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Higher Rank Graph C��Algebras

Alex Kumjian and David Pask

Abstract� Building on recent work of Robertson and Steger	 we associate a
C��algebra to a combinatorial object which may be thought of as a higher
rank graph� This C��algebra is shown to be isomorphic to that of the associ

ated path groupoid� Various results in this paper give su�cient conditions on
the higher rank graph for the associated C��algebra to be� simple	 purely in

nite and AF� Results concerning the structure of crossed products by certain
natural actions of discrete groups are obtained� a technique for constructing
rank � graphs from �commuting� rank � graphs is given�
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In this paper we shall introduce the notion of a higher rank graph and associate
a C��algebra to it in such a way as to generalise the construction of the C��algebra
of a directed graph as studied in �CK KPRR KPR� �amongst others�� Graph C��
algebras include up to strong Morita equivalence Cuntz�Krieger algebras and AF
algebras� The motivation for the form of our generalisation comes from the recent
work of Robertson and Steger �RS� RS� RS��� In �RS�� the authors study crossed

product C��algebras arising from certain group actions on �A�
buildings and show
that they are generated by two families of partial isometries which satisfy certain
relations amongst which are Cuntz�Krieger type relations �RS� Equations ��� �	��
as well as more intriguing commutation relations �RS� Equation ����� In �RS�� they
give a more general framework for studying such algebras involving certain families
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of commuting �� � matrices� In particular the associated C��algebras are simple
purely in�nite and generated by a family of Cuntz�Krieger algebras associated to
these matrices� It is this framework which we seek to cast in graphical terms to
include a wider class of examples �including graph C��algebras��
What follows is a brief outline of the paper� In the �rst section we introduce the

notion of a higher rank graph as a purely combinatorial object� a small category �
gifted with a degree map d � �� Nk �called shape in �RS��� playing the role of the
length function� No detailed knowledge of category theory is required to read this
paper� The associated C��algebra C���� is de�ned as the universal C��algebra
generated by a family of partial isometries fs� � � � �g satisfying relations similar
to those of �KPR�� �Our standing assumption is that our higher rank graphs satisfy
conditions analogous to a directed graph being row��nite and having no sinks��
We then describe some basic examples and indicate the relationship between our
formalism and that of �RS���
In the second section we introduce the path groupoid G� associated to a higher

rank graph � �cf� �R D KPRR��� Once the in�nite path space �� is formed �and
a few elementary facts are obtained� the construction is fairly routine� It follows
from the gauge
invariant uniqueness theorem �Theorem ���� that C���� �� C��G���
By the universal property C���� carries a canonical action of Tk de�ned by

�t�s�� � td���s����

called the gauge action� In the third section we prove the gauge�invariant unique

ness theorem which is the key result for analysing C���� �cf� �BPRS aHR� see
also �CK RS�� where similar techniques are used to prove simplicity�� It gives
conditions under which a homomorphism with domain C���� is faithful� roughly
speaking if the homomorphism is equivariant for the gauge action and nonzero on
the generators then it is faithful� This theorem has a number of interesting con

sequences amongst which are the isomorphism mentioned above and the fact that
the higher rank Cuntz�Krieger algebras of �RS�� are isomorphic to C��algebras
associated to suitably chosen higher rank graphs�
In the fourth section we characterise in terms of an aperiodicity condition on �

the circumstances under which the groupoid G� is essentially free� This aperiodicity
condition allows us to prove a second uniqueness theorem analogous to the original
theorem of �CK�� In ��� and ��� we obtain conditions under which C���� is simple
and purely in�nite respectively which are similar to those in �KPR� but with the
aperiodicity condition replacing condition �L��
In the next section we show that given a functor c � �� G where G is a discrete

group then as in �KP� one may construct a skew product G �c � which is also a

higher rank graph� If G is abelian then there is a natural action �c � bG� AutC����
such that

�c��s�� � h�� c���is�����

moreover C���� o�c
bG �� C��G �c ��� Comparing ��� and ��� we see that the

gauge action � is of the form �d and as a consequence we may show that the
crossed product of C���� by the gauge action is isomorphic to C��Zk �d ��� this
C��algebra is then shown to be AF� By Takai duality C���� is strongly Morita
equivalent to a crossed product of this AF algebra by the dual action of Zk� Hence
C���� belongs to the bootstrap class N of C��algebras for which the UCT applies
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�see �RSc�� and is consequently nuclear� If a discrete group G acts freely on a k

graph � then the quotient object ��G inherits the structure of a k�graph� moreover
�as a generalisation of �GT Theorem ������� there is a functor c � ��G � G such
that � �� G�c ���G� in an equivariant way� This fact allows us to prove that

C����oG �� C����G��K
�
���G�

�
where the action of G on C���� is induced from that on �� Finally in Section �
a technique for constructing a �
graph from �commuting� �
graphs A�B with the
same vertex set is given� The construction depends on the choice of a certain
bijection between pairs of composable edges� � � �a� b� �� �b�� a�� where a� a� � A�

and b� b� � B�� the resulting �
graph is denoted A �� B� It is not hard to show that
every �
graph is of this form�
Throughout this paper we let N � f�� �� 	 	 	 g denote the monoid of natural

numbers under addition� For k 	 � regardNk as an abelian monoid under addition
with identity � �it will sometimes be useful to regard Nk as a small category with
one object� and canonical generators ei for i � �� 	 	 	 � k� We shall also regardN

k as
the positive cone of Zk under the usual coordinatewise partial order� thus m 
 n
if and only if mi 
 ni for all i where m � �m�� 	 	 	 �mk� and n � �n�� 	 	 	 � nk��
�This makes Nk a lattice��
We wish to thank Guyan Robertson and Tim Steger for providing us with an

early version of their paper �RS��� the �rst author would also like to thank them for
a number of stimulating conversations and the sta� of the Mathematics Department
at Newcastle University for their hospitality during a recent visit�

�� Higher rank graph C��algebras

In this section we �rst introduce what we shall call a higher rank graph as a
purely combinatorial object� �We do not know whether this concept has been
studied before�� Our de�nition of a higher rank graph is modelled on the path
category of a directed graph �see �H� �Mu� �MacL xII��� and Example ����� Thus
a higher rank graph will be de�ned to be a small category gifted with a degree
map �called shape in �RS��� satisfying a certain factorisation property� We then
introduce the associated C��algebra whose de�nition is modelled on that of the
C��algebra of a graph as well as the de�nition of �RS���

De�nitions ���� A k�graph �rank k graph or higher rank graph� ��� d� consists
of a countable small category � �with range and source maps r and s respectively�
together with a functor d � � � Nk satisfying the factorisation property� for
every � � � and m�n � Nk with d��� � m�n there are unique elements 
� � � �
such that � � 
� and d�
� � m d��� � n� For n � Nk we write �n �� d���n��
A morphism between k
graphs ���� d�� and ���� d�� is a functor f � �� � ��
compatible with the degree maps�

Remarks ���� The factorisation property of ��� allows us to identify Obj��� the
objects of � with ��� Suppose �� � 
� in � then by the the factorisation prop

erty � � 
� left cancellation follows similarly� We shall write the objects of � as
u� v� w� 	 	 	 and the morphisms as greek letters �� 
� � 	 	 	 � We shall frequently refer
to � as a k
graph without mentioning d explicitly�
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It might be interesting to replace Nk in De�nition ��� above by a monoid or
perhaps the positive cone of an ordered abelian group�
Recall that �� 
 � � are composable if and only if r�
� � s��� and then �
 � ��

on the other hand two �nite paths �� 
 in a directed graph may be composed to
give the path �
 provided that r��� � s�
�� so in ��� below we will need to switch
the range and source maps�

Example ���� Given a �
graph � de�ne E� � �� and E� � ��� If we de�ne
sE��� � r��� and rE��� � s��� then the quadruple �E�� E�� rE � sE� is a directed
graph in the sense of �KPR KP�� On the other hand given a directed graph
E � �E�� E�� rE � sE� then E� � �n��En the collection of �nite paths may be
viewed as small category with range and source maps given by s��� � rE��� and
r��� � sE���� If we let d � E

� � N be the length function �i�e� d��� � n i�
� � En� then �E�� d� is a �
graph�

We shall associate a C��algebra to a k
graph in such a way that for k � � the
associated C��algebra is the same as that of the directed graph� We shall consider
other examples later�

De�nitions ��	� The k
graph � is row �nite if for each m � Nk and v � ��

the set �m�v� �� f� � �m � r��� � vg is �nite� Similarly � has no sources if
�m�v� ��  for all v � �� and m � Nk�

Clearly if E is a directed graph then E is row �nite �resp� has no sinks� if and
only if E� is row �nite �resp� has no sources�� Throughout this paper we will assume
�unless otherwise stated� that any k
graph � is row �nite and has no sources that
is

� � ��n�v� �� for every v � �� and n � Nk	���

The Cuntz�Krieger relations �CK p��	�� and the relations given in �KPR x��
may be interpreted as providing a representation of a certain directed graph by
partial isometries and orthogonal projections� This view motivates the de�nition
of C�����

De�nitions ��
� Let � be a k
graph �which satis�es the standing hypothesis �����
Then C���� is de�ned to be the universal C��algebra generated by a family fs� �
� � �g of partial isometries satisfying�

�i� fsv � v � ��g is a family of mutually orthogonal projections
�ii� s�� � s�s� for all �� 
 � � such that s��� � r�
�
�iii� s��s� � ss��� for all � � �

�iv� for all v � �� and n � Nk we have sv �
X

���n�v�

s�s
�
��

For � � � de�ne p� � s�s
�
� �note that pv � sv for all v � ���� A family of partial

isometries satisfying �i���iv� above is called a ��representation of ��

Remarks ���� �i� If ft� � � � �g is a ��representation of � then the map
s� �� t� de�nes a ��homomorphism from C���� to C��ft� � � � �g��

�ii� If E� is the �
graph associated to the directed graph E �see ���� then by
restricting a ��representation to E� and E� one obtains a Cuntz�Krieger
family for E in the sense of �KPR x��� Conversely every Cuntz�Krieger
family for E extends uniquely to a ��representation of E��
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�iii� In fact we only need the relation �iv� above to be satis�ed for n � ei � Nk for
i � �� 	 	 	 � k the relations for all n will then follow �cf� �RS� Lemma ������
Note that the de�nition of C���� given in ��	 may be extended to the case
where there are sources by only requiring that relation �iv� hold for n � ei
and then only if �ei�v� ��  �cf� �KPR Equation ������

�iv� For �� 
 � � if s��� �� s�
� then s�s
�
� � �� The converse follows from �����

�v� Increasing �nite sums of pv �s form an approximate identity for C���� �if ��

is �nite then
P

v��� pv is the unit for C
������ It follows from relations �i�

and �iv� above that for any n � Nk fp� � d��� � ng forms a collection of
orthogonal projections �cf� �RS� ������ likewise increasing �nite sums of these
form an approximate identity for C���� �see ��	��

�vi� The above de�nition is not stated most e�ciently� Any family of operators
fs� � � � �g satisfying the above conditions must consist of partial isometries�
The �rst two axioms could also be replaced by�

s�s� �

�
s�� if s��� � r�
�

� otherwise�

Examples ��� �i� If E is a directed graph then by ��� �i� and �ii� we have
C��E�� �� C��E� �see �����

�ii� For k 	 � let  �  k be the small category with objects Obj � � � Nk
and morphisms  � f�m�n� � Nk � Nk � m 
 ng� the range and source
maps are given by r�m�n� � m s�m�n� � n� Let d �  � Nk be de�ned by
d�m�n� � n�m� It is then straightforward to show that  k is a k
graph and
C�� k� �� K

�
���Nk�

�
�

�iii� Let T � Tk be the semigroup N
k viewed as a small category then if d � T �

Nk is the identity map then �T� d� is a k
graph� It is not hard to show that
C��T � �� C�Tk� where sei for � 
 i 
 k are the canonical unitary generators�

�iv� Let fM�� 	 	 	 �Mkg be square f�� �g matrices satisfying conditions �H����H��
of �RS�� and let A be the associated C�
algebra� For m � Nk let Wm be the
collection of undecorated words in the �nite alphabet A of shape m as de�ned
in �RS�� then let

W �
�

m�Nk

Wm	

Together with range and source maps r��� � o��� s��� � t��� and product
de�ned in �RS� De�nition ����W is a small category� If we de�ne d �W � Nk

by d��� � ��� then one checks that d satis�es the factorisation property
and then from the second part of �H�� we see that �W�d� is an irreducible
k
graph in the sense that for all u� v �W� there is � � W such that s��� � u
and r��� � v�
We claim that the map s� �� s��s��� for � �W extends to a !
homomorphism

C��W � � A for which s�s
�
� �� s��� �since these generate A this will show

that the map is onto�� It su�ces to verify that fs��s��� � � �Wg constitutes a
��representation of W � Conditions �i� and �iii� are easy to check �iv� follows
from �RS� ���c���� with u � v � W �� We check condition �ii�� if s��� � r�
�
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apply �RS� ����

s��s���s��s��� �
X

Wd����s����

s����s��s��� � s����s��s��� � s���s����

where the sum simpli�es using �RS� ��� ���� � We shall show below that
C��W � �� A�

We may combine higher rank graphs using the following fact whose proof is
straightforward�

Proposition ���� Let ���� d�� and ���� d�� be rank k�� k� graphs respectively� then
������� d��d�� is a rank k��k� graph where ����� is the product category and

d��d� � ����� � Nk��k� is given by d��d����� ��� � �d������ d������ � Nk��Nk�

for �� � �� and �� � ���

An example of this construction is discussed in �RS� Remark ������ It is clear
that  k�	

��  k � 	 where k� � � ��

De�nition ���� Let f � N	 � Nk be a monoid morphism then if ��� d� is a k

graph we may form the �
graph f���� as follows� �the objects of f���� may be
identi�ed with those of � and� f���� � f��� n� � d��� � f�n�g with d��� n� � n
s��� n� � s��� and r��� n� � r����

Examples ����� �i� Let � be a k�graph and put � � � then if we de�ne the
morphism fi�n� � nei for � 
 i 
 k we obtain the coordinate graphs

�i �� f�i ��� of � �these are ��graphs��
�ii� Suppose E is a directed graph and de�ne f � N� � N by �m��m�� �� m��m��

then the two coordinate graphs of f��E�� are isomorphic to E�� We will show
below that C��f��E��� �� C��E��� C�T��

�iii� Suppose E and F are directed graphs and de�ne f � N � N� by f�m� �
�m�m� then f��E� � F �� � �E � F �� where E � F denotes the cartesian
product graph �see �KP Def� ������

Proposition ����� Let � be a k�graph and f � N	 � Nk a monoid morphism�

then there is a ��homomorphism �f � C
��f����� � C���� such that s���n� �� s��

moreover if f is surjective� then �f is too�

Proof� By ����i� it su�ces to show that this is a ��representation of f����� Prop

erties �i���iii� are straightforward to verify and property �iv� follows by observing
that for �xed n � N	 and v � �� the map f����n�v�� �f�n��v� given by ��� n� �� �
is a bijection� If f is surjective then it is clear that every generator s� of C

���� is
in the range of �f � �

Later in ��	 we will also show that �f is injective if f is injective�

�� The path groupoid

In this section we construct the path groupoid G� associated to a higher rank
graph ��� d� along the lines of �KPRR x��� Because some of the details are not
quite the same as those in �KPRR x�� we feel it is useful to sketch the construction�
First we introduce the following analog of an in�nite path in a higher rank graph�
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De�nitions ���� Let � be a k
graph then

�� � fx �  k � � � x is a k
graph morphismg�

is the in�nite path space of �� For v � �� let ���v� � fx � �� � x��� � vg� For
each p � Nk de�ne p � �� � �� by p�x��m�n� � x�m � p� n � p� for x � ��

and �m�n� �  � �Note that p�q � p � q��

By our standing assumption ��� one can show that for every v � �� we have
���v� �� � Our de�nition of �� is related to the de�nition of W� the space
of in�nite words given in the proof of �RS� Lemma ����� If E� is the �
graph
associated to the directed graph E then �E��� may be identi�ed with E��

Remarks ���� By the factorisation property the values of x���m� for m � Nk

completely determine x � ��� To see this suppose that x���m� is given for all
m � Nk then for �m�n� �   x�m�n� is the unique element � � � such that
x��� n� � x���m���
More generally let fnj � j 	 �g be an increasing co�nal sequence in Nk with

n� � � �for example one could take nj � jp where p � ��� 	 	 	 � �� � Nk�� then
x � �� is completely determined by the values of x��� nj�� Moreover given a
sequence f�j � j 	 �g in � such that s��j� � r��j��� and d��j� � nj � nj�� there
is a unique x � �� such that x�nj��� nj� � �j � For �m�n� �  we de�ne x�m�n� by
the factorisation property as follows� let j be the smallest index such that n 
 nj �
Then x�m�n� is the unique element of degree n�m such that �� � � ��j � 
x�m�n��
where d�
� � m and d��� � nj � n� It is straightforward to show that x has the
desired properties�

We now establish a factorisation property for �� which is an easy consequence
of the above remarks�

Proposition ���� Let � be a rank k graph� For all � � � and x � �� with

x��� � s���� there is a unique y � �� such that x � d���y and � � y��� d����� we
write y � �x� Note that for every x � �� and p � Nk we have x � x��� p�px�

Proof� Fix � � � and x � �� with x��� � s���� The sequence fnj � j 	 �g
de�ned by n� � � and nj � �j � ��p � d��� for j 	 � is co�nal� Set �� � � and
�j � x��j � ��p� �j� ��p� for j 	 � and let y � �� be de�ned by the method given
in ���� Then y has the desired properties� �

Next we construct a basis of compact open sets for the topology on �� indexed
by ��

De�nitions ��	� Let � be a rank k graph� For � � � de�ne

Z��� � f�x � �� � s��� � x���g � fx � x��� d���� � �g	

Remarks ��
� Note that Z�v� � ���v� for all v � ��� For �xed n � Nk the sets
fZ��� � d��� � ng form a partition of �� �see ����v��� moreover for every � � �
we have

Z��� �
�

d����n
r����s���

Z��
�	���

We endow �� with the topology generated by the collection fZ��� � � � �g�
Note that the map given by �x �� x induces a homeomorphism between Z��� and
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Z�s���� for all � � �� Hence for every p � Nk the map p � �� � �� is a local
homeomorphism�

Lemma ���� For each � � �� Z��� is compact�

Proof� By ��	 it su�ces to show that Z�v� is compact for all v � ��� Fix v � ��

and let fxngn�� be a sequence in Z�v�� For everym xn���m� may take only �nitely
many values �by ����� Hence there is a � � �m such that xn���m� � � for in�nitely
many n� We may therefore inductively construct a sequence f�j � j 	 �g in �p

such that s��j� � r��j��� and xn��� jp� � �� � � ��j for in�nitely many n �recall
p � ��� 	 	 	 � �� � Nk�� Choose a subsequence fxnjg such that xnj ��� jp� � �� � � ��j �
Since fjpg is co�nal there is a unique y � ���v� such that y��j� ��p� jp� � �j for
j 	 �� then xnj � y and hence Z�v� is compact� �

Note that �� is compact if and only if �� is �nite�

De�nition ��� If � is k
graph then let

G� � f�x� n� y� � �� � Zk � �� � 	x � my� n � ��mg	

De�ne range and source maps r� s � G� � �� by r�x� n� y� � x s�x� n� y� � y� For
�x� n� y� �y� �� z� � G� set �x� n� y��y� �� z� � �x� n��� z� and �x� n� y�

�� � �y��n� x��
G� is called the path groupoid of � �cf� �R D KPRR���

One may check that G� is a groupoid with �� � G�� under the identi�cation
x �� �x� �� x�� For � 
 � � such that s��� � s�
� de�ne

Z��� 
� � f��z� d��� � d�
�� 
z� � z � ���s����g	

We collect certain standard facts about G� in the following result�

Proposition ���� Let � be a k�graph� The sets fZ��� 
� � �� 
 � �� s��� � s�
�g
form a basis for a locally compact Hausdor� topology on G�� With this topology

G� is a second countable� r�discrete locally compact groupoid in which each Z��� 
�
is a compact open bisection� The topology on �� agrees with the relative topology

under the identi�cation of �� with the subset G�� of G��

Proof� One may check that the sets Z��� 
� form a basis for a topology on G��
To see that multiplication is continuous suppose that �x� n� y��y� �� z� � �x� n �
�� z� � Z��� ��� Since �x� n� y�� �y� �� z� are composable in G� there are �� � � � and
t � �� such that x � ��t y � �t and z � ��t� Hence �x� k� y� � Z���� �� and
�y� �� z� � Z��� ��� and the product maps the open set G�� � �Z���� �� � Z��� ����
into Z��� ��� The remaining parts of the proof are similar to those given in �KPRR
Proposition ����� �

Note that Z��� 
� �� Z�s���� via the map ��z� d��� � d�
�� 
z� �� z� Again
we note that in the case k � � we have � � E� for some directed graph E and
the groupoid GE�

�� GE  the graph groupoid of E which is described in detail in
�KPRR x���

Proposition ���� Let � be a k�graph and let f � N	 � Nk be a morphism� The

map x �� f��x� given by f��x��m�n� � �x�f�m�� f�n��� n�m� de�nes a continuous

surjective map f� � �� � f������ Moreover� if the image of f is co�nal �equiv�
alently f�p� is strictly positive in the sense that all of its coordinates are nonzero�
then f� is a homeomorphism�
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Proof� Given x � f����� choose a sequence fmig such that nj �
Pj

i��mi

is co�nal in N	� Set n� � � and let �j � �f�mj� be de�ned by the condi

tion that x�nj��� nj� � ��j �mj�� We must show that there is an x� � ��

such that x��f�nj���� f�nj�� � �j � It su�ces to show that the the intersection
�jZ��� � � ��j� �� � But this follows by the �nite intersection property� One checks
that x � f��x��� Furthermore the inverse image of Z��� n� is Z��� and hence f� is
continuous�
Now suppose that the image of f is co�nal then the procedure de�ned above

gives a continuous inverse for f�� Given x � f����� then since f�nj� is co�nal
the intersection �jZ��� � � ��j� contains a single point x�� Note that x� depends on
x continuously� �

For higher rank graphs of the form f���� with f surjective �see ���� the associ

ated groupoid Gf���� decomposes as a direct product as follows�

Proposition ����� Let � be a k�graph and let f � N	 � Nk be a surjective mor�

phism� Then

Gf���� �� G� � Z	�k	

Proof� Since f is surjective the map f� � �� � f����� is a homeomorphism �see
����� The map f extends to a surjective morphism f � Z	 � Zk� Let j � Zk � Z	

be a section for f and let i � Z	�k � Z	 be an identi�cation of Z	�k with ker f �
Then we get a groupoid isomorphism by the map

��x� n� y��m� �� �f�x� i�m� � j�n�� f�y��

where ��x� n� y��m� � G� � Z	�k� �

Finally as in �RS� Lemma ���� we demonstrate that there is a nontrivial
��representation of ��� d��

Proposition ����� Let ��� d� be a k�graph� Then there exists a representation

fS� � � � �g of � on a Hilbert space with all partial isometries S� nonzero�

Proof� Let H � ������ then for � � � de�ne S� � B�H� by

S�ey �

�
e�y if s��� � y����
� otherwise

where fey � y � ��g is the canonical basis for H� Notice that S� is nonzero since
���s���� �� � one then checks that the family fS� � � � �g satis�es conditions
��	�i���iv�� �

�� The gauge invariant uniqueness theorem

By the universal property of C���� there is a canonical action of the k
torus Tk
called the gauge action� � � Tk � AutC���� de�ned for t � �t�� 	 	 	 � tk� � Tk

and s� � C���� by

�t�s�� � td���s��	�

where tm � tm�
� � � � tmk

k for m � �m�� 	 	 	 �mk� � Nk� It is straightforward to show
that � is strongly continuous� As in �CK Lemma ���� and �RS� Lemma ���� we
shall need the following�
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Lemma ���� Let � be a k�graph� Then for �� 
 � � and q � Nk with d����
d�
� 
 q we have

s��s� �
X

����

d�����q

s�s
�

 	���

Hence every nonzero word in s�� s
�
� may be written as a �nite sum of partial isome�

tries of the form s�s
�

 where s��� � s���� their linear span then forms a dense

��subalgebra of C�����

Proof� Applying ��	�iv� to s��� with n � q � d��� to s�
� with n � q � d�
� and
using ��	 �ii� we get

s��s� � ps���s
�
�s�ps��� �

�� X
�q�d����s����

s�s
�
�

	A s��s�

�� X
�q�d����s����

s
s
�



	A
�

�� X
�q�d����s����

s�s
�
��

	A�� X
�q�d����s����

s�
s
�



	A 	���

By ����iv� if d���� � d�
�� but �� �� 
� then the range projections p�� p�

are orthogonal and hence one has s���s�
 � �� If �� � 
� then s���s�
 � pv
where v � s��� and so s�s

�
��s�
s

�

 � s�pvs

�

 � s�s

�

 � formula ��� then follows from

formula ���� The rest of the proof is now routine� �

Following �RS� x��� for m � Nk let Fm denote the C��subalgebra of C����
generated by the elements s�s

�
� for �� 
 � �

m where s��� � s�
� and for v � ��

denote Fm�v� the C
��subalgebra generated by s�s

�
� where s��� � v�

Lemma ���� For m � Nk� v � �� there exist isomorphisms

Fm�v� �� K
�
���f� � �m � s��� � vg�

�
and Fm

��
L

v��� Fm�v�� Moreover� the C��algebras Fm� m � Nk� form a

directed system under inclusion� and F� � �Fm is an AF C��algebra�

Proof� Fix v � �� and let � 
 � � � �m be such that s��� � s�
� and s��� �
s��� then by ����v� we have�

s�s
�
�

� �
s�s

�



�
� ����s�s

�

 ����

so that the map which sends s�s
�
� � Fm�v� to the matrix unit

ev��� � K
�
���f� � �m � s��� � vg�

�
for all � 
 � �m with s��� � s�
� � v extends to an isomorphism� The second
isomorphism also follows from ��� �since s�
� �� s��� implies 
 �� ��� We claim
that Fm is contained in Fn whenever m 
 n� To see this we apply ��	�iv� to give

s�s
�
� � s�ps���s

�
� �

X
���s����

s�s�s
�
�s
�
� �

X
���s����

s��s
�
�����

where � � n�m� Hence the C��algebras Fm� m � Nk form a directed system as
required� �
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Note that F� may also be expressed as the closure of ��j��Fjp where p �

��� 	 	 	 � �� � Nk�
Clearly for t � Tk the gauge automorphism �t de�ned in �	� �xes those elements

s�s
�
� � C���� with d��� � d�
� �since �t�s�s

�
�� � td����d���s�s

�
�� and hence F�

is contained in the �xed point algebra C������ Consider the linear map on C����
de�ned by

"�x� �

Z
Tk

�t�x� dt

where dt denotes normalised Haar measure on Tk and note that "�x� � C�����

for all x � C����� As the proof of the following result is now standard we omit it
�see �CK Proposition ����� �RS� Lemma ���� �BPRS Lemma ������

Lemma ���� Let "� F� be as described above�

�i� The map " is a faithful conditional expectation from C���� onto C������
�ii� F� � C������

Hence the �xed point algebra C����� is an AF algebra� This fact is key to the
proof of the gauge�invariant uniqueness theorem for C���� �see �BPRS Theorem
���� �aHR Theorem ���� see also �CK RS�� where a similar technique is used in
the proof of simplicity��

Theorem ��	� Let B be a C��algebra� � � C���� � B be a homomorphism and

let � � Tk � Aut �B� be an action such that � � �t � �t � � for all t � Tk� Then �
is faithful if and only if ��pv� �� � for all v � ���

Proof� If ��pv� � � for some v � �� then clearly � is not faithful� Conversely
suppose that � is equivariant and that ��pv� �� � for all v � ��� We �rst show

that � is faithful on C����� �
S
j�� Fjp� For any ideal I in C����� we have

I �
S
j���I � Fjp� �see �B Lemma ���� �ALNR Lemma ������ Thus it is enough

to prove that � is faithful on each Fn� But by ��� it su�ces to show that it is
faithful on Fn�v� for all v � ��� Fix v � �� and �� 
 � �n with s��� � s�
� � v
we need only show that ��s�s

�
�� �� �� Since ��pv� �� � we have

� �� ��p�v� � ��s��s�s
�
�s�� � ��s�����s�s

�
����s��	

Hence ��s�s
�
�� �� � and � is faithful on C������ Let a � C���� be a nonzero

positive element� then since " is faithful "�a� �� � and as � is faithful on C�����
we have

� �� ��"�a�� � �


Z
Tk

�t�a� dt

�
�

Z
Tk

�t���a�� dt�

hence ��a� �� � and � is faithful on C���� as required� �

Corollary ��
�

�i� Let ��� d� be a k�graph and let G� be its associated groupoid� Then there is an

isomorphism C���� �� C��G�� such that s� �� �Z���s���� for � � �� Moreover�

the canonical map C��G��� C�r �G�� is an isomorphism�

�ii� Let fM�� 	 	 	 �Mkg be a collection of matrices satisfying �H����H�� of �RS��
and W the k�graph de�ned in ����iv�� Then C��W � �� A� via the map s� ��
s��s��� for � �W �
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�iii� If � is a k�graph and f � N	 � Nk is injective� then the ��homomorphism �f �
C��f����� � C���� �see ����� is injective� In particular the C��algebras of

the coordinate graphs �i for � 
 i 
 k form a generating family of subalgebras

of C����� Moreover� if f is surjective then C��f����� �� C����� C�T	�k��
�iv� Let ��i� di� be ki�graphs for i � �� �� then C���� � ��� �� C����� � C�����

via the map s������� �� s�� � s�� for ���� ��� � �� � ���

Proof� For �i� we note that s� �� �Z���s���� for � � � is a �
representation of ��
hence there is a �
homomorphism � � C����� C��G�� such that ��s�� � �Z���s����
for � � � �see ����i��� Let � denote the Tk
action on C��G�� induced by the Zk

valued ��cocycle de�ned on G� by �x� k� y� �� k �see �R II�	����� one checks that
���t � �t�� for all t � Tk� Clearly for v � �� we have �Z�v�v� �� � since �

��v� �� 
and � is injective� Surjectivity follows from the fact that ��s�s

�
�� � �Z����� together

with the observation that C��G�� � spanf�Z�����g� The same argument shows that
C�r �G�� �� C���� and so C�r �G�� �� C��G��� �
For �ii� we note that there is a surjective �
homomorphism � � C��W � � A

such that ��s�� � s��s��� for � � W �see ����iv�� which is clearly equivariant for

the respective Tk�actions� Moreover by �RS� Lemma ���� we have sv�v �� � for all
v �W� � A and so the result follows�
For �iii� note that the injection f � N	 � Nk extends naturally to a homomor


phism f � Z	 � Zk which in turn induces a map #f � Tk � T	 characterised by
#f�t�p � tf�p� for p � N	� Let B be the �xed point algebra of the gauge action of Tk

on C���� restricted to the kernel of #f � The gauge action restricted to B descends

to an action of T	 � Tk�Ker #f on B which we denote �� Observe that for t � Tk

and ��� n� � f���� we have

�t��f �s���n��� � tf�n�s� � #f�t�ns��

hence Im�f � B �if t � Ker #f  then #f�t�n � ��� By the same formula we see that
�f � � � � � �f and the result now follows by ���� The last assertion follows from
part �i� together with the fact that Gf���� �� G� � Z	�k �see ������
For �iv� de�ne a map � � C���� � ���� C������ C����� given by s������� ��

s�� � s�� � this is surjective as these elements generate C
����� � C������ We note

that C����� � C����� carries a T
k��k� action � de�ned for �t�� t�� � Tk��k� and

���� ��� � �� ��� by ��t��t���s�� � s��� � �t�s�� � �t�s�� � Injectivity then follows

by ��� since � is equivariant and for �v� w� � ��� ����� we have pv � pw �� �� �

Henceforth we shall tacitly identify C���� with C��G���

Remark ���� Let � be a k
graph and suppose that f � N	 � Nk is an injective
morphism for which H  the image of f  is co�nal� Then �f induces an isomorphism
of C��f����� with its range the �xed point algebra of the restriction of the gauge
action to H��

�� Aperiodicity and its consequences

The aperiodicity condition we study in this section is an analog of condition �L�
used in �KPR�� We �rst de�ne what it means for an in�nite path to be periodic or
aperiodic�

�This can be also deduced from the amenability of G� �see �����
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De�nitions 	��� For x � �� and p � Zk we say that p is a period of x if for
every �m�n� �  with m� p 	 � we have x�m � p� n� p� � x�m�n�� We say that
x is periodic if it has a nonzero period� We say that x is eventually periodic if
nx is periodic for some n � Nk otherwise x is said to be aperiodic�

Remarks 	��� For x � �� and p � Zk p is a period of x if and only if mx � nx
for all m�n � Nk such that p � m � n� Similarly x is eventually periodic with
eventual period p �� � if and only if mx � nx for some m�n � Nk such that
p � m� n�

De�nition 	��� The k
graph � is said to satisfy the aperiodicity condition �A�
if for every v � �� there is an aperiodic path x � ���v��

Remark 	�	� Let E be a directed graph which is row �nite and has no sinks�
Then the associated �
graph E� satis�es the aperiodicity condition if and only if
every loop in E has an exit �i�e� satis�es condition �L� of �KPR��� However if we
consider the �
graph f��E�� where f � N� � N is given by f�m��m�� � m� �m�

then p � ������ is a period for every point in f��E��� �even if E has no loops��

Proposition 	�
� The groupoid G� is essentially free �i�e�� the points with trivial

isotropy are dense in G��� if and only if � satis�es the aperiodicity condition�

Proof� Observe that if x � �� is aperiodic then mx � nx implies that m � n
and hence x � �� � G�� has trivial isotropy and conversely� Hence G� is essentially
free if and only if aperiodic points are dense in ��� If aperiodic points are dense
in �� then � clearly satis�es the aperiodicity condition for Z�v� � ���v� must
then contain aperiodic points for every v � ��� Conversely suppose that � satis�es
the aperiodicity condition then for every � � � there is x � ���s���� which is
aperiodic� Then �x � Z��� is aperiodic� Hence the aperiodic points are dense in
��� �

The isotropy group of an element x � �� is equal to the subgroup of its eventual
periods �including ���

Theorem 	��� Let � � C���� � B be a ��homomorphism and suppose that �
satis�es the aperiodicity condition� Then � is faithful if and only if ��pv� �� � for

all v � ���

Proof� If ��pv� � � for some v � �� then clearly � is not faithful� Conversely
suppose ��pv� �� � for all v � ��� then by ��	�i� we have C���� � C�r �G�� and hence
from �KPR Corollary ���� it su�ces to show that � is faithful on C��G���� If the
kernel of the restriction of � to C��G��� is nonzero it must contain the characteristic
function �Z��� for some � � �� It follows that ��s�s

�
�� � � and hence ��s�� � �� in

which case ��ps���� � ��s��s�� � � a contradiction� �

De�nition 	�� We say that � is co�nal if for every x � �� and v � �� there is
� � � and n � Nk such that s��� � x�n� and r��� � v�

Proposition 	��� Suppose � satis�es the aperiodicity condition� then C���� is

simple if and only if � is co�nal�

Proof� By ��	�i� C���� � C�r �G��� since G� is essentially free C
���� is simple if

and only if G� is minimal� Suppose that � is co�nal and �x x � �� and � � ��
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then by co�nality there is a 
 � � and n � Nk so that s�
� � x�n� and r�
� � s����
Then y � �
nx � Z��� and y is in the same orbit as x� hence all orbits are dense
and G� is minimal�
Conversely suppose that G� is minimal and that x � �� and v � ��� Then

there is y � Z�v� such that x� y are in the same orbit� Hence there exist m�n � Nk

such that nx � my� then it is easy to check that � � y���m� and n have the
desired properties� �

Notice that second hypothesis used in the following corollary is the analog of the
condition that every vertex connects to a loop and it is equivalent to requiring that
for every v � �� there is an eventually periodic x � ���v� with positive eventual
period �i�e� the eventual period lies in Nknf�g�� The proof follows the same lines
as �KPR Theorem �����

Proposition 	��� Let � satisfy the aperiodicity condition� Suppose that for every

v � �� there are �� 
 � � with d�
� �� � such that r��� � v and s��� � r�
� � s�
��
Then C���� is purely in�nite in the sense that every hereditary subalgebra contains

an in�nite projection�

Proof� Arguing as in �KPR Lemma ���� one shows that G� is locally contracting�
The aperiodicity condition guarantees that G� is essentially free hence by �A
D
Proposition ���� �see also �LS�� we have C���� � C�r �G�� is purely in�nite� �

�� Skew products and group actions

Let G be a discrete group � a k
graph and c � �� G a functor� We introduce
an analog of the skew product graph considered in �KP x�� �see also �GT��� the
resulting object which we denote G �c � is also a k
graph� As in �KP� if G is
abelian the associated C��algebra is isomorphic to a crossed product of C���� by

the natural action of bG induced by c �more generally it is a crossed product by
a coaction $ see �Ma KQR��� As a corollary we show that the crossed product
of C���� by the gauge action C���� o� T

k is isomorphic to C��Zk �d �� the
C��algebra of the skew
product k
graph arising from the degree map� It will then
follow that C����o� T

k is AF and that G� is amenable�

De�nition 
��� Let G be a discrete group ��� d� a k
graph� Given c � � � G a
functor then de�ne the skew product G�c� as follows� the objects are identi�ed
withG��� and the morphisms are identi�ed withG�� with the following structure
maps

s�g� �� � �gc���� s���� and r�g� �� � �g� r����	

If s��� � r�
� then �g� �� and �gc���� 
� are composable in G�c � and

�g� ���gc���� 
� � �g� �
�	

The degree map is given by d�g� �� � d����

One must check that G�c� is a k
graph� If k � � then any function c � E
� � G

extends to a unique functor c � E� � G �as in �KP x���� The skew product graph
E�c� of �KP� is related to our skew product in a simple way� G�c E

� � E�c��� A
key example of this construction arises by regarding the degree map d as a functor
with values in Zk�
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The functor c induces a cocycle �c � G� � G as follows� given �x� ��m� y� � G�
so that 	x � my then set

�c�x� ��m� y� � c�x��� ���c�y���m����	

As in �KP� one checks that this is well
de�ned and that �c is a �continuous� cocycle�

regarding the degree map d as a functor with values in Zk  we have �d�x� n� y� � n for
�x� n� y� � G�� In the following we show that the skew product groupoid obtained
from �c �as de�ned in �R�� is the same as the path groupoid of the skew product
�cf� �KP Theorem ������

Theorem 
��� Let G be a discrete group� � a k�graph and c � � � G a functor�

Then GG�c�
�� G���c� where �c � G� � G is de�ned as above�

Proof� We �rst identify G � �� with �G �c ��
� as follows� for �g� x� � G � ��

de�ne �g� x� �  � G�c � by

�g� x��m�n� � �gc�x���m��� x�m�n���

it is straightforward to check that this de�nes a degree�preserving functor and thus
an element of �G�c��

�� Under this identi�cation n�g� x� � �gc�x��� n��� nx� for
all n � Nk �g� x� � �G�c��

�� As in the proof of �KP Theorem ���� de�ne a map
� � G���c�� GG�c� as follows� for x� y � �

� with 	x � my set ���x� ��m� y�� g� �
�x�� ��m� y�� where x� � �g� x� and y� � �g�c�x� ��m� y�� y�� Note that

my� � m�g�c�x� ��m� y�� y� � m�gc�x��� ���c�y���m����� y�

� �gc�x��� ���� my� � �gc�x��� ���� 	x� � 	�g� x�

� 	x��

and hence �x�� ��m� y�� � GG�c�� The rest of the proof proceeds as in �KP Theorem
���� mutatis mutandis� �

Corollary 
��� Let G be a discrete abelian group� � a k�graph and c � � � G a

functor� There is an action �c � bG� AutC���� such that for � � bG and � � �

�c��s�� � h�� c���is�	

Moreover C����o�c
bG �� C��G�c��� In particular the gauge action is of the form�

� � �d� and so C����o� T
k �� C��Zk �d ���

Proof� Since C���� is de�ned to be the universal C��algebra generated by the
s��s subject to the relations ���	� and �

c preserves these relations it is clear that it

de�nes an action of bG on C����� The rest of the proof follows in the same manner
as that of �KP Corollary ��	� �see �R II�	����� �

In order to show that C����o� T
k is AF we need the following lemma�

Lemma 
�	� Let � be a k�graph and suppose there is a map b � �� � Zk such that

d��� � b�s����� b�r���� for all � � �� then C���� is AF�

Proof� For every n � Zk let An be the closed linear span of elements of the form
s�s

�
� with b�s���� � n� Fix � 
 � � with b�s���� � b�s�
�� � n� We claim that

s��s� � � if � �� 
� If s��s� �� � then by ��� there are � � � � with s��� � r��� and
s�
� � r��� such that �� � 
�� but then we have

d��� � n � d��� � b�s���� � b�s����� � b�s�
��� � d��� � b�s�
�� � d��� � n	
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Thus d��� � d��� and hence by the factorisation property � � �� Consequently
� � 
 by cancellation and the claim is established� It follows that for each v with
b�v� � n the elements s�s

�
� with s��� � s�
� � v form a system of matrix units

and two systems associated to distinct v�s are orthogonal �see ����� Hence we have

An
��
M

b�v��n

K
�
���s���v�

�
	

By an argument similar to that in the proof of Lemma ��� if n 
 m then An � Am

�see equation ����� our conclusion now follows� �

Note that An in the above proof is the C
��algebra of a subgroupoid of G� which

is isomorphic to the disjoint unionG
b�v��n

Rv � �
��v�

where Rv is the transitive principal groupoid on s
���v�� Since G� is the increasing

union of these elementary groupoids it is an AF
groupoid and hence amenable �see
�R III������� The existence of such a function b � �� � Zk is not necessary for
C���� to be AF since there are ��graphs with no loops which do not have this
property �see �KPR Theorem ������

Theorem 
�
� Let � be a k�graph� then C����o�T
k is AF and the groupoid G� is

amenable� Moreover� C���� falls in the bootstrap class N of �RSc� and is therefore

nuclear� Hence� if C���� is simple and purely in�nite �see Proposition ����� then
it may be classi�ed by its K�theory�

Proof� Observe that the map b � �Zk �d ��
� � Zk given by b�n� v� � n satis�es

b�s�n� ���� b�r�n� ��� � b�n� d���� �� � b�n� r���� � n� d��� � n � d�n� ��

The �rst part of the result then follows from 	�� and 	��� To show that G� is
amenable we �rst observe that G�� �d� �� GZk�d� is amenable� Since Z

k is amenable
we may apply �R Proposition II����� to deduce that G� is amenable� Since C����
is strongly Morita equivalent to the crossed product of an AF algebra by a Zk�
action it falls in the bootstrap class N of �RSc�� The �nal assertion follows from
the Kirchberg
Phillips classi�cation theorem �see �K P��� �

We now consider free actions of groups on k
graphs �cf� �KP x���� Let � be a k

graph andG a countable group then G acts on � if there is a group homomorphism
G� Aut� �automorphisms are compatible with all structure maps including the
degree�� write �g� �� �� g�� The action of G on � is said to be free if it is free on
��� By the universality of C���� an action of G on � induces an action � on C����
such that �gs� � sg��
Given a free action of a group G on a k
graph � one forms the quotient ��G

by the equivalence relation � � 
 if � � g� for some g � G� One checks that all
structure maps are compatible with � and so ��G is also a k
graph�

Remark 
��� Let G be a countable group and c � � � G a functor then G acts
freely on G�c � by g�h� �� � �gh� ��� furthermore �G�c ���G �� ��
Suppose now that G acts freely on � with quotient ��G� we claim that � is

isomorphic in an equivariant way to a skew product of ��G for some suitably
chosen c �see �GT Theorem �������� Let q denote the quotient map� For every
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v � ���G�� choose v� � �� with q�v�� � v and for every � � ��G let �� denote the
unique element in � such that q���� � � and r���� � r����� Now let c � ��G � G
be de�ned by the formula

s���� � c���s����	

We claim that c��
� � c���c�
� for all � 
 � � with s��� � r�
�� Note that

r�c���
�� � c���r�
�� � c���r�
�� � c���s���� � s�����

hence we have ��
�� � ���c���
�� �since the image of both sides agree under q and
r�� Thus

c��
�s�
�� � c��
�s��
�� � s���
��� � s�c���
�� � c���s�
�� � c���c�
�s�
��

which establishes the desired identity �since G acts freely on ��� The map �g� �� ��
g�� de�nes an equivariant isomorphism between G�c ���G� and � as required�

The following is a generalization of �KPR ��� ����� and is proved similarly�

Theorem 
�� Let � be a k�graph and suppose that the countable group G acts

freely on �� then

C����o
 G �� C����G��K
�
���G�

�
	

Equivalently� if c � �� � G is a functor� then

C��G�c �
��o
 G �� C������K

�
���G�

�
where �� the action of G on C��G�c�

��� is induced by the natural action on G�c�
��

If G is abelian this action is dual to �c under the identi�cation of 	���

Proof� The �rst statement follows from the second with �� � ��G� indeed by 	��
there is a functor c � ��G � G such that � �� G �c ���G� in an equivariant way�
The second statement follows from applying �KP Proposition ���� to the natural
G
action on GG�c��

�� G����c�� The �nal statement follows from the identi�cations

C����o�c
bG �� C��G�c �� �� C��G���c��

and �R II������ �

�� ��graphs

Given a k
graph � one obtains for each n � Nk a matrix

Mn
��u� v� � �f� � �

n � r��� � u� s��� � vg	

By our standing assumption the entries are all �nite and there are no zero rows�
Note that for any m�n � Nk we have Mm�n

� � Mm
� Mn

� �by the factorisation
property�� consequently the matrices Mm

� and Mn
� commute for all m�n � Nk� If

W is the k
graph associated to the commuting matrices fM�� 	 	 	 �Mkg satisfying
conditions �H����H�� of �RS�� which was considered in Example ����iv� then one
checks that Mei

W � M t
i � Further if � � E� is a �
graph derived from the directed

graph E then M�
� is the vertex matrix of E�

Now suppose that A and B are �
graphs with A� � B� � V such the associated
vertex matrices commute� Set A� � B� � f��� �� � A� � B� � s��� � r���g and
B� � A� � f��� �� � B� � A� � s��� � r���g� since the associated vertex matrices
commute there is a bijection � � ��� �� �� ���� ��� from A� �B� to B� �A� such that
r��� � r���� and s��� � s����� We construct a �
graph � from A B and �� This
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construction is very much in the spirit of �RS��� roughly speaking an element in �
of degree �m�n� � N� will consist of a rectangular grid of size �m�n� with edges
of A horizontally edges of B vertically and nodes in V arranged compatibly� First
identify �� � V � For �m�n� � N� set W �m�n� � f�i� j� � N� � �i� j� 
 �m�n�g�
An element in ��m�n� is given by v�i� j� � V for �i� j� � W �m�n� ��i� j� � A� for
�i� j� � W �m� �� n� and ��i� j� � B� for �i� j� � W �m�n� �� �set W �m�n� �  if
m or n is negative� satisfying the following compatibility conditions wherever they
make sense�

i� r���i� j�� � v�i� j� and r���i� j�� � v�i� j�
ii� s���i� j�� � v�i� �� j� and s���i� j�� � v�i� j � ��
iii� ����i� j�� ��i � �� j�� � ���i� j�� ��i� j � ����

for brevity and with a slight abuse of notation we regard this element as a triple
�v� �� �� �note that � disappears if m � � and � disappears if n � � and v is
determined by � and%or � if mn �� ��� Set

� �
�

�m�n�

��m�n�

and de�ne s�v� �� �� � v�m�n� and r�v� �� �� � v��� ���
Note that if � � Am and 
 � Bn with m�n � � such that s��� � r�
� there is

a unique element �v� �� �� � ��m�n� such that � � ���� ������ �� � � ���m� �� �� and

 � ��m� ����m� �� � � ���m�n� ��� denote this element �
� Further if � � Am and

 � Bn with m�n � � such that r��� � s�
� there is a unique element �v� �� �� in
��m�n� such that � � ���� n����� n� � � ���m��� n� and 
 � ���� ������ �� � � ����� n�
��� denote this element 
�� Using these two facts it is not di�cult to verify that

given elements �v� �� �� � ��m�n� and �v�� ��� ��� � ��m
��n�� with v�m�n� � v���� ��

there is a unique element �v��� ���� ���� � ��m�m��n�n�� such that v���i� j� � v�i� j�
����i� j� � ��i� j� ����i� j� � ��i� j� v���m � i� n � j� � v��i� j� ����m � i� n �
j� � ���i� j� and ����m � i� n � j� � ���i� j� wherever these formulas make sense�
Write �v��� ���� ���� � �v� �� ���v�� ��� ���� This de�nes composition in �� note that
associativity and the factorisation property are built into the construction �as in
�RS���� Finally we write � � A �� B� It is straightforward to verify that up to
isomorphism any �
graph may be obtained from its constituent �
graphs in this
way�
If A � B then we may take � � � the identity map� In that case one has

A �� A �� f��A� where f � N� � N is given by f�m�n� � m � n� Hence by
Corollary ��	�iii� we have C��A �� A� �� C��A�� C�T��
To further emphasise the dependence of the product A �� B on the bijection

� � A� �B� � B� �A� consider the following example�

Example ���� Let A � B be the �
graph derived from the directed graph which
consists of one vertex and two edges say A� � fe� fg �note C��A� �� O��� Then
A� � A� � f�e� e�� �e� f�� �f� e�� �f� f�g and we de�ne the bijection � to be the &ip�
It is easy to show that A �� A �� A�A� hence

C��A �� A� �� O� �O�
�� O�

where the �rst isomorphism follows from Corollary ��	�iv� and the second from the
Kirchberg
Phillips classi�cation theorem �see �K P��� But

C��A �� A� �� O� � C�T��
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hence A �� A ��� A �� A�
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