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The Homology of Pei�er Products of Groups

W� A� Bogley and N� D� Gilbert

Abstract� The Pei�er product of groups �rst arose in work of J�H�C� White
head on the structure of relative homotopy groups� and is closely related to
problems of asphericity for twocomplexes� We develop algebraic methods for
computing the second integral homology of a Pei�er product� We show that a
Pei�er product of superperfect groups is superperfect� and determine when a
Pei�er product of cyclic groups has trivial second homology� We also introduce
a double wreath product as a Pei�er product�
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Introduction

Given two groups acting on each other by automorphisms� it is natural to ask
whether these groups can be embedded in an overgroup in such a way that the
given actions are realized by conjugation� If the actions are trivial� this can be
done simply by forming the direct product of the two groups� In general� the
question has a negative answer�
One is led to the following construction� Let G and H be groups and suppose

we are given xed actions �g� h� �� gh and �h� g� �� hg of each group on the other�
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�These are assumed to be right actions� so that �gh�h
�

� ghh
�

� for example�� Let �
denote the normal closure in the free product G �H of all elements

g��h��ghg � h��g��hgh � g � G� h � H�

The quotient G �� H �� �G � H��� is the Pei�er product of G and H with the
given actions� For example� when G and H act trivially on each other� the Pei�er
product is just the direct product G �� H �� G � H � and � is the Cartesian
subgroup � � G�H � ker�G �H � G �H�� When G and H are innite cyclic
with nontrivial actions� it is shown in ��� that the Pei�er product is the quaternion
group of order eight� Z �� Z�� Q�� The question that was alluded to in the opening
paragraph can now be posed as the following

Embedding Question� When are the natural maps G� G �� H � H injective�

The Pei�er product of groups �so named in ���� rst arose in a topological setting
in the work of J�H�C� Whitehead ���� on the structure of relative homotopy groups�
Suppose that a connected two�complex Z is a union of connected subcomplexes X
and Y that intersect in the common one�skeleton X � Y � Z�� One consequence
of Whithehead�s work in ���� is that the relative homotopy group ���Z�Z

�� can be
decomposed as the Pei�er product of the relative groups ���X�Z

�� and ���Y� Z
���

���Z�Z
�� �� ���X�Z

�� �� ���Y� Z
������

�The actions arise via the homotopy action of ���Z
���� As an application� White�

head proposed his notorious

Asphericity Question� Are subcomplexes of aspherical two�complexes themselves
aspherical�

The point here is that by comparing the homotopy sequences of the pairs �X�Z��
and �Z�Z��� one sees that if Z is aspherical �i�e�� ���Z� � 	�� then X is aspherical
if and only if ���X�Z

�� embeds in ���Z�Z
��� The longstanding unresolved status

of Whitehead�s Asphericity Question therefore stands as testimony to the subtlety
of the Embedding Question for Pei�er products�
The Pei�er product has been applied to algebraic problems �see for example its

implicit role in ��	�� and to the topological setting in which it rst appeared� the
calculation of low dimensional homotopy and homology groups �
� �� �� ��� The
following theorem of M� N� Dyer ��� connects the vanishing of the second homotopy
group of a two�complex to the vanishing of the second homology group of its second
relative homotopy group�

Theorem� ��� Let Xbe a connected two�complex with one�skeleton X�� If X does

not have the homotopy type of the two�sphere� then X is aspherical if and only if

H�����X�X
��� � 	�

In this paper we consider the purely algebraic problem of determining the second
integral homology H��G �� H� of a Pei�er product G �� H in terms of information
about the factors G and H � As in ���� we exploit the description of a Pei�er product
via semidirect products� By way of general results� we show that any Pei�er product
of superperfect groups is superperfect �Corollary ��
� and we give a very short proof
of the K�unneth formula for the second homology of direct products �x�����
Our main results support a systematic approach to the problem of H� calcu�

lations for Pei�er products� We draw the reader�s attention to Theorem 
�� and
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Corollary 
�
� which are denitive technical results within this context� We illus�
trate the e�ectivenes of our approach by showing how to determine whether a Pei�er
product of cyclic groups has trivial second homology �Theorem ����� This in turn
is related to the Embedding Question for these Pei�er products� �See Corollary ���
and the succeeding examples�� We also introduce �x���� a double wreath product
construction as a Pei�er product and we investigate its second homology�

Notation� When a group H acts on a group G on the right� �G�H � will denote the
subgroup ofG generated by all elements g��gh � g � G� h � H� Then �G�H � is normal
in G� and we denote the quotient G��G�H � by GH � We shall use this subscript
notation for any quotient group obtained by killing an action� For example� if H
normalizes G in a common overgroup� then H acts on G by conjugation� gh �
h��gh and �G�H � � �G�H � is the subgroup generated by the commutators �g� h� �
g��h��gh � g��gh� Thus GH � G��G�H � and if G � H � then GG � G��G�G� is
the abelianized group Gab�
Now suppose that G and H are groups acting on each other on the right� We

form the following normal subgroups in the free product G �H �

S � hhg��h��ghg � g � G� h � Hii���

T � hhh��g��hgh � g � G� h � Hii

and we set � � ST � Note that �G�H��S and �G�H��T are the semidirect products
G n H and G o H respectively� The quotient group �G �H��� � G �� H is the
Pei�er product of G and H with the given actions� The images of the natural maps
G� G �� H � H will be denoted by �G and �H respectively�

�� The low�dimensional homology of products of subgroups

R� Brown�s ve�term exact sequence ��� for the homology of a group P � equal to
the product of two normal subgroups M and N � is

�
� H��P �� H��P�M�	H��P�N�� �M �N���M�N �

� H��P �� H��P�M�	H��P�N�� 	�

We shall be interested in the setting in which M �N � �M�N �� in which case the
group P decomposes as a Pei�er product of M and N �

Proposition ���� In a Pei�er product G �� H� the subgroups �G and �H are normal

subgroups satisfying G �� H � �G �H and �G � �H � � �G� �H�� Conversely� if P is a

group with normal subgroups M�N satisfying P �MN and M �N � �M�N �� then
P ��M �� N �

Proof� It is immediate from the dening relations of the Pei�er product that �G
and �H are normal subgroups of G �� H and that �G �H � G �� H � Next�

�G �� H�� �G �� HG and �G �� H�� �H �� GH �

As in �
� ��� we note that the quotient �G �� H��� �G� �H� is isomorphic to GH �HG

and elements of �G � �H lie in the kernel of the quotient map G �� H � GH �HG�
Hence �G � �H 
 � �G� �H��
Conversely� suppose that M�N are normal subgroups of a group P with P �

MN � Following Brown ���� we form the Pei�er product M �� N using the conjuga�
tion actions in P � By identifying M �� N as a quotient of the semidirect product
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M oN � Brown obtains a short exact sequence

�� �M �N���M�N ��M �� N � P � ��

Hence if M �N � �M�N � then M �� N �� P � �

With Proposition ���� the Brown homology sequence �
� for the group G �� H
and its normal subgroups �G and �H shows that the maps GH � G �� H � HG

induce homomorphisms

H��G �� H�
��� H��GH �	H��HG�

H��G �� H�
��� H��GH �	H��HG�

where �� is an isomorphism and �� is surjective� For later convenience� we note
the following immediate corollary�

Corollary ���� Let G and H be perfect groups �i�e�� H��G� � H��H� � 	�� Then
for any actions of G and H on each other� the Pei�er product G �� H is perfect�

Our next aim is to investigate the kernel of ��� The maps G� G �H � H induce
a homomorphism

�G�H
�
� �G�H �G 	 �H �G�H

that is obviously surjective�

Proposition ���� There is a surjective homomorphism ker�� � ker	� If the

maps H��G� � H��GH� and H��H� � H��HG� are each injective� then ker�� ��
ker	�

Proof� The standard ve�term exact sequences for the extensions

�� �� G �H
�
� G �� H � �

�� �G�H �� G� GH � �

�� �H �G�� H � HG � �

combine into a commutative diagram involving the maps ��� �� and 	 as shown in
Figure ���� A diagram chase gives a surjection ker�� � ker	� If � denotes the
quotient map G �H � G �� H then we obtain an extension of abelian groups

	� ker�� � imH����� ker�� � ker	 � 	�

Now each of H��G�� H��GH � and H��H�� H��HG� factors through H���� and
it follows that if H��G� � H��GH � and H��H� � H��HG� are each injective then
ker�� � ker	 is an isomorphism� �

The converse of Proposition ��
 is false� as the following example shows�

Example� Let A � ha� b j �a� b�i be free abelian of rank � and let V � f�� x� y� xyg
be a Klein ��group� We let x act on A by inversion and let y act trivially� Dene
an action of A on V by xa � y� xb � xy� ya � xy� yb � x� In A �� V we have
a��ya � xy and y��ay � a� hence y � xy and x � �� Then a��xa � y implies
y � �� so that �V � � and

A �� V � �A �� V �� �V � AV
�� V�
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H��G�	H��H�

H����

��

H��G�	H��H�

��

H��G �� H�

��

��
�� H��GH�	H��HG�

��

�G�H
�

��

��

�G�H �G 	 �H �G�H

��

H��G�	H��H�

��

H��G�	H��H�

��

H��G �� H�
��

�� H��GH�	H��HG�

Figure ���� Five term sequences

and H��A �� V � � Z�� H��AV � � Z� and H��VA� � 	� We see that �i is an
isomorphism �i � ��� and so 	 is an isomorphism� ����� A�V � �� Z�	V � However
Z� H��A�� H��AV � � Z� is not injective�

The structure of H��G �� H� is summarised in the Hasse diagram in Figure ����

H��G �� H�

H��GH�	H��HG�

ker ��G�H
�
� �G�H �G 	 �H �G�H�

ker��

ker�� � imH����

Figure ���� Structure of H��G �� H�
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�� Twisted bilinear relations

Recall that � � ST where S denotes the normal closure in G �H of all elements
g��h��ghg� g � G� h � H and T is the normal closure of all elements h��g��hgh�
g � G� h � H � The inclusions of S and T in � induce a surjective homomorphism

SG�H 	 TG�H � �G�H �

In this and the following section� we completely describe the structure of SG�H � with
analogous remarks holding for TG�H � The image in SG�H of the normal generator
g��h��ghg for S will be denoted hg� hi� Thus�

hg� hi � g��h��ghg�S�G �H � � SG�H � S��S�G �H ��

Lemma ���� The abelian group SG�H is generated by the elements hg� hi �g �
G � h � H� and the following relations hold�

�i� hgg�� hi � hg�� hgihg� hi�
�ii� hg� hh�i � hg� hihg� h�i�

These relations imply that hg� �i � h�� hi � � in SG�H and that hg� hi�� � hg� h��i �
hg��� hgi� Furthermore� if x �resp� y� is a generating set for G �resp� H�� then
SG�H is generated by the elements hx� yi� x � x� y � y�

Proof� The elements hg� hi generate SG�H since S is the normal closure in G �H
of all the elements g��h��ghg� The validity of the relations �i� and �ii� may be
checked directly� for example� working modulo �S�G �H ��

hgg�� hi � g
�
��g��h��gg�hgg

�

� g
�
��h�gg�hgg

�

h�gg
�

g
�
��hgg��h��gg�hgg

�

� hg�� hgih�gg
�

g
�
��hgg��h��ghgh�gg�hgg

�

� hg�� hgihg� hi�

The remaining assertions of the lemma follow directly from the relations �i� and
�ii�� �

Denote the augmentation ideal in ZG by g and write H��H� � Hab � H��H�H ��
Here is a restatement of Lemma ���� The elementary proof is left to the reader�

Corollary ���� There is a surjective homomorphism 
 � Hab �G g� SG�H given

by 
�h�H�H �� �g  ��� � hg� hi�

Corollary ���� If G and H are perfect �i�e�� Gab � Hab � 	�� then the natural

map H��G�	H��H�� H��G �� H� is surjective� If G and H are both superperfect

�i�e�� H� � H� � 	�� then so is G �� H�

Proof� When H is perfect we have SG�H � 	 by Corollary ���� When both G and
H are perfect� this implies that �G�H � 	� The rst statement follows from the ve
term homology sequence for G �� H � �G �H���� �See Figure ����� The second
statement follows immediately� �
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�� The structure of SG�H

In this section we show that the surjection 
 � Hab �G g� SG�H is actually an
isomorphism� Of course� the discussion also applies to show that TG�H �� Gab�H h�
where h denotes the augmentation ideal in ZH� Following Brown ���� we rely on
the fact that the Pei�er product G �� H is a quotient of the semi�direct product
GnH � �G�H��S� We begin by building a standard two�complex with fundamental
group GnH �
We have an action of G by automorphisms on H � Let K �resp� L� be the two�

complex modeled on a presentation P � hx � ri �resp� Q � hy � si� for G �resp�
H�� For each �x� y� � x � y� we can choose a reduced word vx�y in the free group
on y so that the relation yx � vx�y holds in G nH � If we set tx�y � x��y��xvx�y
and t � ftx�y � �x� y� � x� yg� then

R � hx�y � r� s� ti

is a presentation for the split extension G n H � Let M denote the two�complex

modeled on R and let p � fM � M be the universal covering projection� The
complex M contains the one�point union K � L as a subcomplex and the pre�
image p���K � L� � K � L has fundamental group S � ker�G � H � G n H��

The homology sequence for the pair �fM�K � L� determines an exact sequence of
Z�GnH��modules

���M�� H��fM�K � L�� Sab � 	���

in which the second term is the free Z�Gn H��module with basis elements �ex�y�
�x� y� � x � y� corresponding to the two�cells of M  �K � L�� The basis element

�ex�y � H��fM�K � L� is mapped to the coset tx�y�S� S� � Sab� where tx�y is viewed
in G �H �

Lemma ���� Given two�complexes K and L modeled on presentations �x � r� for
G and �y � s� for H and with M constructed as above� there is an exact sequence

���M�� H��M�K � L�� SG�H � 	���

of abelian groups� Here� the second term is the free abelian group with basis con�

sisting of the two�cells ex�y� �x� y� � x � y� of M  �K � L� and the basis ele�

ment ex�y is mapped to hx� yi � SG�H � The �rst map in the sequence factors as

���M�
h
� H��M�� H��M�K � L� where h is the Hurewicz homomorphism�

Proof� The result follows upon killing the action of GnH �i�e�� of G �H� in the
sequence ���� �

Module generators for ���M� have been described by Y� G� Baik and S� J�
Pride ��� �see ����� In practice it is a simple matter to determine the images of
these generators under the map ���M� � H��M�L �K� and thus to work out a
presentation for SG�H in terms of the generators hx� yi� x � x� y � y� We brie�y
describe the Baik�Pride �� generators for the reader�s convenience�
Recall that K �resp� L� is modeled on a presentation P � �x � r� �resp� Q � �y �

s�� for G �resp� H� and that M is is modeled on a presentation R � �x�y � r� s� t�
where t consists of relations of the form tx�y � x��y��xvx�y� x � x� y � y� that
realize the action of G on H � Baik and Pride describe generators for ���M� in
terms of spherical pictures� �See ��� for a general treatment of spherical pictures��
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In addition to the collection of all spherical pictures over P and Q� two additional
families of spherical pictures are su cient to generate ���M� as a Z�GnH��module�
Given �x� s� � x�s� construct a disc picture Ax�s over the presentation �x�y � s� t�

consisting of a single positively oriented s�disc surrounded by a series of tx�y�discs
according to the occurences of the letters y�� in the relator s� The boundary of
each tx�y�disc has two oppositely oriented occurences of arcs labeled by x� these x�
arcs are joined so as to form an annulus of tx�y�discs surrounding the original s�disc�
Since the generator x� when viewed as an element of G determines an automorphism
of H � the boundary of Ax�s supports a word in y�y

�� that determines the identity
element of H � Thus we can choose a disc picture Bx�s over Q � �y � s� whose
boundary word is the same as that of Ax�s� Gluing these two pictures together along
their common boundary� we obtain a spherical picture Px�s over R� Constructing
one such picture for each �x� s� � x � s� we refer to the resulting family as the
pictures of Type I�
Given �r� y� � r � y� choose a disc picture Cr�y over �x�y � s� t� with boundary

word r��y��ry� This is possible because G acts on H and so r acts trivially on y�
Now attach two oppositely oriented r�discs to match the occurences of r and r��

in the boundary of Cr�y and then close up the remaining oppositely oriented y�arcs
to obtain a spherical picture Qr�y over R� Constructing one such picture for each
�r� y� � r� y� we refer to the resulting family as the pictures of Type II�
Each element of ���M� can be represented by a spherical picture over R� Baik

and Pride showed that ���M� is generated as a Z�GnH��module by the homotopy
elements represented by spherical pictures over P and Q� together with the selected
pictures of Type I and Type II� The image of a homotopy element under the map
���M� � H��M�K � L� is computed by simply counting with multiplicity the
occurences of tx�y�discs in a representative picture� In particular� all pictures over
P and Q have trivial image� This process and the construction of Type I and
Type II pictures will be illustrated in the proof of Theorem 
�� below�

Theorem ���� The map 
 � Hab�Gg� SG�H is an isomorphism� �And similarly�

there is an isomorphism Gab �H h �� TG�H ��

Proof� Use the multiplication tables to construct presentations P for G and Q
for H � Thus the presentation P � �x � r� has generators x � f�g� � g � Gg and
dening relations r � f�g��g���gg���� � g� g� � Gg� The presentation Q � �y � s� is
constructed in the same way� We can then build K� L� and M as described above�
The free abelian homology group H��M�K�L� has basis consisting of the two�cells
e�g���h�� g � G� h � H with boundary word reading t�g���h� � �g�

���h����g��hg�� So
e�g���h� � H��M�K � L� maps to hg� hi � SG�H � In order to determine the image
of ���M� � H��M�K � L�� let g� g� � G and h� h� � H � It su ces to examine the
occurences of t�discs in the pictures A�g��s and Cr��h� where r � �g��g

���gg���� � r

and s � �h��h���hh���� � s� These pictures are displayed in Figure 
���
Examining the black discs in Figure 
��� we nd that the Type I picture P�g��s

has image e�g���h�!e�g���h��e�g���hh�� � H��M�K�L� and that the Type II picture
Qr��h� has image e�g���h�!e�g����hg�e�gg����h� � H��M�K�L�� Passing to SG�H � this
means that the relations �i� and �ii� from Lemma ��� are actually dening relations
for the generators hg� hi of the abelian group SG�H � From this it is straightforward
to show that the assignment hg� hi �� h�H�H � � �g  �� denes an inverse to the
map 
� �
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Figure ���� A�g��s and Cr��h�

Corollary ���� There is an isomorphism SG�H �� Gab �Hab if either

�a� G is a free group or

�b� G acts trivially on Hab�

Proof� When G is a free group� the augmentation ideal g �resp� abelianization
Gab� is the free ZG�module �resp� free abelian group� with basis in one�to�one
correspondence with a basis for G� The result �a� follows easily� The result �b�
follows from the fact that Gab �� g�g�� �

The setting of Corollary 
�
�a� is of interest in low dimensional homotopy theory�
When a two�complex Z is a union of aspherical subcomplexes X and Y with inter�
section X�Y � Z�� Whitehead�s result ��� shows that the relative homotopy group
���Z�Z

�� is the Pei�er product G �� H where G � ���X�Z
�� and H � ���Y� Z

���
Since X and Y are aspherical� the groups G and H are free�

�� Computations

���� Trivial actions� The K�unneth formula� When G and H act trivially on
each other� the Pei�er product is simply the direct product� G �� H �� G � H �
Inspection of the normal generators for S and T reveals that S � T � � is the
Cartesian subgroup � � G�H � ker�G �H � G �H�� Corollary 
�
�b� implies
that �G�H �� Gab �Hab� This result was rst proved by MacHenry ����� When we
examine the ve�term homology sequence for G�H � �G �H��� �see Figure �����
it is clear that the map H��G� 	H��H� � H��G �H� is an isomorphism and so
the sequence

H��G� 	H��H�� H��G�H�� Gab �Hab � 	

is exact� Finally� the map H��G�	H��H�� H��G�H� is readily seen to be split
injective� so we recover the K�unneth formula for the second homology of direct
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products�

H��G�H� �� H��G�	H��H�	 �G
ab �Hab��

���� Conjugation action� Let G act on itself by conjugation� As in �
� �� we have
G �� G �� Gab �G with the two canonical maps G� G �� G taking g �� ��� g� and
g �� ��g� g�� There is an isomorphism

H��G �� G� �� H��G�	H��G
ab�	 �Gab �Gab��

Corollary 
�
�b� shows that the maps SG�H � �H �G�H and TG�H � �G�H �G can
each be identied with the commutator pairing Gab � Gab � �G�G���G� �G�G�� �
���G�����G�� It follows from the commutative diagram in Figure ��� that

�G�G �� �Gab �Gab�	 ���G�����G�

and that 	 � �G�G � �G�G�G 	 �G�G�G is the map

�Gab �Gab�	 ���G�����G�� ����G�����G��
��

which is the sum of the identity on the second summand and the diagonal commu�
tator pairing

�	 � � �g � �h �� ��g� h����G�� �g� h����G���

Therefore ker	 �� ker�� � Gab �Gab � ���G�����G���

��
� Pei�er products of cyclic groups� Consider a Pei�er product G �� H
where G and H are cyclic groups generated by x and y respectively� Proposition ��

shows that H��G �� H� is isomorphic to the kernel of the map 	 � �G�H �
�G�H �G 	 �H �G�H � Suppose that the actions are given by

xy � xa�� and yx � yb������

where a and b are integers� Note that if a or b is zero� then G �� H is abelian� Given
the orders of G and H � it is a simple matter to work out the structure of G �� H
and of H��G �� H� in this case� We therefore assume that a and b are nonzero�
With the given actions ���� the Pei�er product G �� H is a quotient of the group

P �a� b� with presentation

P �a� b� � hx� y � x��y��xyb��� y��x��yxa��i

and we begin by examining some relations in P �a� b� and its quotients�

Lemma 	��� In the group P �a� b� and all of its quotient groups�

�a� xa � �x� y� � y�b is central and

�b� xa
�

� xab � yb
�

� yab � ��

Proof� Working in P �a� b�� we have � � x��y��xyb�� � x��xa��yb � xayb� which

proves �a�� Since xa is central we have xa � y��xay � �xa���a � xa
��a so that

xa
�

� �� In the same way we have yb
�

� �� Since xa and yb are central� we further
have � � �xayb�a � yab and similarly xab � �� This proves �b�� �

In a Pei�er product of cyclic groups with actions given by ��� where ab �� 	� we
may as well assume that the factors G and H are cyclic of nite orders m and n�
respectively� We introduce the group P �a� b�m�n� with presentation

P �a� b�m�n� � hx� y � xm� yn� x��y��xyb��� y��x��yxa��i�
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This group decomposes as a Pei�er product P �a� b�m�n� � Z�m �� Z�n whenever
the congruence relations

�a! ��n � � mod m���

�b! ��m � � mod n

are satised� �These are necessary and su cient ensure that the factors G � Z�m
andH � Z�n act on each other via ����� For convenience� we introduce the following
notation�

 � gcd�a�m� and � � gcd�b� n��

In the presence of the congruence relations ���� we can examine the structure of
P �a� b�m�n� using Proposition ��� as follows�

P �a� b�m�n��hxi �� Z�����

hxi��hxi � hyi� �� P �a� b�m�n��hyi �� Z����

hxi � hyi � �hxi� hyi� � h�x� y�i � hxai��	�

Lemma 	��� Assume that the parameters a� b� m� and n satisfy the congruence

relations ���� If H��P �a� b�m�n�� � 	� then the subgroup hxai of P �a� b�m�n� has
order gcd�� �� and the group P �a� b�m�n� has order � gcd�� ���

Proof� Let P � P �a� b�m�n� and consider the quotient group P�hxai �� Z�	Z���
The ve�term sequence associated to the central extension

	� hxai � P � Z�	Z��� �

takes the form

	 � H��P �� Z��Z��� hxai � H��P �
��
� Z�	Z��� 	�

From this we conclude that the subgroup hxai of P has order gcd�� ��� Computa�
tion of the order of P is enabled by ���� ���� and ��	�� �

As an example� note that P ����� �� P ����� �� �� is the Pei�er product Z ��
Z with nontrivial actions by the innite cyclic factors� Since P ����� is a nite
group with a balanced presentation� Lemmas ��� and ��� show that x� � y� � �x� y�
is a central element of order two and that Z �� Z has order eight� As seen in ����
Z �� Z is the quaternion group of order eight�
We now examine H��P �a� b�m�n�� under the assumption that the parameters a�

b� m� and n satisfy the congruence relations ���� Using Lemma ���� note that

xan�� � ybm�� � �

in P �a� b�m�n�� The group P �a� b�m�n� is therefore unchanged if we replace m
and n by gcd�a�� ab�m� an��� and gcd�b�� ab� n� bm��� respectively� The values of
 and � are unchanged and one can use the binomial theorem to show that the
congruence relations ��� are still satised� These observations show that we can
restrict our attention to the case where P � G �� H where G � Z�m � hxi and
H � Z�n� hyi� and where the parameters m�n� a� b satisfy the divisor relations

m j a�� ab�
an

�
and n j b�� ab�

bm


�����

Recall that S �respectively T � is the normal closure of x��y��xyb�� �respectively
y��x��yxa��� in the free product G�H � and that � � ST � Let " �resp� #� denote
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the image of SG�H �resp� TG�H� in �G�H � Thus �G�H � " ! #� Note that the
intersection " � # is contained in the kernel of 	 � �G�H � �G�H �G 	 �H �G�H �
We obtain explicit information about the kernel of 	 by studying the sequence of
surjections

SG�H � "� "��" �#�� �H �G�H �

Lemma 	��� Assume that the parameters a� b� m� and n satisfy the divisor rela�

tions �����

�a� The group SG�H is cyclic of order gcd�m�n�� generated by hx� yi�
�b� The order of the cyclic group " is a common divisor of a� b� m� and n� Thus

the order of " divides gcd�� ���
�c� The order of the cyclic group "��"�#� is the least common multiple of m�

and n���
�d� The group �H �G�H is cyclic of order n���

Analogous results hold for the groups in the sequence of surjections

TG�H � #� #��" �#�� �G�H �G�

Proof� �a� Lemma ��� shows that SG�H is cyclic� generated by hx� yi�The structure
of SG�H can be worked out from Theorem 
��� For example� using the fact that
the augmentation ideal g in ZG is given by g �� ZG�h

Pm��
i�	 xii� the group SG�H ��

Hab �G g is cyclic of order gcd�n� � ! �b!�� � � �! �b!��m���� Using the binomial
theorem and the divisor relations ����� one can show that �!�b!�� � � �!�b!��m��

is congruent to m modulo n and so SG�H is cyclic of order gcd�m�n��
�b� Consider hx� yib � hx� ybi � x��y�bx�yb�x�S�G �H �� We have

x��y�bx�yb�x � x��y�bxyb
��b � x��y�bxyb � �x� yb��

On the other hand� since xayb � ST � we have �x� yb� � �x� xayb� � �ST�G � H ��
This shows that hx� yib lies in the kernel of SG�H � " 
 �G�H � In the same way�
hxa� yi � x�ay��xayx

a

�S�G �H � � �xa� y��S�G �H � is in the kernel of SG�H � "
since �xa� y� � �ybxa� y� � �ST�G � H �� Using the twisted bilinear relations from
Lemma ��� and working modulo the kernel of SG�H � "� for any positive integer
k we have

hxk � yi � hx� yx
k��

ihxk��� yi

� hx� y�b���
k��

ihxk��� yi

� hx� yi�k���b��hxk��� yi

� hx� yihxk��� yi�

It follows that hxa� yi � hx� yia modulo the kernel of SG�H � " and so hx� yia

itself lies in this kernel� Together with part �a�� this shows that the order of " is a
common divisor of m� n� a� and b� as claimed�
�c� Information on the intersection "�# is obtained by reducing elements of S

modulo T � For this� we rst use the divisor relations ���� to show that the elements
xa and yb are central in the semi�direct product G o H � �G � H��T � Working
modulo T we have

y��xay � �xy�a � xa
��a � xa
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since m j a�� In addition�

y�bxyb � x�a���
b

� xab�� � x

since m j gcd�a�� ab�� Using this� we show that �S�G �H � 
 T � Given u�w � G �H
and working modulo T � we have

�w��x��y��xyb��w� u� � �w��xaybw� u� � �xayb� u� � ��

This shows that T contains a generating set for �S�G �H ��
Now "��"�#� �� �"!#��# � ST�T �S�G�H � � ST�T embeds in �G�H��T ��

GoH by the map

hx� yi! �" �#� �� xaybT�

Once again using the fact that xa and yb are central modulo T and that �G �H��T
is the semidirect product G o H � Z�m o Z�n� we are able to conclude that
hx� yik � " �# if and only if m j ak and n j bk� The result follows easily�
�d� The group HG is cyclic of order � so �H �G�H � �H �G� is cyclic of order n���

generated by yb� �

Theorem 	�	� Let G � Z�m and H � Z�n� generated by x and y and with actions

given by ���� If we assume that the parameters a� b� m� and n satisfy the divisor

relations ����� then H��G �� H� � 	 if and only if m� � n�� � gcd�� ���

Proof� Let P � G �� H � We use the conclusions of Lemma ��
 without reference
throughout the proof of the theorem� Suppose rst that m� � n�� � gcd�� ���
Since the order of " is a divisor of gcd�a� b�m� n� � gcd�� �� and the order of
�H �G�H is n��� the fact that gcd�� �� � n�� implies that the surjection " �
�H �G�H is an isomorphism� In particular� " � # � 	 so that �G�H � " 	 #� In
the same way� # � �G�H �G is an isomorphism� Thus 	 is an isomorphism and so
H��P � � 	�
Now suppose that H��P � � 	� Then 	 is injective� which implies that the map

"��"�#�� �H �G�H is an isomorphism� This in turn implies that lcm�m�� n��� �
n�� so that m� divides n��� Analogous considerations applied to the map #��"�
#�� �G�H �G show that n�� divides m�� Thus m� � n���
The order of the subgroup hxi � �G of P is  gcd�� �� by ���� ��	� and Lemma ����

This implies that  gcd�� �� � m � n��� so that gcd�� �� � n��� On the
other hand� the fact that n j b� can be used to show that n�� j gcd�� ��� Thus
m� � n�� � gcd�� ��� �

Corollary 	�
� With the notation and hypotheses of Theorem ���� if H��G �� H�
is trivial� then the factors G and H embed in the Pei�er product G �� H�

Proof� The order of �G is  gcd�� �� � m� � m� so that G �� �G� Similarly�
H �� �H � �

Examples with H� � 	� Given nonzero integers a and b with g � gcd�a� b�� the
divisor relations ���� are satised if we set m � ag and n � bg� One notes that
m� � n�� � gcd�� nu� � g� so the group P � P �a� b� ag� bg� � Z�ag �� Z�bg has
order abg� H��P � � 	� and the factors embed in the Pei�er product�
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More with H� � 	� Suppose that a � pq� b � qr� and m � n � q� where p� q�
and r are pairwise relatively prime� The divisor relations ���� are satised and
m� � n�� � gcd�� �� � q� so P � P �pq� qr� q�� q�� � Z�q� �� Z�q� has order q��
H��P � � 	� and the factors embed in the Pei�er product�

Examples with H� �� 	� Consider a xed integer p � �� The divisor relations ����
are satised for a � pr� b � ps� m � pr�t� and n � pr�s�t if r � �� s � 	� and
	 � t � r� We have m� � n�� � pt and gcd�� �� � pr� For xed r and s and
t � 	 � � � r� let Gt denote the Pei�er product

Gt � P �pr� pr�s� pr�t� pr�s�t� �� Z�pr�t �� Z�pr�s�t�

Taking t � r� Theorem ��� shows that H��Gr� � 	� With this� Lemma ��� provides
that Gr has order p

�r�s and Corollary ��� shows that the element x has order p�r

in Gr
�� Z�p�r �� Z�p�r�s�

For each t� we have a central extension

	� hxp
r�t

i � Gr � Gt � �

and the ve�term sequence for this extension shows that H��Gt� �� hxp
r�t

i is cyclic
of order pr�t� Knowing the order of Gr and the order of x in Gr� we also conclude
that Gt has order p

�r�s�t� Finally� we note that the factors embed in the Pei�er
product Gt

�� Z�pr�t �� Z�pr�s�t�

���� A double wreath product� Given positive integers m and n� let G � C
�n�
m

be the direct product of n copies of the multiplicative cyclic group Cm of order m

and let H � C
�m�
n be the direct product of m copies of the cyclic group Cn of order

n�

G � hx�� � � � � xn � x
m
i � �xi� xj �i

H � hy�� � � � � ym � y
n
i � �yi� yj �i

Then G and H act on each other by cyclic permutation of indices�

x
yj
i � xi�� �subscripts mod n�����

yxij � yj�� �subscripts mod m�

The Pei�er product G �� H is a homomorphic image of the standard wreath prod�

ucts Cm oCn and Cn oCm� so we think of G �� H � C
�n�
m �� C

�m�
n as a double wreath

product of Cm and Cn�

Lemma 	��� For the double wreath product G �� H � C
�n�
m �� C

�m�
n � the map

	 � �G�H � �G�H �G 	 �H �G�H

is an isomorphism� In addition� the natural map

H��G�	H��H�� H��G �� H�

is surjective�

Proof� We show that the kernel of the map SG�H � �H �G�H is contained in
the kernel of the map SG�H � �G�H � An analogous result holds for the map
TG�H � �G�H and from this it follows that the map 	 is an isomorphism�

First note that �H �G�H � �H �G� �� C
�m���
n is generated by the elements

y��� y�� y
��
� y�� � � � � y

��
m��ym�
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Next� Lemma ��� shows that SG�H is generated by the elements

hxi� yji � x��i y��j xiyj���S�G �H ��

The map 	 carries hxi� yji to the element y
��
j yj�� � �H �G� � �H �G�H � Since H is

abelian� Theorem 
�� shows that H �G g �� SG�H via the map h� �g �� �� hg� hi�
It follows that

hxi� yji
n � �

for all i � �� � � � � n and j � �� � � � �m� In addition�

mY
j��

hxi� yji � hxi� y� � � � ymi � hxi� y�y
xi
� � � � y

xm��

i

� i � hxi� y
��xi�����x

m��

i

� i � �

for all i � �� � � � � n since ��!xi! � � �!xm��i ��xi �� � 	 in the integral group ring
ZG� With this we see that it su ces to show that for each i and j� the elements
hxi� yji and hxi��� yji have the same image in �G�H � Working in G�H � notice that

x��i y��j xiyj�� � �xi� yj �y
��
j yj�� � S and y��j x��i yjxi�� � �yj � xi�x

��
i xi�� � T so

that y��j yj��x
��
i xi�� � ST � �� This implies that

�yj��� y
��
j yj��x

��
i xi��� � �yj��� x

��
i xi��� � ��� G �H ��

The image of the element hx��i xi��� yj��i under the map SG�H � �G�H is

�x��i xi���
��y��j���x

��
i xi���y

�x��
i

xi���
j�� ��� G �H � � �x��i xi��� yj������ G �H � � �

so that hx��i xi��� yj��i lies in the kernel of SG�H � �G�H � Now� using the relations
of Lemma ��� for SG�H � we have

hx��i xi��� yj��i � hxi��� y
x��
i

j��ihx
��
i � yj��i

� hxi��� yjihx
��
i � yxij i

� hxi��� yjihxi� yji
���

This shows that the elements hxi� yji and hxi��� yji have the same image in �G�H
and completes the proof that 	 is an isomorphism�
To prove the second assertion of the Lemma� note that the groups GH and HG

are both cyclic� so that H��GH� � H��HG� � 	� Referring to Figure ���� the map
�� is the zero map� Since 	 is injective� it follows that H��G �� H�� �G�H is the
zero map and so H��G �H� � H��G�	H��H�� H��G �� H� is surjective� �

We will not attempt to determine the kernel of the map H��G� 	 H��H� �
H��G �� H� here� but we can use Lemma ��� to compute the order of the double

wreath product C
�n�
m �� C

�m�
n �

Proposition 	��� The order of the double wreath product C
�n�
m �� C

�m�
n of Cm and

Cn is mn gcd�m�n��
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Proof� Letting G � C
�n�
m and H � C

�m�
n we use Proposition ��� to compute as

follows�

�G �� H�� �G �� HG
�� Cn

�G�� �G � �H� �� �G �� H�� �H �� Cm

�G � �H � � �G� �H�

� sgpfx��i xi�� � i � �� � � � � ng

� sgpfy��j yj�� � j � �� � � � �mg�

Now � �G� �H � � �G �� H�G �� H � is central in G �� H and the ve�term sequence for
the central extension

	� � �G� �H�� G �� H � GH �HG � �

has the form

H��G �� H�� H��GH �HG�� � �G� �H �� H��G �� H�
��
� GH �HG � 	�

The composite maps G � G �� H � GH � HG and H � G �� H � GH � HG

factor through the cyclic groups GH and HG and so induce the trivial map on
second homology� And since H��G�	H��H�� H��G �� H� is surjective� it follows
that the map H��G �� H� � H��GH �HG� is the trivial map� This implies that
� �G� �H � �� H��GH �HG� �� Cm � Cn� Thus the order of � �G� �H � is gcd�m�n� and so
the order of G �� H is mn gcd�m�n�� �

A parting shot� Let p be a prime number� We close by calling attention to the

groups P �p� p� p�� p�� � Z�p� �� Z�p� of x��
 and C
�p�
p �� C

�p�
p of x���� both of

which have order p�� These are nonisomorphic nonabelian groups whose center
and derived subgroups coincide and have order p� Such groups are called extra�
special p�groups� According to ���� pages ��	������ every nonabelian group of

order p� is isomorphic to either Z�p� �� Z�p� or to C
�p�
p �� C

�p�
p � Further� the extra�

special p�groups $play an important role in some of the deeper parts of nite group
theory% and every extra�special p�group can be exhibited as a $central product% of
nonabelian groups of order p�� It is therefore satisfying to see how these groups
can be constructed from cyclic groups using the Pei�er product construction�
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