �Q� � ��h
P � � ��h
Q� for all P�Q � E
K��
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The second property is known as the parallelogram law� The global canonical height
is of fundamental importance in the arithmetic of elliptic curves
 due in part to its
functoriality� The height appears in basic conjectures such as Birch�Swinnerton�
Dyer and there is a deep conjecture known as the elliptic Lehmer problem
 see
�HS���
 concerning lower bounds for the height� Besides theoretical considerations
however
 it sometimes happens that one really wishes to compute the value of the
height 
for example
 to compute the determinant of the height�regulator matrix in
searching for curves of large rank��

Silverman �Sil��� described an algorithm for computing the global height
 which
can be made arbitrarily accurate� In the rational case
 this is implemented in Pari�
GP 
see �GP��� The algorithm in �Sil��� requires the discriminant of the curve to
be completely factored� computing the height when the discriminant cannot be
factored in reasonable time is considered in �Sil���� Silverman�s method requires
much less than the full factorization of the discriminant but still requires some
factorization� In principle
 the method extends to the general algebraic case
 though
there is currently no implementation of Silverman�s algorithm in the general case�
When it is implemented
 it is likely to enjoy the same high accuracy it does in the
rational case� However there seems to be a small class of curves for which it is
vulnerable 
see Examples � and �� in Section ���

Tate�s de	nition of the global height gives a factorization�free approach to com�
puting the global height� Let MK denote the set of valuations of K
 each one
corresponding to an absolute value j � jv 
see �Wei��� for background�� For each
valuation v � MK 
 let Kv denote the corresponding completion of K� The naive

height h
�� of � � K is

h
�� �
�

d

X
v�MK

logmaxf�� j�jvg�
��

For a 	nite point Q � E
K�
 set h
Q� � h
x
Q��
 and for Q the point at in	nity
set h
Q� � �� Tate�s de	nition of the global canonical height is

�h
Q� �
�

�
lim
n��

��nh
�nQ��
��

Knowledge of the naive height is essentially equivalent to knowledge of the minimal
polynomial�

Tate�s de	nition is not usually considered to be a very useful method for actually
computing the height� In principle it is accurate� However
 it requires the compu�
tation of large integers and this not only slows it down but makes high accuracy
impossible in practice� On the other hand
 it does always give an answer because
no factorization is needed�

The aim of this note is to exhibit an alternative factorization�free method for
computing the global height of an algebraic point on an elliptic curve which stands
somewhere between the two algorithms above� Like the method in 
��
 ours is
extremely simple
 requiring almost no knowledge of the number 	eld or the elliptic
curve and it does not require the curve to be in minimal form� However
 our method
gives more information than 
�� since it also yields the archimedean and non�
archimedean parts of the height separately� 
If the factorization of the discriminant
is known then it will give a complete decomposition of the global height as a sum of
local heights�� Our method can also be made much quicker� It gives less accuracy
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than Silverman�s algorithm but high accuracy is not always required� In certain
cases
 our method can be used in tandem with Silverman�s algorithm� see Example �
in Section ��

An example of a calculation which does not require great accuracy is the search
for algebraic points with small height� This requires an accuracy of only � or �
signi	cant 	gures together with an easy way of handling algebraic number 	elds�
Calculations such as these would shed light on the elliptic Lehmer problem� In the
classical Lehmer problem and its derivatives 
see �EW���� there are many numerical
examples� Up to now
 there is very little data for the elliptic Lehmer problem
outside the rational case� To illustrate our method
 we give a couple of examples of
small height points found with an easy search� See Examples �� and �� in Section ��
Our method uses elliptic divisibility sequences
 which are sequences associated to
the division points on the curves� At the conclusion of the paper
 we will make the
point that our methodology not only gives a simple way of handling elliptic curves
over algebraic number 	elds� it also throws up the possibility that small height
points might be found more e�ciently by searching for growth rates of elliptic
divisibility sequences�

�� Elliptic divisibility sequences

The essential ingredient in the approach taken here is the sequence of elliptic
division polynomials� For background on elliptic curves see �Sil��� and �Sil����

De�nition �� With the notation of 
��
 de	ne

b� � a�� � �a��

b� � �a� � a�a��

b� � a�� � �a��

b� � a��a� � �a�a� � a�a�a� � a�a
�
� � a���

De	ne a sequence 
�n� of polynomials in OK �x� y� as follows� �� � �� �� � �


�� � �y � a�x� a��

�� � �x� � b�x
� � �b�x

� � �b�x� b�� and

�� � ��
�x
� � b�x

� � �b�x
� � ��b�x

� � ��b�x
� � 
b�b� � b�b��x� b�b� � b����

Now de	ne inductively for n � �

��n	� � �n	��
�
n � �n���

�
n	� and

��n�� � �n
�n	��
�
n�� � �n���

�
n	���

It is straightforward to check that each �n � OK �x� y�� It is known that ��n is a
polynomial in x alone having degree n�� � and leading coe�cient n�� The zeros of
��n are the x�coordinates of the points on E with order dividing n� Write �n
Q� for
�n evaluated at the point Q � 
x� y�� The sequence �n
Q� is known as an elliptic

divisibility sequence� Writing un � �n
Q� gives the elliptic recurrence relation

um	num�n � um	�um��u
�
n � un	�un��u

�
m
��

for all m � n � �� These elliptic divisibility sequences were studied in an abstract
setting by Morgan Ward in a series of papers�see �War��� for the details� Shipsey�s
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thesis �Shi��� contains more recent applications of these sequences
 which satisfy
the same recursion formul� as the division polynomials� If Q is not a torsion point
then the terms of the sequence 
�n
Q�� are always non�zero� The single relation

�� gives rise to the two relations

u�n	� � un	�u
�
n � un��u

�
n	�� and
��

u�nu� � un	�unu
�
n�� � unun��u

�
n	��
��

For computational purposes
 it is useful to notice that the two relations 
�� and

�� can be subsumed into the single relation

unubn�b
n	����cc � ub
n	����cubn��cu
�
b
n�����c � ub
n	����cub
n�����cu

�
b
n	����c�

where b�c denotes
 as usual
 the integer part�
Write

� � �b��b� � �b�� � ��b�� � �b�b�b� � OK
��

for the discriminant of the curve E� The valuations v with j�jv � � are precisely
the valuations corresponding to primes at which E reduces to a singular curve� Let
D � NKjQ
�� and write T for the set of rational primes which divide D� Given an
algebraic integral point Q � E
K�
 let

En � jNKjQ
�n
Q��j and Fn � jEnj
Y
p�T

jEnjp�

Our method comes from the following theorem�

Theorem �� Let Q denote an algebraic integral point on E
K�� Then

�h
Q� �
�

d
lim
n��

�

n�
logFn�
��

The total archimedean contribution is the limit

h�
Q� �
�

d
lim
n��

�

n�
logEn�
��

The formula 
�� is independent of the equation de	ning the curve� It might
appear that a factorization of the discriminant is required but that is not so� Later
we discuss the practicalities of implementing the method� The method extends
to rational points provided one knows the valuations at which the x�coordinate
is not integral� The denominator can be cleared to obtain an integral point on a
curve isomorphic to the starting curve
 so the height is unchanged� The proof of
Theorem � follows in the next section� It uses some detailed knowledge of local
heights� For readers interested only in the application of the formula
 the next
section can be skipped�

�� Local and global heights

The global height is known to be expressible as a sum of local heights
 one for each
element ofMK � There is a function
 continuous away from in	nity
 �v � E
Qv �� R

which satis	es the local parallelogram law

�v
P �Q� � �v
P �Q� � ��v
Q� � ��v
P �� log jx
Q� � x
P �jv �
���
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Let nv � �Kv � Qw ���K � Q� denote the usual local normalizing constants
 where v
lies above w on Q� Then

�h
Q� �
X
v�MK

nv�v
Q��
���

The fundamental observation behind our method is the elliptic Jensen formula from
�EF���� If G is a compact group containing Q
 with normalized Haar measure 	G

then

�v
Q� � �

Z
G

log jx
P �� x
Q�jv d	G
P �
���

by integrating and cancelling three terms in 
����
If it is required that the expression �p
Q�� �

� log jx
Q�jp be bounded as Q �� �

then there is only one such map
 the canonical local height� It is important to
note that in �Sil���
 local heights are normalized to make them invariant under
isomorphisms� This involves adding a constant which depends on the discriminant
of E� The local heights in �Sil��� satisfy a di�erent form of 
����

There are explicit formul� for each of the local heights 
see �Sil��� and �Sil���

or �Eve��� for an alternative approach�� For non�archimedean valuations v where
Q has good reduction


�v
Q� �
�
� logmaxf�� jx
Q�jvg�
���

Notice in particular that if x
Q� is integral at v and Q has good reduction at v
then �v
Q� � �� The bad reduction case is more involved but we need to deal only
with split multiplicative reduction 
see �Sil��
 p� ���� for details on this�� This
is because we may pass to an extension 	eld where the reduction becomes of this
type�the local height is functorial in the sense that it respects this passage� In
the split multiplicative case
 the points on the curve are isomorphic to the points
on the Tate curve K�

v�q
Z
 where q � K�

v has jqjv � �� The explicit formul� for the
x and y coordinates of a non�identity point are given in terms of the uniformizing
parameter u � K�

v by

x � xu �
X
n�Z

qnu


�� qnu��
� �
X
n��

nqn


�� qn��
�

y � yu �
X
n�Z

q�nu�


�� qnu��
�
X
n��

nqn


�� qn��
�

It is clear that xu � xuq and xu � xu�� � Suppose Q corresponds to the point
u � K�

v and assume
 by invariance under multiplication by q
 that u lies in the
fundamental domain fu j jqjv � jujv � �g� Then 
by �Eve��� or �Sil����
 writing

 � log jujv� log jqjv


�v
Q� �

� � log j�� ujv if jujv � ��
�
� 

� 
�� log jqjv if jujv � ��

Notice that for jujv � �
 the local height is non�negative
 while if jujv � � the local
height is negative�

Theorem �� Let Q denote a non�torsion integral point� Suppose vj� or v corre�

sponds to a prime of singular reduction� In the latter case� assume equation 
�� is
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in minimal form� Then there are positive constants A and B � � such that

�

n�
log j�n
Q�jv � �v
Q� �

�
O

log n�A�n�� if vj��

O
��nB� otherwise�

���

Proof� If vj�
 we claim 	rst that

lim
n��

n�� log j�n
x
Q��jv � ��
Q��
���

Formula 
��� was proved in the rational case in �EW��
 Theorem ������ the proof
is sketched here in the general case� The height is functorial in the sense that it
respects 	eld extensions� Thus we may assume v corresponds to an embedding of K
into C � Take G � E
C � in the elliptic Jensen formula 
���� The points of n�torsion
are dense and uniformly distributed in E
C � as n � �
 so the limit sum over the
torsion points will tend to the integral when the integrand is continuous� Note that
the torsion points occur in pairs usually� Working with �n
Q� they only occur with
multiplicity �
 hence the formula di�ers from the usual elliptic Jensen formula in
this respect� The only potential problem arises from torsion points close to Q� by
�Dav���
 for x � x
Q� with nQ � �
 jx � x
Q�jv � n�C for some C � � which
depends on E and Q only� This inequality is enough to imply that the Riemann
sum given by the n�torsion points for log jx � x
Q�jv converges
 which gives 
���

and the explicit error term gives the estimate in 
����

Assume now that v is non�archimedean
 corresponding to a prime of singular
reduction� Let �v denote any complete
 algebraically closed 	eld containing Kv�
Assume Q is integral
 jx
Q�jv � �� Now use the parametrisation of the curve
described before� The points of order dividing n on the Tate curve are precisely
those of the form �iqj�n
 � � i� j � n
 where � � �v denotes a 	xed
 primitive nth
root of unity in �v� We claim that

lim
n��

n�� log j�n
x
Q��jv � �v
Q��
���

Let G denote the closure of the torsion points� G is not compact
 so the v�adic
elliptic Jensen formula cannot be used� Instead we use a variant of the Shnirelman
integral� for f � E
�v�� R de	ne the elliptic Shnirelman integral to beZ

G

f
Q�dQ � lim
n��

n��
X
n���

f

�

whenever the limit exists�
We claim 	rstly that for any P � E
Qp �
 the Shnirelman integralZ

G

�v
P �Q�dQ � S
E� exists and is independent of P �
���

First assume that P is the identity� Using the explicit formula for the local height
gives

�n��
n��X
i��

log j�� �ijv � n��
n��X
i��

n��X
j��

k

�

�
j

n
�
�
j

n

���
log jqjv �
���

The 	rst sum is bounded by log jnjv�n
 which vanishes in the limit� the second
sum converges to � k

�� � For the general case
 let P correspond to the point u on

the multiplicative Tate curve� If for some large n no j has jqj�nujv � � then the
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analogous sum to 
��� is close to � k
�� by the same argument� Assume therefore

that there is a j with this property� Then the 	rst sum in 
��� is replaced by

�n��
n��X
i��

log j�� qj�nu�ijv � n�� log j�� 
qru�njv �
���

where r � j�n only depends on u� By v�adic elliptic transcendence theory 
see
�Dav����
 there is a lower bound for log j�� 
qru�njv of the form �
logn�A
 where
A depends on E and u � u
P � only� It follows that the 	rst sum vanishes in the
limit as before� The second sum in 
��� is simply rearranged under rotation by u

so converges to � k

�� as before� This proves 
����
The claimed limit 
��� now follows by taking the elliptic Shnirelman integral of

both sides of the parallelogram law 
��� and noting that we count torsion points
in pairs� Equation 
��� shows that three terms cancel to leave the required limit�
The error term in 
��� comes from the lower bound used above� �

These estimates are enough to prove the main formula�

Proof of Theorem �� It will be convenient to use normalized heights
 so de	ne

�v
Q� � �v
Q�� �
�� log j�jv �

Then �v is invariant under isomorphism 
see �Sil����� By the product formula


�h
Q� �
X
v

nv�v
Q� �
X
v

nv�v
Q��

Also
 by Theorem �


lim
n��

�

n�
log j�n
Q���n����jv � �v
Q��
���

For any � � K
 jNKjQ
��j �
Q
vj� j�jv � Therefore
 using the product formula

again


log jFnj �
X
vj�

log j�n
Q���n����jv �
X

j
jv��

j�n
Q���n����jv �

The reason for introducing the factor ��n���� is to take account of the possibility
that the equation 
�� is not in minimal form at some non�archimedean v corre�
sponding to a prime of singular reduction� The change of coordinates to put the
equation into minimal form is an isomorphism
 so it leaves the local height �v
Q�
invariant� Now Theorem � follows directly from Theorem �� �

�� Examples

It appears as though we need to factor D � NKjQ
�� in order to apply Theo�
rem �� However
 Theorem � says that for a prime p � T 
 jEnjp is approximately

ln
�

where l is the total contribution to the height from the valuations which extend
j � jp� Therefore
 asymptotically
 it su�ces to compute the gcd of En with a suitably
high power of D� Since the local height is t log j�jv for some � � t � �
 the power
of D can be n�� This is likely to be a huge number and there are ways to avoid
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making this computation� In practice
 it is often su�cient to 	nd the gcd of En
and En	�� In other words�

�h
Q� �
�

d
lim
n��

�

n�
log

�
En

gcd
En� En	��

�
�
���

In the last section of the paper
 we will discuss other ways to speed up the calcu�
lations�

The following examples were calculated using Pari�GP
 see �GP�
 simply applying
the basic formula 
���� In the main we have only exhibited calculations which were
executed within a few seconds at most� We begin by applying our method to
examples in the literature�the 	rst two examples come from �Sil����

Example �� Let the curve be

E � y� � y � x� � x��

the 	eld K � Q

p���
 and Q � 
� �

p��� � � �
p���� Taking n � ��� gives

�h
Q� � ������ � � � to be compared with Silverman�s accurate value of ������ � � � �

When n � ���
 we obtain the better approximation �h
Q� � ������ � � � �

Example �� Let K � Q
i�
 let the curve be

E � y� � �y � x� � �ix�

and Q � 
�� ��� Taking n � ��� gives �h
Q� � ������ � � � to be compared with
Silverman�s accurate value of ������ � � � The archimedean height is � ������ � � �

The next example illustrates that the curve does not need to be in minimal form
for the method to work�

Example 	� Let the curve be

E � y� � x� � ��x� ���

and let Q � 
�� ��� Taking n � ��� gives a value �h
Q� � ������ � � � with a value
� ����� � � � for the archimedean component� The calculation speeds up if we notice
that E is isomorphic to the curve y� � y � x� � x� with Q mapping to P � 
�� ��

under the isomorphism� Taking n � ��� gives �h
P � � �h
Q� � ������ � � � which is
more accurate
 and quicker
 due to the slower growth rate of the sequence En�

The next examples are manufactured to highlight one of the strengths of our
approach� It always gives an answer even if a tricky factorization appears to be
necessary� Silverman�s approach in �Sil��� computes all the local heights then sums
these to give the global height� To compute a local non�archimedean height
 the
curve needs to be in minimal form for that valuation� If the factorization of � is
known then the curve can easily be rendered in minimal form for each valuation
corresponding to the prime factors of �� Even if the factorization is not known
 it
is usually possible to proceed� With our earlier notation
 de	ne

c� � b�� � ��b� and c� � �b�� � ��b�b� � ���b��

In �Sil���
 working over Q
 Silverman shows that if the factorization of c � gcd
c�� c��
is known then the curve can be put in global minimal form so the local heights can
all be computed� Over a number 	eld with class number greater than �
 a global
minimal equation will not always exist� Presumably the same kind of argument
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would work nonetheless� Therefore
 the next example is chosen to highlight a
potential di�culty� c may have a large gcd with the discriminant� In this case

factorizing c is not much easier than factorizing the discriminant�

Example 
� Let K � Q and let m � N denote an integer that is not factorizable
in reasonable time� Consider the curve

E � y� � x� �mx�m��

Let Q denote the point 
��m� � E
K�� For this curve
 mjc and Silverman�s algo�
rithm now requires auxiliary arguments 
see Remark � below�� Let m � pq where
p and q denote the next primes after ���� and ����� With n � ��
 within a minute


our method gave �h
Q� � ������ � � � with an archimedean height � ������ � � � � We
also used a �oating point for the archimedean contribution� with n � ��� we ob�
tained � ������ � � � � The Pari�GP routine for computing heights returned a warning
that the calculation would take several hours� This is all due to the di�culty of
factorizing m�

Remark �� The referee pointed out to us that Silverman�s method can be made
to work in this example because it can be checked that no �th power of a prime
divides m�

The next example shows how our method can be used in tandem with Silverman�s
algorithm�

Example �� With E as in the previous example
 let Q denote an algebraic point
with x
Q� � �� Even a small value of n shows the total non�archimedean contri�
bution is zero� Thus one may revert immediately to a general algebraic version of
Silverman�s method to obtain a very accurate value for the global height
 which
is entirely concentrated at the archimedean valuation� Using our method
 with
n � ��� and with �oating point arithmetic on the two archimedean valuations
 we
obtained the value � ������ � � � for the total archimedean contribution� Note the
value is close to the previous example�this is no real surprise
 as the archimedean
heights are continuous�

Our next example is an algebraic version of Example ��

Example �
� Let f
x� � x�� � x � ��� and let K � Q

� where 
 denotes any
root of f
x�� Let � � �� ����
�
 and consider the curve

E � y� � x� � �x� ���

Let Q denote the point 
�� �� � E
K�� With n � ��
 in under one minute our

method gives �h
Q� � ������ � � � � The archimedean height is � ������ � � � � As in
the previous example
 �jc� It took Pari�gp �� minutes to 	nd the factorization

C � �����������������	 ���������������������������������������������

of C � jNKjQ
��j� it would have taken at least as long to factor the ideal 
c��

Finally
 we give two examples of small height points over algebraic number 	elds�
Our method is simple to apply and can be used to search for small height points in
connection with the elliptic Lehmer problem� There is very little data associated
with this problem beyond the rational case� We hope our paper might inspire an
attempt to gather some data�
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Example ��� Let w denote a non�trivial cube root of unity and K � Q
w�� Let
E be the elliptic curve

y� � x� � ���x� ����� �����w�

The point Q � 
� � ��w�����w�� has global height �h
Q� � ������ � � � � This was
found taking n � ��� � �� and using Shipsey�s algorithm from the next section�
Although the coe�cients of the curve might seem large
 this example arises from
a simple elliptic divisibility sequence� Starting from the sequence �� �� � � w� � �
w� ��w� � � � we used Morgan Ward�s formul� 
see �War��
 p� ���� to obtain a point
on a curve with coe�cients in K whose denominators can be cleared to give E as
above�

Example ��� Let u � 
� �
p
���� and K � Q
u�� The curve E is

y� � x� � 
����� � ����u�x� ������ �����u

and the point is Q � 
�� �u� ���� ���u�� Taking n � ��� as before gives �h
Q� �
������ � � � � This example came from the elliptic divisibility sequence which begins
in the modest way �� �� ��u����u� ���u� � � � Inverting this sequence gives a point
on a curve over K and clearing the denominators gives E as above�

Two comments need to be made about these examples� Firstly
 although these
heights are small
 no records have been broken� The elliptic Lehmer problem pre�

dicts a lower bound for d�h
Q� where d is the degree of the number 	eld� Multiplying
both the above by � shows these values are not smaller than the height 
� �������
of the rational point Q � 
��� ��� on the curve y� � xy � y � x� � x� � ��x� ���

which appears in �Sil��
 p� ����� Secondly
 these examples hint at an interesting
possibility concerning the search for small height points� Perhaps restricting to
elliptic divisibility sequences represents an e�ciency gain in the sense that small
height points will arise from sequences whose 	rst few terms are arithmetically
simple�

�� Accuracy

In 
���
 the error term is estimated using methods from elliptic transcendence
theory� In �EEW�
 we investigated the error in practice and found it to be about
O
��n��
 even for quite modest values of n� For small values of n
 the values of
En can be computed easily using Pari�GP� Several options for achieving greater
accuracy are listed below� However
 we stress again that there are certain physical
limits to this method which go beyond computational considerations� Accuracy
of �� signi	cant 	gures would involve computing a number with approximately
���� decimal digits� Even storing such numbers is beyond the capabilities of any
computer�

�� The archimedean and non�archimedean contributions can be computed sep�
arately and this allows the computations to be speeded up� For the archimedean
contribution
 we can use �oating point arithmetic which greatly enhances the speed�
For the non�archimedean contribution
 we only have to keep a running total of the
gcd so big integer arithmetic can be avoided� If the factorization of the discriminant
is known then p�adic arithmetic may be used�

�� Since the computation of the height involves big numbers
 it is useful to
use a package which allows these to be handled e�ciently� We are grateful to
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John Cannon for implementing our algorithm in Magma �Mag� which gave greater
accuracy�

�� Memory is clearly an issue with the method we are describing since it involves
the calculation of huge numbers� Storage can be maximized by computing En for
special n
 without needing to know all Em for m � n� Shipsey �Shi��� gives an
algorithm that computes En in O
logn� arithmetic operations� Note the distinction
between arithmetic operations and bit operations� By arithmetic operation is meant
one of the familiar operations of adding or multiplying� The special case where
n � �N is especially easy to implement and we describe it below� We are grateful
to Rachel Shipsey for her permission to include it here�

Now follows Shipsey�s algorithm for computing En when n � �N � Given Q and
E
 	nd �i
Q� for i � �� �� � � � � � using the formulae given before� Let

T� � �� U� � ��
Q�� V� � ��
Q�� W� � ��
Q��

X� � ��
Q�� Y� � ��
Q�� Z� � ��
Q��

and then inductively

Tn	� �WnU
�
n � V �

n Tn�

Un	� � 
Vn���
Q��
XnU
�
n � TnW

�
n��

Vn	� � XnV
�
n �W �

nUn�

Wn	� � 
Wn���
Q��
YnV
�
n � UnX

�
n��

Xn	� � YnW
�
n �X�

nVn�

Yn	� � 
Xn���
Q��
ZnW
�
n � VnY

�
n ��

Zn	� � ZnX
�
n � Y �

nWn�

After N � � iterations the value of W is �n
Q�
 and En � jNKjQ
�n
Q��j�
Computing En requires O
logn� arithmetic operations� The operations required

for 
�� satisfy the same bound� However
 our method can be speeded up in two
ways� Firstly
 by using �oating point arithmetic for the archimedean contribution�
Secondly
 the homogeneity of the formul� make it possible to keep a running total
for the gcd computation
 yielding the non�archimedean contribution� By succes�
sively factoring out the gcd
 the calculations proceed with smaller integers
 making
the method much faster�
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