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Test Elements and the Retract Theorem in

Hyperbolic Groups

John C� O�Neill and Edward C� Turner

Abstract� We prove that in many
 perhaps all
 torsion free hyperbolic groups

test elements are precisely those elements not contained in proper retracts� We
also show that all Fuchsian groups have this property� Finally
 we show that
all surface groups except Z�Z have test elements�
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�� Introduction

De�nition �� If G is a group then g � G is a test element if for any endomorphism
� 
 G� G� ��g � g implies that � is an automorphism�

The notion of test elements was �rst considered in the context of free groups� in
which they are called test words � The �rst example was provided in ���� by Nielsen
�N�� who showed that the basic commutator �a� b� � aba��b�� is a test word in the
free group F �a� b� Considerable progress has been made recently in understanding
both test elements and test words�see �Tu�� for example� and the references cited
there� The following reformulation of the de�nition makes clear how test elements
are used to recognize automorphisms
 g is a test element if ��g � ��g for some

automorphism � implies that � is an automorphism� Thus the issue of deciding
whether � is an automorphism is replaced by that of deciding whether ��g and g
are equivalent under the action of the automorphism group Aut�G� The classic
algorithm of J� H� C� Whitehead �W� decides very e�ectively when two elements
of a free group F are equivalent under the action of Aut�F �in a forthcoming
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paper� D� J� Collins and the second author will show how to do the same thing in
a torsion�free hyperbolic group�

Producing non�test elements is quite easy� Suppose� for example� that the sub�
group R of G is a proper retract � i�e�� the image of a non�surjective map � 
 G� G�
called a retraction� with the property that ��r � r for all r � R� Then no element
of R can be a test element� In �Tu� the following theorem�the Retract Theorem

for free groups�was proven� characterizing test words in free groups�

Theorem� A word w in a free group F is a test word if and only if w is not in

any proper retract�

We are interested in deciding whether the Retract Theorem is true for gen�
eral hyperbolic groups� �By hyperbolic we mean word hyperbolic in the sense of
Gromov�see� e�g�� �GH�� In particular� hyperbolic groups are �nitely generated�
We succeed in proving it for torsion free hyperbolic groups that are stably hyperbolic

in the following sense�

De�nition �� A hyperbolic group is stably hyperbolic if for every endomorphism
� 
 G� G� there are arbitrarily large values of n so that �n�G is hyperbolic�

Any hyperbolic group with the property that every �nitely generated subgroup is
hyperbolic �hyperbolic surface groups� for example clearly satis�es this property� A
famous application of the Rips construction �R� shows that some hyperbolic groups
have �nitely generated non�hyperbolic subgroups� We modify this construction
in Section � to produce an example in which such a subgroup is the image of
an endomorphism� It�s relatively easy to extend this to �nd endomorphisms of
hyperbolic groups that have arbitrarily many non�hyperbolic forward images� but
in all cases we�ve studied� the images are eventually hyperbolic� It seems quite
possible that all hyperbolic groups are actually stably hyperbolic�

Our speci�c results are the following�

Theorem �� If G is a torsion free stably hyperbolic group and g � G� then g is a

test element if and only if g is not in any proper retract�

Theorem �� If H is a �nitely generated Fuchsian group and h � H� then h is a

test element if and only if h is not in any proper retract� This applies in particular

if H is a �nite free product of cyclic groups�

Theorem �� If G is a surface group other than Z� Z then G has test elements�

The situation for surface groups is interesting�all surface groups except Z� Z

have test elements �explicit examples given in Section � and all except the funda�
mental group of the Klein bottle ha� b j aba�� � b��i satisfy the Retract Theorem�
�In �V�� it was shown that b lies in no proper retract but is nevertheless not a test
word since it is �xed by ��a � a�� ��b � b�

We will use the following terminology�

De�nition �� If G is a group and � 
 G� G is an endomorphism� then

�n � � j�n�G�
 �
n�G� �n�G� and

�� � � j���G�
 �
��G� ���G�

where �� �
T�
i�� �

n�G�
The group G is Hop�an if it is not isomorphic to any of its proper quotients and

is co�Hop�an if it is not isomorphic to any of its proper subgroups�
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�� Torsion free hyperbolic groups

This section is devoted to a proof of Theorem �� Our proof of Theorem � is
modeled on the proof of the Retract Theorem in �Tu�� the main technical tool being
Proposition �� whose proof we defer to the end of the section�

Proposition �� Suppose that G � G� � G� � � � � � Gm is a free product of in�nite

cyclic and freely indecomposable co�Hop�an groups� If � 
 G � G is a monomor�

phism� then �� �G is a free of factor G�

Proposition �� If G is a torsion�free hyperbolic group and � 
 G � G is an

endomorphism with the property that �n �G is hyperbolic for arbitrarily large n�
then �� �G is a free factor of �N �G for some N �

Proof� It was proven by Sela �Se�� that if � 
 G � G is an endomorphism of a
torsion�free hyperbolic group G then �j�n�G� 
 �

n�G� �n�G is a monomorphism
for large enough n� Let n be large enough so that �j�n�G� is a monomorphism and
that �n�G is hyperbolic and consider the free product decomposition �n�G �
H� � � � � � Hm into freely indecomposable hyperbolic factors� Sela �Se�� has also
proven that every freely indecomposable torsion free hyperbolic group is either
co�Hop�an or in�nite cyclic� Proposition � now follows from Proposition �� �

Proof of Theorem �� The fact that elements of proper retracts are not test el�
ements is trivially true in all groups since a proper retraction is not an automor�
phism� To prove the converse� we begin with the following general observation

if � 
 G � G is a monomorphism of a group G� then �� is an automorphism of

���G� It is clear that �� is injective� To see that �� is surjective� let g � �� �G �
then for every n� there exists gn � �n �G such that g � � �gn� since � is injective�
gm � gn for all m�n� Hence g� � �� �G� and � is surjective�

Now suppose that G is a stably hyperbolic group� that g is not a test element
and that � is a endomorphism which is not an automorphism so that ��g � g�we
show that g lies in a proper retract by showing that ���G is a proper retract�

For large enough n� � is a monomorphism by �Se��� since ��n� � ��� �� is an
automorphism by the observation above� According to Proposition �� �� �G is a
free factor of �N �G for some N 
 choose such an N and let � 
 �N �G� �� �G
be a free factor projection mapping� Then

� � ��N� � � � �N 
 G� �� �G

is a retraction mapping� Thus �� is a retract� �

It may be that the Retract Theorem is true for general hyperbolic groups
 Theo�
rem � is a partial result in this direction� It may also be the case that all hyperbolic
groups are stably hyperbolic� However� the following example� suggested by G� A�
Swarup� shows that it may be that ��G is not hyperbolic �but in this case ���G
is trivial�

Example� Suppose that

F� � F� � hx�� x�� x�� x� j �x�� x�� � �x�� x�� � �x�� x�� � �x�� x��i

and let

	 
 F� � F� � F� � F� by 	 �xi � x� for � � i � �
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In �Dr� it was shown that ker �	 has rank � and is not �nitely presented and is
therefore not a hyperbolic group�

Now let G � �F��F��Fr� Fr � hy�� 
 
 
 � yri and �	 
 G� Fr�� � hx�� y�� 
 
 
 � yri
by

�	�xi � 	�xi�

�	�yi � yi


and let P � ker
�
�	
�

 Then P has rank ��

Now the Rips construction �R� produces a hyperbolic group H with rank 	 � r
that maps onto G by a map � with kernel generated by two added generators a and
b� Then H � � ����P  is a non�hyperbolic subgroup of H of rank at most 	�

�
	

H � �
� P

	 	

� � ha� bi � H
�
� G � �

	 �	
Fr��
	
�

Now let r 
 �� � 
 Fr�� � H � be a surjection and � � � � �	 � � 
 H � H �� Then H
is hyperbolic and � is an endomorphism whose image H � is not hyperbolic�

Proof of Proposition �� We begin by observing that it su�ces to show that
���G is a free factor of �n�G for some n �in fact we will show that this is
true for all su�ciently large n� For if �n�G � ���G �G� for some G�� then the
monomorphism

�n 
 G� �n�G

pulls this factorization back to G


G � ��n����G � ��n�G�


But it is straightforward to show that ��n����G � ���G�
The proof is a geometric generalization of the Takahasi Theorem �Ta� and is

modeled on the proof of the Takahasi result outlined in problem �� on page ��� of
�MKS�� We will need the following slight variant of the usual normal form measure
of length in a free product �which depends on the product decomposition�

De�nition �� If G � G� �G� � � � � �Gm is a free product of freely indecomposable
factors� then the length jgjG is

jgjG �

tX
j�i

jgj jGij

�

where g has free product normal form g � g�g� 
 
 
 gt� � �� gj � Gij for some ij �

jgj jGij
� � if Gij �

�� Z and jgj jGij
� n if Gij

�� Z and gj is the nth power of a
generator�
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We order the factors of G so that Gi
�� Z for � � i � �� thus

G � F� �G��� � � � � �Gm


Let X be the natural ��complex with fundamental group G which is the wedge
of � circles and ��complexes K���� 
 
 
 �Km� ���Ki � Gi� each of which is joined to
the wedge point by a line segment�

The nested sequence of subgroups

G 
 � �G 
 �� �G 
 � � � 
 �n �G 
 � � � 
 �� �G

determines a sequence of coverings of X

X� � � �
pk��
� Xk��

pk��
� Xk

pk
� 
 
 
 X�

p�
� X

where ���Xk � �k�G� Let Pk � p� � p� � � � � � pk 
 Xk � X �

In the covering space Xk� a connected component �Ki of P
��
k �Ki will be called

an essential Ki�country if ��

�
�Ki

�
�� � and an inessential Ki�country otherwise�

Let Mk be a contractable subspace of Xk which is the union of a maximal tree in
Xk ��xed for the remainder of the argument with all the the inessential countries
in Xk� ThenMk�which we call a representing subspace�determines a free product
representation for �k�G as in the Kurosh Subgroup Theorem�

We de�ne a unit path in Xk to be a path in Xk that begins and ends at a lift of
the basepoint of X and never passes through


i an intermediary basepoint�
ii an inessential country�
iii an edge of the maximal tree�

Clearly each path in Xk is uniquely a product of unit paths and paths without unit
subpieces� If g � �k �G and �f is the lift to Xk of a closed loop f representing g�
then relative to the free product representation corresponding to Mk� jgj�k�G� is

just the number of unit paths in �f �
For g � �k�G� let kgk�k�G� be the length of the shortest representation of g

in �k �G with respect to any free product representation for �k �G into freely

indecomposable factors� Suppose that min
k�N

n
kgk�k�G�

o
� t is attained in �N �G �

G�� � G
�
� � � � � � G

�
m� with G�i

�� Z for � � i � � and suppose that g � g�g� 
 
 
 gt�
where gj � G�ij for some � � ij � m�

Applying the Kurosh Theorem to �N�� �G as a subgroup of �N �G and using
the fact that �N �G �� �N�� �G we get that

�N�� �G � F �� � �������
�
G����

�
����� � � � � � m�m �G�m 

��
m

where F ��
�� F�� i � �N �G for � � i � m and �j 
 G

�
j � G�ij is a monomorphism

for � � j� ij � m�
The factors of �N �G can be rearranged and � iterated as often as needed so

that

�N �G � F �� �G
�
��� �G

�
��� � � � � �G

�
p �G

�
p�� � 
 
 
G

�
m

�N�r �G � F ��� � �������
�
G����

�
����� � � � � � p�p

�
G�p
�
��p

� �p���p��
�
G�p��

�
���p�� � � � � � �m�m �G�m �

��
m
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where F ���
�� F �� � �i 
 G

�
i � G�i and �k 
 G�k � G�ik are monomorphisms� and i� �j

are elements of �N �G for � � i� ik � p� p � k � m�
Since Gi is co�Hop�an for � � i � p� we may write

�N�r �G � F ��� � ���G
�
���

��
��� � � � � � pG

�
p
��
p

� �p���p��
�
G�p��

�
���p�� � � � � � �m�m �G�m �

��
m 


We note thatXN�r is a covering space ofXN with the property that any essential
country in XN�r is a cover of a subcomplex K �

i for � � i � p�
Since �� �G is a subgroup of a �nitely generated group� it is countable and

we may list the elements� Let g be the �rst element in this list and denote by
Ig  f�� �� 
 
 
 � kg the set of subscripts appearing in the normal form representation
for g� The �rst main step in the proof of the Proposition is the following claim�

Claim �� Suppose that kgk�N �G� � min
k

n
jjgjj�k�G�

o
� t and furthermore that

g � g�g� 
 
 
 gt� where each gj � G�ij � for � � ij � m� Then �k�IgG
�
k is a free factor

of �� �G�

Proof of Claim �� Suppose that g� � G�i� � There are three cases to consider�
according to the index i��

Case �� Suppose that � � i� � ��

Since G�i�
�� hxii� g� � xni for some n� Consider a loop f representing xi in XN

and its lift �f in Xk for k � N � If �f is not a loop� then it is a contractible path in Xk

which we can extend to a representing space� Mk� Note that kgk�k�G� � jgjMk
� t�

contradicting the assumption that t was minimal� Hence �f is a loop� and therefore
G�i is a free factor of �

k �G for all k 
 N �

Case �� Suppose that � � i� � p�

Let Ki� be the subcomplex in XN such that �� �Ki� � G�i� � Consider the cover
�Ki� of Ki� in XN�r which is adjacent to the basepoint� A priori � there are three

possibilities for �Ki� 


Subcase a� ��

�
�Ki�

�
� ��

Subcase b� ��

�
�Ki�

�
is a nontrivial subgroup of G�i� �

Subcase c� ��

�
�Ki�

�
� G�i� �

In all cases� let f be the loop in Ki� representing g� and let �f be the lift of f in
�Ki� 


In Subcase a� ��

�
�Ki�

�
� �� and hence �Ki� is contractible� we include �Ki� in an

representing space� MN�r for XN�r� Then kgk�k�G� � jgjMN�r
� t� contradicting

the assumption that t was minimal�

In Subcase b� we assume that ��

�
�Ki�

�
�� H� a nontrivial proper subgroup of

Gi� � Up to rearrangement of factors� we may assume that

H �� G�p�� �G
�
p�� � � � � �G

�
p�t
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and so that �p�� � �p�� � � � � � �p�t � �� Therefore� we may rewrite �N�r �G as
follows


�N�r �G � F ��� � ���G
�
���

��
��� � � � � � pG

�
p
��
p

� �p��
�
G�p��

�
� � � � � �p�t

�
G�p�t

�
� �p�t���p�t��

�
G�p�t��

�
���p�t�� � � � � � �m�m �G�m �

��
m

where i� �� � �otherwise � is not injective� and if �j � �� then �j �Gj is not a
subgroup of Gi� 


We now turn our attention to

�N��r �G � F ���� � � ����G
�
����

�
�����

�
� � �pG

�
����

�
��p

�
� i��p��

�
G�p��

�
��i� � � � � � i��q

�
G�q
�
��i�

� ���q���q��
�
G�q��

�
�����q�� � � � � � ���m�m �G�m���

��
m �

where q � p� t� and consider the cover of Ki� in XN��r which is adjacent to the
basepoint� say �Ki� � If �Ki� were essential� then either � �i� � �� or � ��j � � for
q�� � j � m
 The former contradicts injectivity of �
 If the latter occurs� then in
fact �j � �� but we previously assumed that in this case �j �Gj was not a subgroup

of Gi� � Hence �Ki� is inessential� and we �nd that kgk�k�G� � jgjMN��r
� t� which

is a contradiction�
Then Subcase c is the only possibility which does not contradict the minimality

of t� Therefore ��

�
�Ki�

�
� G�i� and Gi� is a free factor of �N�r �G 
 Similarly�

G�i� is a free factor of �
N��r �G for all p � N� Hence� Gi� is a free factor of �

k �G
for all k 
 N � and it is an easy exercise to prove then that Gi� is a free factor of
�� �G 


Case �� Suppose that p � i� � m�

We note that if min
k�N

n
jgj�k�G�

o
� t and g � g� 
 
 
 gt is in �N �G� then gi �� G�j

for p � j � m� if Kj is the subspace of XN with �� �Kj � G�j � and
�Kj is the cover

of Kj in XN�r which is adjacent to the basepoint� then �Kj is inessential�
This shows that in all cases G�i� is a free factor of �

� �G�
We repeat the argument for all gi involved in g� Each gi is represented by a loop

fi that lifts to a path �fki in Xk which is either a loop adjacent to the basepoint� or
a non�contractible path that lies in a inessential country adjacent to the basepoint�
These essential countries and loops are actually homeomorphic to those countries
they cover� Thus �IjGij for ij � Ij is actually a free factor of Xk for all k 
 n� and
hence a free factor of �� �G� as well� This completes the proof of Claim �� �

We now reorder the factors of �N �G in the following way


�N �G � G�� � � � � �G
�
L �G

�
L�� � � � � �G

�
Q �G

�
Q�� � 
 
 
G

�
m

where

� for � � i � L� G�i is a free factor of �
k �G for all k 
 N and for each further

iterate of �� the corresponding Kurosh conjugator i � ��
� for L � i � Q� G�i

�� Z�
� for Q � i � m� G�i is a co�Hop�an group�
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Now let g� be the �rst element in the ordering of �� �G so that g� is not
contained in � � �Li��G

�
i� If one cannot do this� then �� �G � �Li��G

�
i is a free

factor of �k �G for all k 
 N � and the Proposition is complete� We de�ne jg�j�k�G�j�
to be the minimal length of g� with respect to all free product representations of
�k �G which contain � as a free factor� Let

kg�k�k�G�j� � min
k�N

n
jg�j�k�G�j�

o
� s

and suppose that this minimum is attained in

�N
�

�G � G��� �G
��
� � � � � �G

��
L �G

��
L�� � � � � �G

��
Q �G

��
Q�� � � � � �G

��
m

where G��i � G�i if � � i � L� G��i
�� Z if L � i � Q� and G��i is co�Hop�an if

Q � i � m�
Let g� � g�� � � � g

�
s be the normal form of g� with respect to this representation�

where g�j � G��ij � All of the arguments pertaining to the length of g in Part I of the

argument directly apply to g�� for each G��ij containing g
�
j in the element g�� we have

a corresponding subspace Kij in XN � that lifts to a homeomorphic copy of itself in
Xk� for k 
 N �� If this fails to be the case for some k	 � N �� then we can �nd some
k� 
 k	 for which jg�j�k� �G�j� � kg�k�k�G�j� � which contradicts the assumption of

the minimality�
In this way� we obtain �L

�

i��G
��
i � �� which is a free factor of �k �G for all k 
 N ��

and is hence a free factor of �� �G� This completes the proof of the Proposition
since the process must terminate� this is since the free factors of �� �G are also
free factors of �M �G for large enough M � and the number of these free factors is
bounded by m� �

�� The Retract Theorem in Fuchsian groups

In this section� we show that the Retract Theorem holds for a �nitely generated
Fuchsian group G generalizing results of Voce �V�� and �V��� See �B� for background
information on Fuchsian groups� �This theorem also holds� by the same techniques�
for groups of isometries of the hyperbolic plane H that include orientation reversing
isometries� We begin with the special case of �nite free products of cyclic groups�

Lemma �� If G is a �nite free product of cyclic groups� and � is an endomorphism

of G then ���G is a retract� The Retract Theorem therefore holds for G�

Proof� We begin by showing that �N is a monomorphism for su�ciently large
N � If G � Fr � Zk� � � � � � Zks then rank �G � r � s� By the Kurosh Theorem�
the images �n�G all have the same form as well and rank��n�G � rn � sn
is a non�increasing function of n� In fact� the values of rn are non�increasing by
the following argument� Abstractly� � is a surjection from Fr � Zk� � � � � � Zks to
Fr� �Zk�

�
� � � � � Zk�s� � Following by projection onto Fr� � we get a map which must

be trivial on each factor Zki� inducing a surjection of Fr onto Fr� � so r� � r�
similarly� rn�� � rn� The values of rn are therefore eventually constant and so the
values of sn are also eventually constant� Now replace �G�� with

�
�M �G � �M

�
for su�ciently large M�here the values of rn and sn are constant and it su�ces
to prove the Lemma in this case�
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It�s not hard to see that k�� � � � k
�
s � k� � � � ks� �Consider the abelianization

Z
rL

Zk� � � �Zks � Z
rL

Zk�
�
� � �Zk�s � This is true as well for all �n� so eventually

this product stops decreasing� at which point �N becomes a monomorphism�
The Lemma now follows by the same arguments as in Proposition � and Theo�

rem �� �

Proof of Theorem �� Suppose that G is a �nitely generated Fuchsian group with
fundamental polygon P and orbifold H �G� If there are no cusps� then G is torsion
free and the Retract Theorem holds by Theorem �� If G is not co�compact �i�e�� if
H �G is not compact or if the genus n is �� then G is a product of cyclic groups
and the Retract Theorem holds by Lemma �� We may therefore assume that P is
compact and that G has presentation

G �
�
a�� b�� 
 
 
 � an� bn� c�� 
 
 
 � ct j �a�� b�� 
 
 
 �an� bn� c� 
 
 
 ct� ci

ki �i
�

with t � � and n � �� By considering the abelianization of G� it is easy to see that
rank�G � �n� t� �� The orbifold H �G has genus n topologically and has t cone

points with cone angles ��
k�
� 
 
 
 � ��

kt
� Denote the total cone angle of H �G by

ConeG �

tX
j��

��

kj



Then by �B� p�	��� P has area

A � ��

�
	��n� � �

tX
j��



��

�

kj

�� � ���rank�G � �� ConeG


As before� it su�ces to show that for any endomorphism � of G� that ���G
is a retract� Consider �rst the case in which the index jG 
 ��Gj of ��G in G is
in�nite� namely jG 
 ��Gj ��� In �HKS�� it is proven that a subgroup of in�nite
index in a Fuchsian group is a free product of cyclic groups�replacing G and �
with ��G and �� completes the argument in this case�

Now assume that ��G has �nite index in G and consider the family of subgroups

G � ��G � ���G � � � � � ���G � 
 
 


each of which is Fuchsian� If for any �� ���G is either not co�compact or has genus
� or has no cone points� then the Retract Theorem holds for ���G and ���G is
a retract of both ���G and of G� So we can assume that for all �� ���G is co�
compact� has genus n� � �� has t� � � cone points� has rank r� � �n� � t� � � � ��
has total cone angle Cone� and area A� � ���r� � �� Cone��

The sequence r� is non�increasing� so it eventually stabilizes� The sequence of
indices j���G 
 �����Gj is also non�increasing and eventually stabilizes at a value
q � �� �If at any point� ���G � �����G then ���G � ���G and we are done�
So by replacing G and � by ���G and � j���G� for suitably large �� we may assume
that all the ranks and all the indices are equal�

Now A��� � qA� since a fundamental polygon for �����G is q non�overlapping
fundamental polygons for ���G� Thus

lim
���

�A� �� �� lim
���

�Cone� � ��


This is a clear contradiction� completing the argument� �



��	 John C� O�Neill and Edward C� Turner

�� Test elements in surface groups

In this section� we will prove the existence of test elements in the fundamental
groups of orientable surfaces other than the torus� For the remainder of this section�
we will consider the surface Sn of genus n with fundamental group

�n � hx�� x�� 
 
 
 � x�n j �x�� x�� �x�� x�� 
 
 
 �x�n��� x�n�i 


Theorem �� The group �n� for n 
 �� contains test elements� In particular the

words

wk � xk�x
k
� 
 
 
 x

k
�n� k � �

are test elements�

Proof� The Retract Theorem holds for �n since it is Fuchsian� so it su�ces to
show that for k � �� wk lies in no proper retract of �n�

Suppose that � 
 �n � �n is a proper retraction with H � ���n and that
wk � H � In general a subgroup K of �n is a surface group and if ��n�K� � k ���
then the Euler characteristics and ranks are related by

��K � k���n� rank�K � k��n� � � � � �n � rank��n


Since the rank�H � rank��n� H has in�nite index� Let SH be the covering space
of Sn corresponding to H � Since SH is a non�compact surface� H is free�

Consider the standard CW complex structure on Sn� with one ��cell� �n ��cells

and one ��cell� and the map f 
 S� � S
���
n that represents wk � ��

�
S
���
n

�
�� F�n

�where S� is the circle and S
���
n is the ��skeleton of Sn� Since �f � � wk � H � f lifts

to a map ef as indicated�

SH
���

��

�� SH

��
S�

f
��

ef

��
p
p
p
p
p
p
p
p
p
p
p
p
p

Sn
��� �� Sn

Claim �� There is a map f � 
 S� � S
���
n homotopic in Sn to f so that the imageef � �S�

�
of the lift ef � is contained in a topological retract V of SH 
 The subgroup

K  F�n represented by V is a retract of F�n�

SH

��
S�

f �
��

ef �
��
p
p
p
p
p
p
p
p
p
p
p
p
p

Sn

Proof of Claim �� The non�compact surface SH retracts onto a homotopy equiv�
alent compact subsurface �with boundary T which contains �f�S�� Then T strong
deformation retracts onto a subset V of its ��skeleton T ���� for example� perform
the sequence of simple homotopies that push in on a free edge of any remaining

��cell� This strong deformation retract will homotop the map ef to a map ef � whose
image is again in the ��skeleton� f � is de�ned by projecting to Sn� Since a graph

retracts onto any of its connected subgraphs� ef � �S�
�
is a retract of V � which is in

turn a retract of SH � thus ef � �S�
�
is a retract of SH �



Test Elements and the Retract Theorem in Hyperbolic Groups ���

The diagram of spaces on the left determines the diagram of groups on the right
below� in which � is the presentation map� � is the inverse of the isomorphism
induced by the deformation retraction� and iK and iH are inclusion maps�

V

��

�� SH

��

K

iK

��

� �� H

iH

��
Sn

��� �� Sn F�n
� �� �n

The retraction of F�n to K is ��� ����� This completes the proof of the Claim� �

Now let vk � K  F�n be the element represented by f �� Since K is a proper
retract of F�n� the retract index ��vk of vk is � �see �Tu�� On the other hand�
��vk � ��wk since the de�nition of � depends only on the image in Z�n and ��vk

and ��wk have the same image in �n �F�n � �n � Z
�n� But ��wk is a multiple

of k �Tu� page �	��� This contradicts the existence of the retraction �� �
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